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Abstract: In a recent paper, Kritzer, Larcher, and Pillichshammer showed
that the star discrepancy of the van der Corput sequence can be decreased if
one applies a digital shift to the points of this sequence. In this paper we study
the Lo discrepancy of the shifted van der Corput sequence. We show that it
is not possible to reduce the order of magnitude of the Ly discrepancy in N
by digitally shifting the van der Corput sequence. However, it is possible to
reduce the constant in the “leading term”. Our proof is based on a thorough
analysis of a sum of distances-to-the-nearest-integer.

1. Introduction

In this paper, we examine shifted versions of the van der Corput
sequence. The van der Corput sequence is very well known in the
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theory of uniform distribution modulo one and is studied extensively
in the literature, see for example [1, 2, 3, 5, 6, 7, 8, 10, 15, 16]. The
van der Corput sequence is an infinite sequence ¥ = (Yn)n>0 in the unit
interval [0, 1), where for n = am-12"" oo+ 4124 ap we have

an a1 Am—1
yn:?+2—2+---—:— om
Let 0 = (01,02, . .)T € Z$. By a o-shifted van der Corput sequence we
mean the sequence Yo = (yn)nZO which is obtained by setting
o ® oy a1 & o2 , OGm—1D Tm
Yn = 5 52 T T am

where @ denotes addition in Zs. The reason for considering shifted van
der Corput sequences is that by this operation the distribution proper-
ties of the point set can be improved considerably. Let us, for example,
consider the star discrepancy D% (w) of a sequence w = (Zn )n>0 in the
unit interval which is defined by

. An ([0, )
0<a<1 N
Here, Ax ([0, @)) denotes the number of indices n satisfying 0 <n < N

and z, € [0, ). For the unshifted form of the van der Corput sequence,
it is known that

— .

for all N (see, for example, [1]). By a result of Schmidt [18] (see also
[4, 12]), this bound is best possible in the order of magnitude in N
since there exists a constant ¢ > 0 such that for any sequence in the
unit interval its star discrepancy is larger than c(log N)/N for infinitely
many values of N € N. Further for the unshifted form of the van der
Corput sequence it is also known that the constant 1/(3log?2) is best
possible, see [8]. In the recent paper [10] it was shown that there exists
a shift vector & (which can be given explicitly) such that the o-shifted
van der Corput sequence satisfies
log N
6log?2
for all N € N, where ¢ > 0 is a constant, and where the constant
1/(6log2) is best possible for any shift o € Z3°

In this paper we consider the Lo dtscrepaﬂcy of the o-shifted van
der Corput sequence which is, for a sequence w in [0, 1), defined by

ND¥N(vs) < + cy/log IV,

[=]
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It follows from the result of Roth in [17] (see also [4, 12]) that there
exists a constant ¢ > 0 such that for the L, discrepancy of any sequence
w in [0,1) we have

NLj n(w) > c/log N
for infinitely many values of N € N. For the unshifted form of the van
der Corput sequence, it is known that

. [loeN\? /11 2log3\ logN 1
(1) (NLg,N(A/))zs(Og >+(—' O°°> g 4

6log 2 3 " log2 ) 36log2 ' 3

for all N (see, for example, [7]) and that the constant 1/(6log2) is
best possible, see, for example, [2, 15, 16]. Hence the Ly discrepancy
of the van der Corput sequence is not best possible in the order of
magnitude in V. This, together with the fact that the star discrepancy
can be reduced by digitally shifting the van der Corput sequence, raises
the question whether there exists a shift ¢ € ZS° such that the Lo
discrepancy of the o-shifted version of the van der Corput sequence is
best possible in the sense of Roth’s result. The answer to this question
will be given in the subsequent Sect. 2. In Sect. 3 we shall present some
auxiliary results and Sect. 4 contains the proofs for the results from
Sect. 2. In the proof of our main result will appear a sum of the form

m—1
> l12“Bllew
u=0

where ||-|| denotes the distance-to-the-nearest-integer function, i.e., [|z]| =
= min(z — |z],1 ~ (z — |z])), and where &, € {—1,1}. Our result
depends only on the maximum of absolut value of this sum where the
maximum is extended over all 8 with at most m non-zero digits in base
2 representation. Since we think that such sums are, apart from their
application here, interesting on their own, we defer the analysis of these
sums to a separate section (Sect. 5). Similar sums have already been
analyzed in the recent papers [10] and [13].

