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Abstract: In this article we consider the structure of left ideals of zero sym-
metric and 1-primitive near-rings N. In particular, we show that each such left
ideal (under suitable finiteness conditions) has a multiplicative right identity
and we also describe the ideal structure of the left ideals when considered as
sub-near-rings of N. In order to do this we also need some preliminary results
on near-rings N which have strongly monogenic N-groups.

1. Introduction

Throughout this article we use right near-rings and a notation
according to [3]. Let NV be a near-ring and ' be an N-group. T is said
to be strongly monogenic if NT' # {0} and for all v € I" either Ny =
=TI or Nv = {0}. So I is the disjoint union of two non-empty sets
b = {y €T | Ny=T}and §p = {y € ' | Ny = {0}}. Strongly
monogenic N-groups arise naturally within the class of 1-primitive near-
rings N. A near-ring N is said to be 1-primitive if there exists a faithful
and strongly monogenic N-group I' which is simple, that means I" has
no non-trivial N-ideals. Strongly monogenic N-groups I' which are
simple are called IN-groups of type 1. So, a l-primitive near-ring N
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has a faithful N-group of type 1. Primitive near-rings play (similar to
primitive rings) an important role in the general structure theory of
near-rings. They are sort of the smallest building blocks near-rings are
made of (see [3] for more on that subject). Also many interesting types
of near-rings are primitive. Just to give some examples, let (G,+) be a
group and 0 its group zero. Let (S, o) be a fixedpointfree automorphism
group of G. Then My(G) = {f : G — G | f(0) = 0} as well as
Ms(@):={f:G— G| f0)=0andVs € S: fos=sof}
are zero symmetric and 1-primitive near-rings (see [3]) w.r.t. pointwise
addition of functions and function composition. More general, any finite
zero symmetric simple near-ring with identity is 1-primitive (see (3, Th.
4.47]).

The aim of this work is to shed some light on the structure of the
left ideals of such near-rings. We show that each such left ideal has a
multiplicative right identity and we describe their ideal structure when
considered as sub-near-rings. Our discussion does not consider special
cases of left ideals, for example minimal or maximal ones. Here it might
very well be possible to still get more results but this does not lie within
the scope of this article. (The reader interested in minimal and maximal
left ideals of near-rings of the type My(G) may consult [3].)

We first discuss near-rings which have strongly monogenic N-
groups. The reason for doing so is that left ideals of zero symmetric
1-primitive near-rings are of that type, as we will see. After this discus-
sion we restrict our considerations to the class of left ideals L of zero
symmetric 1-primitive near-rings where L satisfies the descending chain
condition on L-subgroups of L and we will prove our main results.

2. Strongly monogenic N-groups

A normal subgroup S of an N-group I' is called an N-ideal if Vn €
€ NVs € SVy e :n(y+s)—nyeS. Areference for the following
lemma can be found in [2, Lemma 2.1]. For the sake of completeness
we include our own proof.

Lemma 2.1. Let N be a zero symmetric near-ring with a strongly
monogenic N-group T'. Then there exists a greatest proper N -ideal
in T,

Proof. Let L be a proper N-ideal of I'. Since IV is zero symmetric, L
is an N-subgroup of I'. Hence NL C L # I'. Consequently, LN6#; = &
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so any proper N-ideal L of I' is contained in ;.

Note that the sum of N-ideals is again an N-ideal ([3, Cor. 2.3]).
We now show that a finite sum of proper N-ideals is again a proper
N-ideal. We use induction on the number n of N-ideals in the sum:

n = 1: This is clear, since we only consider proper IN-ideals. So
suppose each sum of n—1 proper N-ideals is again a proper N-ideal of T
‘We have to show that the sum of n proper N-ideals is a proper INV-ideal.
Let >°p_; Lx be asum of n proper N-ideals. Let l1+...+l, € Y p_; Lg.
Then, for all m € N, m(ll -+ (lg + ...+ ln>) —ml;, € ZZ=2 Ly C 8.
Since mly =0, m(lyi +la+ ...+ 1) € g, for all m € N. Consequently,
(L+...+1,) € 6p. Hence, Y »_, Li is a proper N-ideal.

Now let > be the sum of all proper N-ideals of I'. If s € >, then
s can be written as a finite sum of elements of some proper N-ideals.
Therefore, s € 8y as we have seen. This finishes our proof. §

In the following the greatest proper IN-ideal of a strongly mono-
genic N-group I' will be denoted as A. Note that I'/A is again an
N-group by defining n(y+ A) :=ny+Aforallne Nand ye . If
v € 01, then N(v+A) =T/A and if y € O then N(y+ A) = {0+ A},
so I'/ A\ is a strongly monogenic N-group. The fact that A is the great-
est proper N-ideal of I" implies that I'/A is a simple N-group. As in
[3], J1(IV) is the 1-radical of a near-ring N. Since there exists an N-
group of type 1 we must have J1(N) # N. We just have established
the following corollary:

Corollary 2.2. Let I’ be o strongly monogenic N-group of a zero sym-
metric near-ring N. Let A\ be the greatest proper N-ideal of I'. Then
L'/ is an N-group of type 1 and J1(N) # N.

