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Abstract: In this paper we introduce a set of points within the unit circle
and a discrete measure and we prove that the Zernike polynomials of degree
less then 2N are discrete orthogonal regarding to the discrete scalar prod-
uct induced by this discrete measure. We prove that the limit of our discrete
measure when N — oo is the continuous measure over the unit circle. Using
the discrete orthogonality property of Zernike polynomials we can compute
the exact values of Zernike moments of Ty, where Ty is an arbitrary linear
combination of Zernike polynomials of degree less then 2N.

1. Introduction. The circle polynomials of Zernike were introduced
by Zernike in 1934 (see [10]). A short summary regarding to these
polynomials we can find for example in [1], [10] and [11]. First of all we
summarize the most important properties of these functions.
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There exists an infinity of complete sets of polynomials in two real
variables z,y which are orthogonal in the interior of the unit circle, 1.e.
which satisfy the orthogonality condition

(1'1) / / Vv(a) (l‘,y)‘f(‘@) (x,y)dfl?dy = Aaﬁéaﬁ-
z24-y2<1

The circle polynomials of Zernike are distinguished from the other sets
by certain simple invariance properties which can be explained from
group theoretical considerations. The circle polynomials of Zernike are
invariant in form with respect to rotations of axes about origin, which
means that when any rotation

(1.2)

7

{ x' = xcosh +ysind,
y = —zsinf +ycosl,

is applied, each polynomial V(4)(z,y) is transformed into a polynomial
of the same form, i.e. '

(13} ‘/(a)(m’y) = G(G)Xf(a)(x/:y/)a

where G(6) is a continuous function with period 27 of the angle of
rotation # and G(0) = 1. The application of two successive rotations
through angles #; and 6, is equivalent to a single rotation through an
angle 61 + 0. Hence it follows from (1.3) that G must satisfy the
functional equation

(1.4) G(01)G(82) = G(6:1 + ba).
The general solution with period 2 of this equation is
(1.5) G() =€, L e Z.

Substituting (1.5) in (1.3), setting @’ = p, ¥’ = 0 and using (1.2) we
obtain that

(1.6) Va(pcosf, psind) = Ra(p)et?,

where Ra(p) = V(p,0) is a function of p . If V(z,y) is a polynomial
of degree n in variables £ = pcosf,y = psinf, then from (1.6) it
follows that Ra(p) := R.(p) is a polynomial in p of degree m and
contains no power lower then |£| and these are called the Zernike radial
polynomials. Moreover Ry is an even or an odd polynomial according
as £ is even or odd. Consequently the index a can be replaced by two
indices n and £. For any given value £ the index n can only take the
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values 4|, |4| + 2,|4| + 4, ..., and the corresponding radial polynomials
Rfe‘, Rfﬁl ngl g - - MAY be obtained by orthogonalizing the powers

+27
(1.7) plél, pleF2 pléite

with the weighting factor p over interval 0 < p < 1. Since in (1.7) occurs
only the absolute value of ¢,

R.*=R:.
We will denote by
(1.8)
{Yip,0) ==+/2n+ [l + 1Rl , e, L€ Z,n €N, |¢| +2n < 2N}

the set of Zernike polynomials of degree less then 2V.

This set contains N (2N 4+ 1) linearly independent two variables
polynomials of degree less than 2NV. Hence every monomial zy7, (4,7 €
€ N) and consequently every polynomial in z,y may be expressed as
a linear combination of finite number of circle polynomials Y, conse-
quently the product of two such. polynomials YTfY?f,/ can be expressed
also as a finite linear combination of circle Zernike polynomials.

The orthogonality relation for radial Zernike polynomials is

1
1 | _
(1.9) /O By on () Riaj o ()P0 = S gy Oty

and the orthogonality relation in polar coordinates for Zernike polyno-
mials is the following:

1 27 1 ,
(10) [ [ Ve 0o 0)pdpdd = b
o Jo
The radial terms R}‘Z} +2n(,o) are related to the Jacobi polynomials
in the following way:

1€l

(1.11) Riglon

(p) = p¥ PO (292 — 1.

