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Abstract: We investigate parabolic subgroups of connected semisimple Lie
groups with finite center using the axiomatic approach of Tits to the theory
of parabolic subgroups. The main result establishes an isomorphism between
the group of Tits generators of the parabolic subgroups of a semisimple Lie
group G and a certain subgroup of the Weyl group determined by a root space
decomposition of the Lie algebra g of G.

1. Tits systems and parabolic subgroups

In this section we present briefly the axiomatic approach of Tits
to the theory of parabolic subgroups of groups (not necessarily endowed
with a topology). The reader can find more details in [3].

1.1. Tits systems. Let G be a group and P, H subgroups of G.
The triple (G, P, H) is called a Tits system with Weyl group W if the
following conditions are satisfied:
(i) G is generated by P and H,
(i) N = PN H is a normal subgroup of H,
(iii) there exists a finite subset A of the group W := H/N having the
following properties:
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(1) A consists of elements of order 2 and generates W,
(2) hPh™! £ P for any AN € A,
(3) W'Ph C (PhP) (Ph'hP) for any N € Aand all AN € W.
1.2. Convention. Consider w = hN € W. Since N C P we shall
write, by a slight abuse of notation, wP (Pw) for the set hP (Ph). In
the same vein, we shall identify an element w of the Weyl group with
any of its representatives h € H, where w = hN.
1.3. Parabolic subgroups. Let (G,P, H) be a Tits system with
Weyl group W. The conjugates of P in G are called the minimal para-
bolic subgroups of G. A parabolic subgroup of G is any subgroup of G
containing a minimal parabolic subgroup. Let A be the (finite) set of
generators of W mentioned in condition (iii) of 1.1. For every subset
O of A denote by We the subgroup of W generated by ©, and by Pe
the set PWeP. Condition (3) of 1.1 implies that Pg is a subgroup of
G, hence P = G. Of course, Py = P. According to the following
theorem the subgroups P and their conjugates are the only parabolic
subgroups of G. (For details see Sect. 1.2.1 of [3].)
1.4. Theorem. Let (G, P, H) be a Tits system with Weyl group W,
and let A be the finite set of generators of W mentioned in condition
(iii) of 1.1. Then the following assertions hold:
(i) The map w — PwP (w e W) is a bijection between W and the
set of double cosets PzP (z € G) of G.
(ii) The subgroups Po, © C A, are the only subgroups of G contain-
ing P.
(iil) If ©1 and ©4 are distinct subsets of A then Po, and Pe, are not
conjugate to one another.
(iv) Ewery parabolic subgroup of G is its own normalizer.
1.5. Corollary. With the notation of the preceding theorem, if © C A
then the map h € Po N H — hN € W is a surjection onto We.
Proof. We have only to show that hN € Wg whenever h € Pg N H.
Consider h € Pg N H. Since Py = PWgP, there exists w € Wg such
that h € PwP. Thus PhP = PwP. In view of assertion (i) of Th. 1.4
we conclude that AN =w € Wg. ¢
1.6. Remarks. 1) The above corollary allows us to recover the sub-
group of W that generates a given parabolic subgroup: Suppose that P’
is a subgroup of G containing P. Then, due to assertion (ii) of Th. 1.4,
there exists a subset © of A such that P’ = Pg. By Cor. 1.5 we know
that We = {hN | h € P’ N H}. The group We is called the group of
Tits generators of P’.
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2) We shall see that semisimple Lie groups admit Tits systems,
and therefore we can consider parabolic subgroups in these groups. For
this we have to recall some basic facts about orthogonal linear maps
and root systems, and a few results on the structure of semisimple Lie
algebras and Lie groups.