We now have:

Theorem 2.3. Let N be a zero symmetric near-ring which has a faith-
ful strongly monogenic N-group I'. Then N/J1(N) is a I-primitive
near-ring.

Proof. Since I'/A is an N-group of type 1, we have J1(N) C (0: T'/A).
So, T'/A is an N/J1(N)-group of type 1 in a natural way (see [3,
Prop. 3.14]), by defining (n + J1(N))(y+ A) := ny + A.

Let A be the annihilator of I'/A in N/J1(IN). A is an ideal in
N/J1(N),so A =1+ J1(N) where I < N (see [3, Th. 1.30]). This
means that II' C A C . Consequently, I°T" = {0}. Since T" is faithful,
I? = {0} and therefore I C Jy(&V) by [3, Th. 5.37 and Prop. 5.3].
This means that I'/A is a faithful N/J1(N)-group of type 1. Hence,
N/J1(N) is a 1-primitive near-ring. ¢
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Certainly well known and easy to establish is the following propo-
sition:
Proposition 2.4. Let {0} # L be a left ideal of a zero symmetric near-
ring N which is 1-primitive on an N-group I'. Then I is a faithful and
strongly monogenic L-group.
Proof. T is a faithful L-group. If v € g, then clearly Ly = {0}. Let
4 € #;. Then, Ly is an N-ideal of I by [3, Prop. 3.4] and therefore
Ly = {0} or Ly = T. Since (0:I') = {0} and L # {0}, there must
exist an element v € T" such that Ly # {0}, so Ly =T and this shows
that I' is a strongly monogenic L-group. ¢

Th. 2.3 and Prop. 2.4 now prove the following lemma:
Lemma 2.5. Let N be a zero symmetric and 1-primitive near-ring
and let L be a non-zero left ideal of N. Then L/J1(L) is a 1-primitive
near-ring.

As a by-product we get the following result on ideals in 1-primitive
near-rings (see also [3, Rem. 4.50}):
Theorem 2.6. Let I be an ideal of a I-primitive near-ring N. Then I
is also a 1-primitive near-ring.
Proof. By [3, Th. 5.33] J1(I) € J1(N) N I. Since J1(IN) = {0},
J1(I) = {0}. By Lemma 2.5, I/J1() = I is a 1-primitive near-ring. ¢
' We will end this section by proving two lemmas we will need as a
tool in the next section but which are interesting in their own right.
Lemma 2.7. Let N be a zero symmetric near-ring which has a faithful
and strongly monogenic N-group T'. Then NJ1(N) = {0} and J1(IV)
is a proper ideal.
Proof. Since we have that Ji(N) C (0 : I'/A), J¢(N)I' € A C
C §p. This shows that N # J1(V) since I is strongly monogenic. By
faithfulness of I we now also have that NJ1(IV) = {0}. ¢

Now we have to switch to near-rings with chain condition for the
first time.
Lemma 2.8. Let N be a zero symmetric near-ring with descending
chain condition on N -subgroups of N. Suppose N has a faithful and
strongly monogenic N-group I' and suppose N has a multiplicative right
identity. Then NI = {0} for any proper ideal I of N and J1(IN) is the
greatest proper ideal in IN.
Proof. Let J1(N) := Q. By Lemma 2.7 we have N@Q = {0}. Further-
more, by Th. 2.3, N/Q is a 1-primitive near-ring. By [3, Th. 2.35] also
N/Q has the descending chain condition on N/@Q-subgroups of N/Q.
So, by [3, Th. 4.46],.N/Q is a simple near-ring. Consequently, @ is
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a maximal ideal. Let I be an ideal of N and suppose I € Q. By
maximality of ¢ we have @ + I = N. Since [ is an ideal, we have
Vne NVie IVge Q:n(g+1i)—ng=n(g+i) € I. Therefore, N2 C J.
By assumption N has a right identity, so N C I. Consequently, each
proper ideal of N must be contained in Q. ¢

3. Left ideals

Before we can prove our main results on left ideals in 1-primitive
near-rings we need another lemma which holds for arbitrary near-rings
with a suitable chain condition.

Lemma 3.1. Let N be a zero symmetric near-ring with descending
chain condition on N -subgroups of N. If there exists an element e € N
with (0 : €) = {0}, then N has a multiplicative right identity.