2. The resulis

Our first result shows that there exist shifts o € Z§° such that the
L, discrepancy of the o-shifted van der Corput sequence is “small” on
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the average. Before we state the result it is convenient throughout the
paper to define for m € N the quantity I, = #{1<u<m:o, =0},
that is the number of zero components among the first m components
of the shift vector o = (01,03, .- )T, Further define U(m) = L — B
Theorem 1. For all o € Z°° for which 1My — oo ¥ m) /m exists, we
have

1 Z (N Loy (70))?

lim sup — < Cp.
TSP om — m 7
Here 0 < ¢, < oo only depends on the shift o.
Remark 1. It will follow from the proof that ¢, < 16 im0 1'/’(2)- +

+ 4

3
From Th. 1 we obtain
Corollary 1. For anye>0 and for allo € Z$° for which lim (m 2 /m

m—00
exists, we have

lim - —#{1 <N <2™:NLyn(v) < (log N)E+s} = 1.

We would hope from the result of Cor. 1 that there exists a shift
o € ZZ° such that the Lo discrepancy of the o- shlfted version of the
van der Corput sequence is of order (log V) /N Wlth < @8 < 1. This,
however, is not the case.
Theorem 2. There ezists a constant ¢ > 0 with the following property:
for oll o € ZS° we have

NLs n(vs) > clog N,

for infinitely many values of N € N.

Th. 2 shows that digitally shifting the van der Corput sequence
cannot decrease the order of magnitude of the L, discrepancy in N,
but what about the constant in the “leading term”, i.e.,

(2) q(o) := limsup —————NLQ’N( /o)

N—oo 1Og N
for shifts o € Z3*? Although we could not calculate g(o) exactly for
arbitrary o € Z$ we were able to prove that shifting does not increase
this quantity (compared to the unshifted van der Corput sequence).
Theorem 3. For the quantity q(c) defined in (2) we have

sup a(0) = —
11 o) =
sezze ' Glog2

and this value is attained for the shift ¢ = (0,0,... YT, i.e., for the
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unshifted van der Corput sequence.
Of course it would now be of great interest to know how small
g(o) can be.
Theorem 4. For the quantity ¢(o) defined in (2) we have
inf go) < ———.
o 9(0) S 5513
The value 1/(20log 2) is attained for the shift o* = (1,0,1,0,...)%.
We conjecture that this shift yields the smallest value for the Ly dis-

crepancy of all digital shifts, but a proof of this conjecture has to remain
open for the moment.

3. Prerequisites

For o™ = (01,... ,0m)7 € ZT the c(™)-shifted Hammersley point
set is a set P_(my of 2™ points xg, ... , am_1 in the unit square [0, 1)2,
with
Ly — (ﬂjnayn): 0<n< 2m — 1,
where for n = ap—12™ "1 4+ - + 212 + ag we have
Qg B oy . a1 D o b Um—1 D Om
9 ' 22 om

<

T
Tp = 5; and Yn =

This is a generalization of the classical two-dimensional Hammersley
point set which can be obtained by choosing 01 =+ =0, = 0.

For any set P = {zg,...,zny_1} of points in the unit square
[0,1)? the discrepancy function Aam (P, -, ) is defined as

Agm (P, 8) = An([0,) X [0,8)) — Na

for 0 < o, 8 < 1, where An([0, @) X [0, 3)) denotes the number of indices
n satisfying 0 < n < N and z, € [0,a) x [0, 8).

Further for a sequence w in the unit interval [0, 1) we write

AN(\CU‘, G{) == zill\f([O, Cé)) - D«TOA

We need some further notation: for @ = a1/2+ -+ + Gy /2™ with
a; € {0,1} we say in the following that o is m-bit. For arbitrary 0 <
< a<1andm e N we denote by a(m) the smallest m-bit number
which is larger than or equal to a. If o is greater than 1 — 27™, then
we set a(m) = 1. o

Let ¢ = (01,09,...)7 € Z§° and denote by o™ the vector con-
sisting of the first m components of o, i.e., olm = (o1,...,0m)T € Z3.
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Let ~, denote the o-shifted van der Corput sequence and P_(m) the

o(m)_shifted Hammersley set.
Let m € N and N < 2™. From [10, Sect. 3] we know that, for an;

o € [0,1],

imy, N /2™ a(m)) + cq

AN(’\/aa C‘J) - -/—\-“2'”1(
with —1 < ¢o < 2. Therefore we obtain

(N L2y (7)) /AN Yo, @) da =
= / Aam (P my, N/2™, a(m))* da+

1 1
(3) + '2/ calam (Poomy, N/2™, a(m))da + / cida =
0 0

= szAﬁm (P (my, N/2™, 1/2™) )+

=1
1jam

27’71
+3 Agm (Pg(th/zm,Z/zm)/ 2eqda+O(1).
Py (1—1)/2m
m 13 _
3 ' 9

From [9, 10] we find that |Agm (Pyemy, N/2™,1/2™)] <
for any 0 < N,1 < 2™, Therefore,

= (—nmg L

am.  gm
WZ (NLsg N(%)) =S " Aam (P, N/2™,1/27)?+0(m) =
N=1l=1
(4) 2 1] : L.u?.
- TTE’;IZT T+ O(m).