2. Basic facts about orthogonal linear maps and
root systems

Throughout this section we are concerned with a fixed finite di-

mensional real vector space V endowed with the scalar product (-,-).
Denote by V* the vector space dual of V, by End(V') the space of endo-
morphisms (linear maps) V — V, and by GI(V') the group of automor-
phisms (bijective endomorphisms) of V. We recall that a map V=V
is called orthogonal if {f(v), f(w)) = (v, w) for every v,w € V. It follows
that every orthogonal endomorphism of V' is an automorphism.
2.1. Example. Important examples of orthogonal linear maps are
the reflections. Geometrically, a reflection is an automorphism of V
leaving pointwise fixed some hyperplane (subspace of codimension one)
and sending any vector orthogonal to that hyperplane into its negative.
Evidently a reflection is orthogonal. Any nonzero vector v € V deter-
mines a reflection o, with reflecting hyperplane {w € V | (w,v) = 0}.
The explicit formula for oy, is

2 (w,v)
(v, )
2.2. Definition. Define the maps ¢:V — V* and ¢:End(V) —

— End(V*) by

o) =(-v), forallv €V, Y(f)=po fop ?, forall f € End(V).
These maps are isomorphisms of vector spaces. Moreover, when re-
stricted to G1(V), then 7 becomes a group isomorphism onto GI(V™).
Of course the scalar product (-,-) can be transferred via ¢ to a scalar
product on V*.

2.3. Lemma. If f € End(V) is orthogonal then the equality p(f(v)) o
o f = (v) holds for everyv € V.

Proof. Pick an arbitrary w € V. Then

((f()) o f)w) = (f(w), f () = (w,v) = p(v)(w),

so the equality follows. O

oy(w) =w —

v, for every w € V.
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2.4. Corollary. If g € End(V*) 1s orthogonal and o € V™ then

gla) o™ (g) =

Hence g(a) = a0~ (g71).
Proof. Consider g € End(V*) an orthogonal linear map and an ar-
bitrary functional € V*. An easy computation yields that the map
¥»~1(g) € End(V) is also orthogonal. Thus the assertion follows replac-
ing in Lemma 2.3 the map f by ¥ ~!(g), and the vector v by v (a). O
2.5. Root systems. A root system in V is a finite set ® of nonzero
vectors in V (called roots) such that

(i) ® spans V,

(ii) the reflections oy, v € @, leave ® invariant,

(iil) % is an integer whenever v and v are in ®.
2.6. The Weyl group of a root system. Let ® be a root system
in V. The subgroup W(®) of Gl(V) generated by the reflections oy,
v € ®, is called the Weyl group of ®. By condition (ii) of 2.5 the group
W(®) permutes the set ®, which is finite and spans V. This allows
us to identify W(®) with a subgroup of the symmetric group on @; in
particular, W(®) is finite.
2.7. Base of a root system. Let ® be a root system in V. A subset
A of ® is called a fundamental system of roots for ®, or a base for ®, if

(i) A is a vector space basis for V/,

(i) each root u can be written as u = }_kyv (v € A), where ky,

v € A, are integers all nonnegative or all nonpositive.

2.8. Positive and negative roots. If A is a base for ® then a root
u =Y ko (v €A) is called positive (resp. negative) relative to A if
all k, > 0 (resp. all k, < 0). The set of positive and negative roots
(relative to A) will usually be denoted just by ®* and ®~.
2.9. Theorem. Let ® be a root system in V. Then the following
assertions hold:

(i) ® admits at least one base.

(ii) If A and A’ are two bases for @ then there exists one and only

one element w € W(®) such that w(A) = A'.

(ili) The Weyl group W(®) is generated by the reflections oy forv € A.
Proof. See 2.49, 2.62, and 2.63 of [2]. ¢
2.10. Lemma. If A is a base for the root system @ and if w € W(®)
then w(A) is also a base for @.
Proof. Since w is an automorphism of V the set w(A) must be a
vector space basis for V. Let u € ® be an arbitrary root, and write
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u=> tw) (vea,t,eR). Since W(®) is a finite group there is a

natural number n such that w™ = 1y. Thus w™ 1 (u) = > t,v (v € A).