Zernike polynomials are often used to express wavefront data on
optical tests, since they are made up of terms that are of the same form
as the types of abberations often observed in optical tests. In [2] it is
presented that first order wavefront abberations coefficients can be ob-
tained from Zernike polynomials expansion coefficients, which are often
called Zernike moments of the wavefront. In order to find the Zernike
coefficients for a wavefront there are used well known approximation
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processes as the minimum square fit method, finite element method
applied on the set of points which form an equidistant division along
the radial interval and angular interval (see [3], [4], [5]). In [6] the
approximation of Zernike moments is made on a set of points which
corresponds to the equidistant divisions along the Oz and Oy of the
[—1,1] x [~1,1] which belong to the unit circle. Because the Zernike
polynomials are orthogonal in a continuous fashion over the interior
of the unit circle and they are not orthogonal over the discrete points
considered in previously mentioned papers, the computations give only
an approximation of Zernike moments.

An open question, as in [2] is mentioned, is to find a set X of
points within the unit circle so that the Zernike polynomials on this
set to have the discrete orthogonality property. In what follows we will
introduce this set of points and a discrete measure so that the set of
functions given by (1.8) will be discrete orthogonal on this set of points
regarding to the discrete scalar product induced by discrete measure.

In construction we will use similar technique as in our earlier paper
connected to spherical functions (see [7]). For this purpose we will need
the following quadrature formula which can be found in [8].

Theorem A. Let denote by A\l € (—1,1),k € {1,. N} the roots of

%egegdre polynomials PN of order N, and for j = 1 ., N, let
1.12

N CEr U B RPN R VAV NGl )

OF =) OF L) 0N = M) OF =)’

be the corresponding fundamental polynomials of Lagrange interpola-
tion. Denote by -

. ) 1
(1.13) AN ::/ N(@)ds, (1<k<N),
—1

the corresponding Cristoffel-numbers. Then for every polynomial f of
order less then 2N,

N
(1.14) / F@)ds =Y FON)AY.
k=1

2. Discretisation. Let define the following numbers with the help
of the roots of Legendre polynomials of order IV
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[14+ AN —
(2.1) Pl = - +9 k k=1,N

and the set of nodal points

27y —_ —
2.2 X =Lz = |pl, —2— =1,]  =0,4N ;.
( ) {ij (pkz ) 41V+1> ) 4V, ] 07 }

a5

We define
Af
V(238) = SN D)

and we introduce the following discrete integral

N 4N ;
N N 27] AY
(2.3) /X flo,@)avn =) > f (pk "AN + 1) 2(4NA+ 1)

k=1 7=0

Theorem 2.1. Ifn+n' 4+ |m| < 2N -1n+n' +|m'| < 2N -1,
n,n' € N, m,m’ € Z, then

(2.4) /Y Y™ (0, 0)Y. (p, ) dvn = Grms S

Proof. Due to (1.9) and (1.11)

L ' lm| im|
v=| R RI™ dp =
(2.5) 2(2n + |m| + 1)5n /o 2”+|‘m!(p) 2n +l7nl(p)p P

1 |
= [ R (202 — )P (242 — 1)od.
0

If in this last integral we make the change of variable 1 := 2p% — 1,
then we obtain the following:

nl [m|
(2.6) ! Opne = l/ <1—+E> Péo’im‘)('LL)PT(L(,)’lmD(u)du.
0

202n+|m|+1) ™™ T 4 2
— 14u |Tﬂ.l (Oxlml) (O,[ml) N .
Let denote by f(p) := (%) Pa ()P (u) and pf =
_ 1R TRF

5= k = 1,N. Then the order of f is n 4+ n' + |m|. From

(1.1) follows that Y3 (ol,¢) = PV @(pN)2 — 1) = Py(AY) = 0. If
n+mn' +|m| < 2N — 1 then we can apply Th. A and we obtain
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1 ] [ _
f)(f)n + |m| + 1)5” / Rdn+lm|( )R2n/+|m|(P)PdP -

