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Abstract: In a 1995 paper, J.C. Mason and G.H. Elliott studied polynomial
interpolation weighted by (1 — :ng)l/ 2 at the zeros of Chebyshev polynomi-
als of the second kind. In particular, they obtained an asymptotic result for
the norm of the resulting projection. However, this result was based on an
(unproven) conjecture about the points of attainment of the supremum of
a function which defines the norm. In this paper the validity of the asymp-
totic result for the projection norm is established by a method that does not
depend on the conjecture.

1. Introduction

Let z; = cos[(i + 1)w/(n+ 2)], 0 < i < n, denote the zeros of the
Chebyshev polynomial of the second kind Un1(z) = [sin(n+2)0]/sin ¥,
where z = cosf and 0 < 6 < 7. Also let w(z) = (1 —2?)}/? and denote
the set of all polynomials of degree no greater than n by Fy,.
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In the paper [5], J.C. Mason and G.H. Elliott introduced the pro-
jection L, of C[—1,1] on wP, that is defined by

(Lnf)(z) = w(zx) Zez(m)m
i=0

w(z;)’

where £;(z) is the fundamental Lagrange polynomial

fz(CC):H T — T

g T Tk
ki
They showed that if || - ||, denotes the uniform norm lglloo =
= sup |g(z)|, the projection norm
-1<z<1
[Znll = sup |Lnfllco
lflle<1
satisfies || Lp|| = sup F,(6), where
0oL
|sin(n + 2)8| < sin 6;
1 =
(1) Fn(0) n+2 Z cos§ — cos b;

i=0
and 0; = (1 + 1) /(n + 2).

On the basis of numerical computations, the authors conjectured
that the supremum of F,(6) occurs at § = 7/2 when n is odd and
at a value of ¢ that is asymptotic to [r(n + 1)]/[2(n + 2)] as n — co
when n is even. Furthermore, they proved that Fr(m/2) (for odd n)

and Fp([r(n + 1)]/[2(n + 2)]) (for even n) both have an asymptotic
expansion

2 2 4
—logn+ = {log=+~v | +o(1),
vis T T

where v = 0.577... denotes Euler’s constant. Therefore, assuming the
conjecture about the points of attainment of the supremum of £}, () to
be correct,

2 2 4
(2) |Ln|| = =logn + = <1og— +ﬁ/> +o(1).
T T T

As pointed out by Mason and Elliott, the projection norm for
the much-studied (unweighted) Lagrange interpolation method based
on the zeros of the Chebyshev polynomial of the first kind Thii(z) =
= cos(n +1)f, where z = cosf and 0 < 4 < 7, 18
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2 2 8
—logn+ — <10g -+ “/> +0o(1)
T ™ ™

(see Luttmann and Rivlin [4] for a short proof of this based on a conjec-
ture that was subsequently established by Ehlich and Zeller [2]). There-
fore, if (2) is valid, the norm of the weighted interpolation method is
smaller by a quantity asymptotic to 271 log 2.

In this paper it will be shown that the asymptotic formula (2) is
indeed correct. The result is a consequence of the following theorem
which will be proved in Sect. 2

Theorem. There ezists a positive constant C' so that for all § € [0, 7]
and n > 2,

E, (z) + ¢ if n is odd,
2 logn
(3) Fa(6) < m(n+1) C ,
b, (M) + Eg—g if n 18 even.

Observe that (2) follows immediately from (3) and the asymptotic
analysis of Fy,(7/2) and F,,([r(n + 1)]/[2(n + 2)]) that was carried out
by Mason and Eliott. It should be noted, however, that although
the validity of (2) is established in this paper, the conjecture about
the points of attainment of the supremum of F,,(f) remains an open
question.

2. Proof of the theorem

The methods that will be employed to prove (3) are modelled
on those used by Brutman [1] and Giinttner [3] in their studies of the
Lebesgue function for Lagrange interpolation at the zeros of Chebyshev
polynomials of the first kind.

The proof will be presented via a sequence of lemmas. We begin
by noting that the 6; (O < 7 < n) are symmetrically arranged about
/2,80 Fp(n/2 — 0) = F,(w/2+ 0) and hence || Ly,|| = sup Fn(6).

0<o< /2

In the first lemma an alternative representation of F,,(8) to that
in (1) is obtained. In the statement of the lemma and subsequently, -]
denotes the integer part of a number.

Lemma 1. For j = 0,1,...,[(n+ 1)/2], let I; denote the interval
10;-1,0;]. Then for 6 € I; and withn =0 — 93_1,
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(4)
Fo(0) = Fo(lj,n) =
sin(n+2); = =
= -n—+—~ Zcot N+0k_1) Zcot n+0k)+ chc n+0k)|.
2 k=0 k=3 k=2j

Proof. By using the trigonometric identity
sin@i 1 ( 9+91 9—91>
= co )

— cot
2 2

cosf —cosb; 2

the expression (1) becomes

n

. sin(n + 2
R0 = BRI Y e

0+ 0 0 —0;
— cot 5 .