Since A is a base for ® and since w™ !(u) € ®, the reals t, (v € A)

must be integers all nonnegative or all nonpositive (by condition (ii) of

2.7). ¢

2.11. Lemma. Let @ be a root system. If v € ® then the possible roots

proportional to v are +v, £iv and +2v.

Proof. Consider v € & and ¢t € R\ {0} such that tv € & Then,

according to condition (iii) of 2.5, we have that ‘

2 (tv,v) 2(v,tv) 2
{(v,v) (tv,tv) ¢

It follows that t € {£%,+1,£2}. ¢

2.12. Reduced root systems. A root system & is called reduced if,

for every v € ®, v and —wv are the only roots in ® proportional to v.
2.13. Lemma. Let © be a root system. The subsets

1
¢ ={ved|2v¢ b} and@_g:{vei)lavgé@}

of ® are reduced root systems. Moreover, W(®) = W(®1) = W(D,).
Proof. We first verify that ®; satisfies conditions (i)—(iii) of 2.5. Con-
dition (i) is satisfied, since for a root v € ® we have v ¢ ®; if and only
if 2v € @1 (cf. Lemma 2.11). Consider now u,v € ®;. Then o,(u) €
(because @ is a root system). If 20, (u) € @ then 2u = 0,(20,(u)) € @
(by condition (ii) of 2.5), contradicting u € ®;. So 20,(u) ¢ ®, hence
oy(u) € ®1. It follows that ®; is a root system. It is clear that @, is re-
duced. An analogous argument holds for ®;. The last equality follows
from the fact that o, = oy, for every v € ® and every t € R\ {0}. ¢
2.14. Lemma. If A is a base for the root system ® then A is also a
base for the reduced root system ®; = {v € @ | 2v ¢ ®}.

Proof. We have only to check that A C @5 if A is a base for &.
Consider v € A and suppose that 1v € ®. Since 3 ¢ Z we obtain a
contradiction with condition (ii) of 2.7. Hence v ¢ ®, i.e., v € ®5. O
2.15. The length of an element of the Weyl group. For the
remaining results of this section we assume that & is a reduced root
system in V. Fix a base A for @, and let ®T and ®~ be the sets
of positive, resp., negative roots (relative to A). By assertion (iii) of
Th. 2.9 we know that for every w € W(®) there are roots vy,...,vx €
€ A such that w = gy, ...0y,. So we can define the length £(w) of w
in the following way: If w = 1y then {(w) = 0, if w # 1y then f(w)

=2t € Z, and € 7.
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is the smallest integer k such that w can be written as a product of &
reflections corresponding to roots from A.

2.16. Lemma. Let v € A. Then o, permutes the positive roots other
than v.

Proof. See 2.61 of [2]. ¢

2.17. Lemma. Letv € A and w € W(®) be such that w(v) is negative.
Then f{wo,) = f(w) — 1.

Proof. See 2.71 of [2]. ¢ ‘

2.18. Proposition. For allw € W(®) we have that £(w) is the number
of positive roots o € @V such that w(a) € 7.

Proof. See 2.70 of [2]. ¢

3. Parabolic sets in root systems

Consider a root system ® in a vector space V endowed with a
scalar product, and let A be a base for ®. As usual, T and &~ denote
the set of positive, resp. negative roots relative to A. For the sake of
simplicity we shall denote the Weyl group W(®) of ® only with the
letter W.

3.1. Parabolic sets. A subset I' of ® is called parabolic if it satisfies
the following conditions: ‘

(i) v1,v2 € I and v; + vy € @ imply that v; +vp €T

(i) @ =T U (-I).
3.2. Examples. 1) It is clear that ®* is a parabolic subset of ®.

2) For every subset © of A we denote by
P(O) := & U (8), where (©) := & Nspan(O).