: z FOMA Z ANRET - (0B Ry (0F)

k 1

/ YT (0, )V (p, B =

N 4N .
—YZ o] yr' (o 27 AN _
’“4N+1 n \"F74N +1) 2(4N +1)

Ale

- Z ety 3ty o/ ZF PR LIV T H T
2(4N +1)

X Z ANRIJ:L_W] )RLT;L!HW (o%)-

If m # m/ the first sum it is equal to 0, and if m = m’ then it is
equal to 4N -+ 1. Taking into account this and (2.7) we obtain

OnFm|+1/20 +]m|+1 — m
G YL SOAVEL (R () =

k=1

= S 2/20 -+ [m| + 11/20 + [m| + 1/0 BRI (O RS (P)pdp =
- 5mm’5nn’-

Theorem 2.2. For all f e C(D)

A}Enoo/fdw— / /qubpdpd@

Proof. Let denote by U = C(D) and mtroduce the bounded linear
functionals Ay (f) = [y fdvn, A(f) = fo f(p, ¢)pdpde. Th. 2.2
is a consequence of the Banach—Stemhaus theorem We will check that
all conditions of this theorem are satisfied for the functionals Ay :
.U — Cand A: U — C. Let denote by Z the set of all Zernike circle
polynomials. It can be proved that Z is a dense subset of C(D) on
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the base of Stone—Weierstrass theorem, because of the points of C(D)
are separated by the functions in Z. Namely, if (p, ) # (¢/, @), p.p' €
€[0,1], 9,4 € [0,24)], then Y (p, ¢) # Yy (', ¢'). As in introduction we
have mentioned, the product of two Zernike functions can be expressed
as a finite linear combination of Zernike functions. From [Szegd, p. 48
(3.4.5)] it follows that Ay is a bounded linear operator, namely

N 4N AN N AN
fawl =335 JNJF'D ;'—;—':Km

From the orthonormality property it follows that for all z = Y" € Z
and for all N so that 2n + |m| < 2N — 1 we have An(z) — A(z) =
= (), consequently limy_,o |An(2) — A(z)| = 0,2 € Z. Applying the
Banach—-Steinhaus theorem we get that
|An(f) = A(f)| =0, forall feC(D),N—o0. O

In fact, Th. 2.2 means that the limit of the (0,0)-th discrete
Zernike coefficient is equal by the (0,0)-th continuous Zernike coeffi-
cient. In an analogous way can be proved that in general the discrete
Zernike coefficients of the function from C(S?) tend to the correspond-
ing continuous Zernike coefficients of f € C(D).

3. Zernike moments. Let

TN (,U, ¢) = Z Amnyrzn (:07 ¢)
2n+|m|{S2N -1
be an arbitrary linear combination of Zernike polynomials of degree less
than 2N. Using the discrete orthogonality (2.4) and the continuous
orthogonality property (1.10) we obtain that the coefficients A, can
be expressed in the following two ways:

27 1
B Am=z [ [ T TSN,
™ Jo 0
(32) Am’n :/ TN(/O/7¢I)Y7In(pl7¢l)dVN(p/)Qsl)'
X

With formula (3.2) we can determine the exact value of the Zernike
coefficients (moments) of Ty if we can measure the values of Tl on the
points of the set X. This means that with the construction of the set X
we give answer to the question where the Placido ring system is worth
situated.
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From (3.1) and (3.2) it follows that
(3.3) Tn(p, #) =

= 2 LT[ e T s e -

2n+|m|S2N -1

1 /% ru Ty m SRR,
=;/0 /OTN(p,cb) o Y, ¢V, ¢)p'dp'dd

2n+|m|S2N—-1

and

Tn(pd)= 5 / Tu(o 8\ T (7, 8)dvn (o, )Y (0, 8) =

2n+|m|{L2N—1
(3.4)

= [ ned) X IO vl 4,

’ ant{m|S2N -1
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