L

Suppose 0 = 0;_1 +n where 0 <1 < w/(n+2). Then |sin(n + 2)0| =
= sin(n + 2)n and

i g4 6; 6 —0;
ot

cot — =
2 3
7=0
k) + 9 . |
= oot T ot 1T ‘*'2‘ =
.=0 - =
= + 0y 0,
1==0 2 2
n—j
M+ Ot n+bi—i2
+Z cot —— —CO'G—T— -+
1=7
n
+ Y oot 7 +997;+j O 9;—7,—2 _
i=n—j+1 - -
2j—1 40 e
= Z cot, 1 E_cot N %2k ?)rz_k -+
k=j “
+Z<ﬂ Hm”f%—
k=27 - -
J
B N+0g—2 . N+0-k
+ Z ta 5 tan 5
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On noting that

+ 0, 6 :
cot T2 o oop TF T2 forj<k<2j-1
and
0 Ooi

and using the trigonometric identities cot o + tana = 2csc(2a) and
cot o — tan o = 2 cot(2¢), the representation (4) is obtained. ¢
Observe that (4) defines F,, as a function of n € [0,7/(n + 2)] in
each interval I; for 0 < j < [(n+ 1)/2]. For convenience we write
s n om
2n+2) n+2
where —1/2 < ¢ < 1/2. Therefore for 8 € I, (4) can be written as

’)7:

(5) Fn(0) = Fi(6) =
cos 57r = iy
= - Zcot O — 1/246 — Z cot 9k+1/7+5 + Z cse eh—.—l/’)—i—é
k=j k=27

where the definition 6; = (i + 1)7/(n + 2) has been extended to non-
integer values of 4.

In the next lemma the values of F,() in the left- and right-halves
of each interval I; are compared.
Lemma 2. Suppose 0 < j < [(n+1)/2] and 0 < § < 1/2. Then
F(8) > Fi(-9).
Proof. From (5) it follows that for 0 < j < [(n —1)/2],
(6) FIFH(6) — Fi(6) =
cos o7

= nt 2 [C‘,Ot Hj_1/2+§ -+ cot, 9j+1/2+5 —cot 92j+1/2+5—COt 02]'—{—3/2—{—5 —

—C8C 92j+1/2+6 —CSC 92j+3/2+5] =

_cosom
= = [c0805-1/245 + €0t 51515 =CO8 b5 1/45/2 = €06 0541 /0v5/2]

where the identity cota + csca = cot af2 has been employed. There-
fore, if 0 < § < 1/2 and GI,(8) = F2(6) — F2(—0), it follows that
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AGL(8) = GIFH(6) - GL(0) =

cos 07
=0 [cot 81245 — cOt 5—1/2—5 + cot 0j+1/24+5 — COtOj41/2-5 —

— cot 8;_1/445/2 + €0t 05174572 — COb 0j4+1/448/2 + cot 9j+1/4—‘5/2] :
We show that AGL(6) <0. If A= (1/2+8)n/(n+2), B= (1/2—6)m/
/(n+2) and

H(z) = cot(8; — B) — cot(f; — zA) + cot(0; + zA) — cot(6; + zB),
then AGY (6) can be written as
@ AGH(E) = 20 (H(1) - H(1/2).
Now, H is a decreasing function of = on [0,1]. This follows from
H'(z) = Besc?(f; — zB) — Acsc®(0; —zA) — A csc?(0; + zA)+
+ Besc?(0; +zB) < |
< B[(csc*(8; — zB) — csc®(0; — zA)) +
+ (csc®(8; + zB) — csc®(0; + zA))] =
= —2zB(A — B) (cot 6 csc? 01 — cot B, csc’ 02)
for some §; € (0, —zA,0; —xB), 02 € .(93- +zB,0; +zA) by the Mean-
Value Theorem, so H'(z) < 0 on (0,1]. From (7) it now follows that
for each j and 4, '

(8) GIFH(8) < GL(9).