(We recall that span(©) stays for the intersection of all vector subspaces
of V containing ©.) P(O©) is a parabolic set, since A is a base for @,
and since ®* is parabolic. (Note that P(f) = &+ and P(A) = .)
Moreover, it can be shown that for every parabolic set I' C & there

exists a subset © of A and an element w € W such that T' = w(P(0))
(see 1.1.2.11 of [3]).

3.3. Notation. For a subset M of V we denote by cone(M) the set of
all nonnegative linear combinations of elements of M.

3.4. Lemma. If © C A then cone(P(©))N® C P(O).

Proof. First let us observe that P(©) C cone(A\©) +span(©). Hence
cone(P(0)) C cone(A \ ©) + span(0).
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Consider now an element z € cone(P(©)) N &. If z € & then
clearly z € P(©). So let us suppose that z € ®~. We already know
that = € cone(A \ ©) + span(©). Since A is a base for @, the negative
root = must belong to span(0), hence to (9). ¢
3.5. Notation. For any subset © of A denote by Weg the subgroup of
the Weyl group W generated by the reflections o, v € ©. Note that in
view of assertion (iii) of Th. 2.9 the subgroup Wa coincides with the
whole Weyl group.

3.6. Proposition. Let © C A. Then the following equality holds

We ={weW]| w(P(O)) =P(O)}.

Proof. Denote by W' :={w e W | w(P(O)) =P(O)}. We first prove
the equality

(1) W ={weW]| w(A) CPO)}

Consider w € W such that w(A) C P(0). Pick an arbitrary v €
€ P(O©). If v is positive, then v € cone(A), so w(v) € cone(w(A)) C
C cone(P(©)). It follows that w(v) € cone(P(©))N®, thus w(v) € P(O)
(by Lemma 3.4). If v is negative, then v must belong to (©). Hence
w(v) € (0) C P(©). This shows that (1) holds.

In view of (1) and the Lemmas 2.10, 2.13, and 2.14 we may assume
without loosing generality that @ is reduced. Observe that it follows
right from its definition that W’ is a subgroup of W. If v € © then
oo(A\ {v}) € & (by Lemma 2.16), and o, (v) = —v. Thus ,(A) C
C P(©). According to (1), the reflection o, belongs to W’. Since W'
is a group we conclude that Wg € W'. For the converse inclusion we
prove by induction on k € N the following assertion: For every w €
e W', such that the length ¢(w) of w equals k, we have that w € We.
The assertion trivially holds for k = 0. (The only element of the Weyl
group having length 0 is the identity 1yv.) So let us suppose that k is
a positive integer and that the assertion holds for £ — 1. Consider an
element w € W' with £(w) = k. In view of Prop. 2.18 there exists an
element v € A such that w(v) is negative. We prove that wo,, € W'.
For this let us observe that (wo,)(A\ {v}) Cw(®™) C P(O) (the last
inclusion follows from Lemma 3.4). On the other hand, (woy)(v) =
= —w(v) € . We conclude that wo, € W'. We know from Lemma
2.17 that £(wo,) =k — 1, so wo, € We, by the induction hypothesis.
It follows that o, € W' (because Wo C W' and w € W’). Thus —v =
= o,(v) lies in P(©). Since —v is negative, it must belong to ().
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Sov € AN(O) = O, and thus o, € We. This ylelds finally that
w = (woy,)oy, € We. ¢

4. On the structure of semisimple Lie algebras and
semisimple Lie groups

As we have already mentioned in the second remark of 1.6, a
semisimple Lie group admits Tits systems. The so-called Iwasawa de-
composition plays an important role in the construction of these sys-
tems. We recall how this decomposition is obtained, but do not stress
on details and proofs, since they can be found in every book treating
the structure of semisimple real Lie algebras and semisimple Lie groups
(for ex., [1], [2]).