Proof. Let e € NV be such that (0 : e) = {0}. Then for each natural
number k, (0 : e¥) = {0}. The descending chain condition on N-
subgroups of N guarantees that the chain of N-subgroups Ne O Ne? D
D Ne3.... terminates. So there is some natural number [ such that
Ne! = Neltl = Ne(el). Consequently, for any n € N there exists
m € N such that ne! = (me)e!. Since (0: €') = {0}, we get n = me,
so N C Ne. Clearly, Ne C N and hence, N = Ne. It follows that
there exists ¢ € NV such that e = ie. Therefore, for each n € N we have
(ni —n)e =n(ie) —ne =0. Soni—n € (0:e) = {0}. Consequently,
ni = n for each n € N. So, 7 is a multiplicative right identity. ¢

It is well known (see [3, Th. 4.46]) that zero symmetric and 1-
primitive near-rings N with descending chain condition on N-subgroups
of N have a multiplicative right identity. The next theorem shows that
this result can be extended to the left ideals of zero symmetric and 1-
primitive near-rings IV, as long as the left ideals satisfy a chain condition
(N itself need not satisfy a chain condition).

Theorem 3.2. Let {0} # L be a left ideal of a zero symmetric and
1-primitive near-ring N. Suppose L has the descending chain condition
on L-subgroups of L. Then L has a multiplicative right identity.

Proof. By Lemma 2.5, L/J1(L) is a l-primitive near-ring and by
[3, Th. 2.35] L/J1(L) has the descending chain condition on L/J1(L)-
subgroups of L/J1(L). By [3, Th. 4.46] L/J1(L) has a multiplicative
right identity e-+J (L) with e € L. Hence, for all [ € L there exists I’ €
€ L such that, le+J1(L) =1'+J31(L) and I'—1 € J1(L). Consequently,
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le —1 € J1(L). Therefore, (0:e)r := (0:e)NL C J1(L). Note that
(0 : e)r is a left ideal of N. Since J;1(L)? = {0} by Lemma 2.7,
(0:e)r is a nilpotent left ideal of N. By [3, Th. 5.37 and Prop. 5.3],
(0 :e)r € J1(N). Because of l-primitivity of N, J1(N) = {0}, so
(0:e)r = {0}. By Lemma 3.1 there exists a multiplicative right identity
in L. §

By taking I = N in Th. 3.2 we get the result of [3, Th. 4.46]
mentioned above. Note also that if given a finite zero symmetric near-
ring IV, then Th. 3.2 enables us to find all the left ideals of N amongst
the sets of the form Ve, e an idempotent of the multiplicative semigroup
of N. Maybe it could be an interesting task to characterize for which
idempotents e the sets of the form Ne indeed are left ideals.

Now we can easily prove our main result on the ideal structure of
left ideals in 1-primitive near-rings.

Theorem 3.3. Let {0} # L be a left ideal of a zero symmetric and
1-primitive near-ring. Suppose L has the descending chain condition
on L-subgroups of L. Let I be any proper ideal of L. Then LI = {0}.
Furthermore, there exists a greatest proper ideal Q in L, L/Q is a 1-
primitive near-ring and Q = J1(L).

Proof. This result now follows immediately from Prop. 2.4, from
Lemma 2.5, from Lemma 2.7, from Lemma 2.8 and from Th. 3.2. {

In particular, we have for finite near-rings:

Corollary 3.4. Let N be a finite zero symmetric and 1-primitive near-
ring. Let {0} # L be a left ideal of N. Then, L has a multiplicative
right identity and a greatest proper ideal Q. Furthermore, LQ = {0}.

The following example shows that Q as in Cor. 3.4 need not be
Zero, so may be non-trivial.

Example 3.5. Let K be a finite field. Consider the (near)-ring R of all

a b ¢
3x3 matrices over K, s0 R = d e f ]a,b,c,d,e,f,g,h,iEK :
g h 1
' J
The ring R acts 2-primitively on the R-group K, = ElljkleK

[

It is easy to see that L = |a,d,g € K ) is a left ideal

Q Q.
o O O
OO O
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of R. Q = | d,g € K } is easily seen to be the greatest

Q Q. O
O OO
O OO

ideal of L and LG = {0}. 1 = |lde K } and I, =

O Ao
O OO
O OO

| g € K ; are the other ideals of L which both are

Il
@ oo
oo o
ocoo

contained in @.

Note that the result of Cor. 3.4 applies, in particular, to near-rings
of the form My(G), (G,+) a finite group. It is well known that any
finite zero symmetric near-ring embeds into a finite near-ring of type
My(G). Cor. 3.4 however shows that only a small class of near-rings
may be embeddable as left ideals into a finite near-ring of type My(G).
Similar questions have been considered in [1] where, for example, the
author studies when a near-ring can be embedded as a left ideal into a
near-ring with identity.
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