We next show that G%HH)/Q]((F) > 0. If n is odd, then

Gl 1/ (6) = 0 because Fa,[m(n+l)/2](5) is an even function of § by (5).
If n is even, say n = 2m, then by (5),

GUn+D/2 (§) = FJ2,(6) — Fip(=0) =
m—1
cos i [

= G Z (COt Qk_l/.}.ﬁ; -+cot 9k+1/2_5 —cot Gk_l/g_(; —cot 9k:+1/2+6) +

k=0
+- (csc 0_1/2_5 —csc 9_1/2”)} =

cos o7
=519 (cotO_1245 — €Ot Om_1/245 — cObf_1/2—5 + Ot U1 /25 +

+escf_q/a_s —cscO_1/a1s) -
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On using the identity csca — cot o = tan «/2 this can be written
as

cos 0

GT[,ETL—!—I)/Q](&) = > [(t&l’l 9_1/2_|_5 — tan 0_3/4+5/2) -

2m
— (138,119_1/2_6 — tan 9_3/4_5/2)} ,

and since 0_3/446/2 = (0—1/245)/2 and tanz — tan(z/2) is increasing
on [0,7/2), it follows that Gt/ (6) > 0. Thus, whatever the parity
of n, GK™*V/2(§) > 0. Hence by (8), G3.(5) > 0 for 0 < j < [(n+1)/2]
and 0 < § < 1/2, which establishes the lemma. §

Note that by Lemma 2, the supremum of F,,(#) in each interval
I; for 0 < j < [(n+1)/2] is attained in the right half of the interval.
Also observe that by (6), FiT1(0) — FZ(0) >0 for 0 < j < [(n—1)/2],
S0

(9) Fi(0) < F{n+ D2 0),  0<j<[(n—1)/2].

One final lemma is needed. This lemma provides an upper bound
for the difference between the supremum of F,(6) on Iy and its value
at the midpoint of the interval.

Lemma 3. If -1/2<§ <1/2 and n > 1, then

7[.3

64 (log(n+ 1) + v +1logd — w2 /4)

Proof. By Lemma 2 and continuity it can be assumed that 0 < § <
< 1/2. From (5),

(10)  Fp(0) < FR(0)+

(s

n

(n+2) (FJ(5) — FL(0)) = D _ (cosémescOy1/z4s — oSCOpyp1)2) =
k=0

i3
= Z (cosémescBr_1/9—5 — csCO_1/2) -
k=0
We employ the inequality cosdm < 1— 462 (0 <6 < 1/2). Since
227‘ _

Lo Bl = 2) oy
—Z+Y 1, o<l <,
cscd 0-1—7:1 ol , <9<

where the B,, are the Bernoulli numbers, then
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(cosdmcsc O 5 — cscf )<§;<1—462 o >_
k=0 e = = \Op—12-5  Ok-1/2

n+2) 1—46° 1\
B z<‘>k+1—96 2k+1>_

B n+2) 442 = 26 \™ 1
Ay S (B ER) ) w

=1

ax~ 1 2 = e (20)™
Y - 3 )

IA

2(n +2)
T

. 1
‘Write Tl

k=0

= S,, and note that

Therefore

FO(6) — F2(0) < % l—zm?‘sn +‘—i(1 — 45?) i (2(5)””} =

This latter expression is a quadratic in § which has a maximum value
of 7 /[16(87 25, —1)]. The result (10) then follows from the inequality
of Giinttner [3, eq. 3.3],

1
Sp > 5 (log(n+1) +7) +1og2. O

L

We are now in a position to prove the theorem. TFor 0 < j <
<[(n—1)/2] and 0 < 6 < 1/2 let

P;(8) = cot 0;_1 /246 + c0t 0517245 — cOt U5 -1/415/2 — €Ot Oj11/a16/2,

so that
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T

9 1
P;(é) = S [ — csc? 9j—1/2—|—5 — €SC” 6j+1/2+5 + -2~ csc? Hj_1/4+5/2+

1 o2
+ 5 o8¢ 9j+1/4+5/2] <

pi

vis
—— [- csc® 0;41/2+5) < 0.

Since P;(0) > 0 it follows from (6) that for each j with 0 < j <
<[(n—-1)/2],
max (FI+(6) — F1(6)) = FIt(0) — FL(0).

0<6<1/2 "
Therefore
11 J4+1 _ 70 V) — 7+1 0 )
(11) Osrgg*f/z(Fn (8) = F(8)) = FiT(0) — F(0)

Now choose any 6 € [0,7/2] and write § = 0,,,_1/24.5 Where 0 <
<m <[(n-+1)/2] and —1/2 < § < 1/2. Then, by (9), (11) and Lemmas
2 and 3,

Fo(0) = F'(6) < F(|6]) =

= (E(6]) = Fa (o) + Fr(lé]) <

3
< (F™(0) — FO(0)) + F°(0 T <
‘( n (0) n ))+ ”()+64(log(n+1)+“/+log4—ﬁ2/4)‘
3
< F (0 .

64 (log(n + 1) +~ +logd — n2/4)’

from which (3) follows. Therefore the proof of the theorem is com-
pleted. ¢
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