- Throughout this section g will denote a semisimple real Lie algebra
and G a connected Lie group having g as Lie algebra. As usual, x:g X
x g — R denotes the Killing form of g, ad:g — gl(g) the adjoint
representation of g, and Ad:G — Aut(g) the adjoint representation
of G. Let 7:g — g be a Cartan involution with the corresponding
Cartan decomposition g = £ @ s, where £ and s are the +1, resp., —1
eigenspaces of 7. Note that £ is a subalgebra and s is a vector subspace
of g. Denote by K the analytic subgroup of G determined by ¢, and by
{-,-):@ x g — R the bilinear map defined as

(%) (X,)Y) = —r(X,7(Y)), forall X,Y € g.

4.1. Proposition. With notation as above, the following assertions
are true:
(i) (,-) is a scalar product on g.
(ii) For every k € K the automorphism Ad(k) of g s orthogonal (with
respect to (-,-)).
(i) K is a closed subgroup of G which normalizes s (i.e., Ad(k)(s)Cs
for every k € K).
(iv) K is compact if and only if G has finite center.
Proof. See I11.6.2, I11.6.3, I11.6.4, and II1.6.6 of [1]. ¢
4.2. The root space decomposition. In what follows g is always
assumed to be equipped with the scalar product (-, -) defined in (%). Fix
now a maximal abelian subspace a of 5. The definition of (-,-) implies
that the set {ad(H) | H € a} is a commuting family of self-adjoint
(hence diagonable) transformations of g. Thus g can be written as the
(orthogonal) direct sum of simultaneous eigenspaces
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(%) s=g"e P,

ac®
where o € a*,
*={X eg| ad(H)(X) =a(H)X for all H € a},

and ® = {a € a*\ {0} | g* # {0}}. Any a € @ is called a root of (g, a),
g® is the corresponding root space, and ® is the root system of the pair

(g,0).

4.3. Proposition. Let o, 8 € a*. Then the following assertions hold:

(1) [g*,8°] C g***.
(i) 'r( ) =g~%, and hence a € ® implies —a € P.
(i) g° = a@az( a).
(iv) @ is a root system in a* (when a* is equipped with the scalar

product obtained by transferring to a* the restriction (-,-) |axa)-
Proof. See 6.40 and 6.53 of [2]. ¢
4.4. Notation. Choose a base A for & (we know from Th. 2.9 that
such a base exists). Let ®* be the set of positive roots relative to A,

and define
n= @ g<.
acd+

4.5. Theorem (The Iwasawa decomposition of g). With notation
as above, n and a & n are subalgebras of g with n nilpotent and a ® n
solvable, and g is a vector space direct sum g =¢t@adn.
Proof. See 6.43 of [2]. ¢
4.6. Theorem (The Iwasawa decomposition of G). Let g =t &
@ adn be an Iwasawa decomposition of the Lie algebra of the connected
semisimple Lie group G, and let K, A, and N be the analytic subgroups
of G with Lie algebras ¥, a, and n. Then the following assertions hold:
(i) A =expa, N = expn, and the groups A and N are simply con-
nected.
(ii) The multiplication map K X Ax N — G given by (k,a,n) — kan
is a diffeomorphism.
Proof. See 6.46 of [2]. ¢
The adjoint action on the root spaces. Retain the notations of
Th. 4.6. In what follows G is supposed to have finite center. Then
K is compact (cf. assertion (iv) of Prop. 4.1). Next we look to the
action of K on the root spaces by means of the adjoint representation
Ad. For this we consider the closed (hence compact) subgroups N (a)
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(= Nx(A)) and Zg (a)(= Zx(A)) of K. Evidently Zx(a) is normal in
Nk (a). Moreover, the two groups have the same Lie algebra, namely
s¢(a) (cf. 6.56 of [2]). Thus the group
W(G, A) = Ng(a)/Zx(a)

is finite. This group shows all possible ways that members of K can
act on a by Ad. For the sake of simplicity, if k € NV & (a), then we shall
denote the restriction of Ad(k) to a also by Ad(k).

We consider now the maps ¢ and 9 of Def. 2.2 defined here for
the space a (endowed with the scalar product (-, ) laxa)-
4.8. Proposition. Let ® be the root system of (g, a). For k € Nk (a)
and o € a* the following equality holds

Ad(k)(g®) = gw(Ad(k))(a)-
Thus, o € ® implies Yp(Ad(k))(c) € . '
Proof. Consider arbitrary vectors X € g® and H € a. Then [H, X] =
= a(H)X, hence
(A(k) (H), Ad(R) (X)] = a(H) Ad(E)(X) =
= a(Ad(k~Y)(Ad(k)(H)) Ad(k)(X).
Since Ad(k) is orthogonal (by assertion (ii) of Prop. 4.1) we can apply
Cor. 2.4 and obtain that
ao Ad(E™) = ¥(Ad(k))(a),
so Ad(k)(X) € g¥hdtD(@) Hence Ad(k)(g”) € g¥ad(E)) (@) Replac-
ing in this inclusion k by k7', and « by (Ad(k))(a), we obtain the

converse inclusion. ¢
Theorem 4.9. The map

kZ:(a) € W(G, A) — 9(Ad(k)) € Gl(a*)

is a group isomorphism onto the Weyl group W(®) of the root system

: q) Of (ga Cl) :
Proof. The assertion follows from 6.57 of [2] and the above Prop. 4.8. ¢

5. Parabolic subgroups in semisimple Lie groups

We keep the notations from the previous section for a real semisim-
ple Lie algebra g with Cartan involution 7: g — g and the corresponding
Cartan decomposition g = ¢ @ s, a a maximal abelian subspace of s,
® the root system of (g,a), and A a base for 2. For a connected Lie
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group G with finite center and with Lie algebra g let G = KAN be
the Iwasawa decomposition of Th. 4.6. Throughout this section we let
M := Zk(a) and P := MAN.

5.1. Lemma. P is a closed subgroup of G.

Proof. By Th. 4.6 we already know that AN is a closed subset of
G. Since M is compact, P must be closed. In order to show that P
is a subgroup of G it suffices to prove that both A and M normalize
N in G. Since a normalizes n in g (by assertion (i) of Prop. 4.3),
it follows that A = expa normalizes N = expn in G. Pick now an
arbitrary element k € M, so Ad(k)|a = 1,. Prop. 4.8 shows then that
Ad(k)(n) = n. It follows that kNk~* = exp(Ad(k)(n)) = expn = N.
Hence M normalizes N. ¢

5.2. Theorem. The triple (G, P, Nx(a)) is a Tits system.

Proof. This follows using the results 1.2.3.1, 1.2.3.17 of [3] and
Th. 4.9. ¢

Remarks. 1) Since P N Ng(a) = M, Th. 4.9 just says that the Weyl
group of the Tits system (G, P, Nk (a)) is isomorphic to the Weyl group
W(®) of the root system ® of (g,a).

2) According to Th. 5.2 there are parabolic subgroups in G. In
what follows we shall prove that these subgroups can be constructed
with the aid of Lie theoretical methods. Also, we shall determine the
group of Tits generators of the parabolic subgroups containing P. The
parabolic sets introduced in Sect. 3 will play an important role for this
purpose.

5.4. The sets pg and P(0). Let © be a subset of A and consider
the parabolic subsets P(@) defined in Sect. 3. Define now

po:=9"® EP g% Po:=Nc(pe)
a€P(O)

Of course, p:=pp =g’ ®n, pa =g, and p C pe for every © C A,
5.5. Proposition. For every © C A the following assertions hold:

() po is a self-normalizing subalgebra of g.

(i) Pg is a closed subgroup of G with Lie algebra peo.

(i) MAN =P C Pe.

(iv) pNs =a.

(v) Pp=P.
Proof. (i) That pe is a subalgebra follows from assertion (i) of Prop. 4.3
and the fact that P(©) is a parabolic set.
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Consider now an element X € g which normalizes pg. By the
decomposition (#x) of 4.2 we can write

X =X5+ ZXQ, where X; € g° and X, € g%, a € ®.
acd
Since a C pg, we must have [H, X] € pe for everv H € a. Thus

Z a(H)X, € po, for every H € a.

acd
Now, for every o € ®, there exists an H € a such that a(H) # 0, so
we conclude that X, = 0 for every a € ® \ P(0). Thus X € pe which
finishes the proof of (i).

(ii) That Pg is closed follows from the continuity of the adjoint
representation Ad. The assertion follows now from (i), since the Lie
algebra of Ng(pe) = Pe is the normalizer of pg in g.

(iii) Since a and n are subsets of pg we have that A = expa and
N = expn are subsets of Ng(pe) = Po. Consider now an arbitrary
element k € M. Then Ad(k)|, = 14, so, by Prop. 4.8, Ad(k)(g*) = g°,
for every o € a*. It follows that Ad(k)(pe) C pe, hence k € Po. Thus
P=MAN C Peg.

(iv) Consider X € g® and ¥ € n such that X +Y € 5. Then

T(X+Y)=—-X-Y € g?®n. On the other hand, (X +Y) € 7(g°) &
or(n) = g°@7(n). (Note that 7(g") = g° by assertion (ii) of Prop. 4.3.)
Applying once again assertion (ii) of Prop. 4.3 and the fact that ®+ N
N®~ =, we see that nN7(n) = {0}, thus 7(X +Y) =-X - Y € g°
It follows that Y = 0,80 X € g Ns = a.
' (v) We already know from (iii) that P C Py. For the converse
inclusion, consider an arbitrary element g € Py. Due to the Iwasawa
decomposition of G we find k € K, a € A, and n € N such that g =
= kan. Since A,N C Py and since Py is a subgroup, the element k&
must belong to Py. We prove that k lies in M. For this, observe first
that Ad(k)(a) C s (this follows from assertion (iil) of Prop. 4.1). Thus
Ad(k)(a) C pens = a (by (iv)), showing that k € Nx(a). Assume that
k¢ M,ie., Ad(k)|a # 1a. According to Prop. 2.18 and Th. 4.9, we find
a root o € ®* such that ¥(Ad(k))(a) € &~. Hence Ad(k)(g®) € pe
(by Prop. 4.8), a contradiction. Thus k € M. This finishes the proof. ¢
5.6. Theorem. Let © C A. Then Pg is a parabolic subgroup of G,
and the group of its Tits generators is isomorphic to the subgroup We
of the Weyl group W(®). (We recall that We is the subgroup generated
by the reflections o, with o € ©.)
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Proof. We already know from assertion (iii) of Prop. 5.5 that P C
C Pg. Thus, by 1.1 and Th. 5.2, Pg is a parabolic subgroup. Accord-
ing to Cor. 1.5, {kM | k € Po N Ng(a)} is the set of Tits generators
of Po. Let k € Ng(a). Then k& € Po if and only if Ad(k)(pe) C
C po. Since Ad(k)(g) = g° (by Prop. 4.8), this is equivalent to
Ad(k)(g®) C po for every o € P(O). Applying Prop. 4.8 once again,
this means that ¥(Ad(k))(a) € P(©), for every a € P(O), or, equiva-
lently, ¥(Ad(k))(P(O)) = P(O) (note that P(O) is finite). By Prop. 3.6
this is tantamount to say that ¥(Ad(k)) € We. The assertion follows
now from Th. 4.9. ¢

5.7. Corollary. If G’ is a subgroup of G containing P then there exists
a subset © of A such that G' = Pg.

Proof. This follows from assertion (ii) of Th. 1.4 and from Th. 5.6. ¢
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