The last equality follows from [11, Lemma 6]

4. The Proofs
First we give the
Proof of Theorem 1. Since m? — dl,m + 412, = 4y(m)? the result

follows from (4). ¢
The bound on ¢, from Remark 1 can be obtained easily by fol-

lowing the considerations above.



Discrenancy of the van der Corput sequence 183
Proof of Corollary 1. Let £ > 0, y > 0 and choose o as in the
statement of the corollary. From Th. 1 we know that there exists a
constant 0 < ¢, < oo such that

fm

= ’ 7 . 1., . Lo
> D—m#{l <N 2™ NLQ,N(A/»U) >y m?“*'“} ) yz it

1 - ; .
= (2" #{1 <N 2™ NLy (o) <y-mi+}) -y mi+e

Therefore we obtain

1 Lo
lim —#{1<N<2": NLyn(7s) <¥y- m%“} = 1.

m—oo 2

Since

: IVLQ,N(“/J) <y-m

(&1
-4
)
N
I
(@]

1, (om ,
1= lim 4 {2% <N <27 NLaw(v) <y

(&1
-
m
Se—
IA

-m
m—co 2
< lim ——#{2% <N <2™:NLan(ve) <y~ ( > <
M—oc 2 2
8
}. =
< lim —#{1<N<2™:NL ) log ! ) <1
—m-l—:oo?,_'”{# - NLaw (o) <y 1og2/ -
S\ 3t
Choose y = lO:‘;’ 2) " and the result follows. ¢
We now give the
Proof of Theorem 2. For o™ = (o1,... ,am)T € 77 let glm) .=
= (O, ... ,01)7. Then it is easily verified that
Psemy ={(y, ) : (z,9) € Poom'}.
Hence for 0 < o, 8 < 1 we have
Azm (Po.(m,),a, ,8) L\7771(i a—(rn) 1.3 Q)
Let 2™~ 1 « N < 2™, then
a1 ~1
/ Aom (Poimy, N/2™, co(m)) der = / Asgm(Psimy, a(m), N/2™)da =
0 J0

8
L\)

m

. 1 om | .
- >_lr€’> A (Poimy, /2T N/2MP = — > Aam(Prem Nj2™)?=
2Mma=
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-1
S22

u1,ua=0

3

am B

”ﬁuj A//ij( 1 Tt z H(a’"n_ui D ‘L'rn—i—l—j(u-;)>~

2mg=1i=1

see [11, Lemma 1]. Here Z;: o—1 Mmeans summation over all o > 0 m-
bit and a1,... ,a;n denote the digits of these m-bit numbers. Further
I-]| denotes the distance-to-the-nearest-integer function. The quantities
j(u) depend on (™, @, N/2™ and u. Since they are not important for
these considerations we omit their exact definition (see [11, Lemma 1}).
For us it is enough to know [11, Lemma 2| which states that

-

z H Gm—w; & Cm1—j(u;)) {

2Mog=14=1

Therefore we obtain

1
/ Agm (Pomy, N/2™, c(m)) do =
0

l\J

m—

QW)

if ug 7—-/- w2,

m—1

[N}

if U = U3.

1=, ‘ ‘ T
=3 S Vg o e
uy,ug=0
(5) o
4 m=1
L 5 \qunr/om2 _
Fg 3 2y =
u=0
1 m—1 _ 2 1 m—1
- ( eI (G I DI ER S
N\ u=0 u=0
From [13] it follows that Zu o 1124N/2™||2 = O(m) and therefore
we only have to analyze the sum
m-—1 _
S N2 (=)
e
u=0

Since we think that this analysis is—apart from its application in this
proof—of interest on its own we consider these problems in a separate
section.

We shall show in Sect. 5 (Th. 6) that there exists a constant ¢ > 0
such that for any o1,... ,0m € {0,1} we have
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(8) max
- 3 m—bit

> cm

m—1
> 2Bl -1y

| ©u=0

for infinitely many values of m € M. Since for NV < 2™ the number

N/2™ is a m-bit number we obtain the result from Th. 2 from (6)

together with (3) and (5). ¢

Proof of Theorem 3. The result follows from (3), (5) and (1). ¢
The proof of Th. 4 will be given at the end of Sect. 5.

5. A sum of distances-to-the-nearest-integer

In this section we are interested in sums of the form

m—1
™ S ll2gll (=17
u=0
where 3 is an m-bit number and where o1, ... ,0., are arbitrary given

numbers in {0,1}. To be more precise, we are interested in the maxi-
mum and the minimum of such sums over all m-bit numbers §. This
problem was considered in [13] for the case o; = 0 for all 1 < i < m.
Similar sums have also been considered quite recently in [10].

First we determine the m-bit numbers for which the maximum
and the minimum of the sum (7) is attained. W.l.o.g. we may assume
that o3 = 1. We divide olm) = (01,...,0m) into blocks

U(m) = CoC’l N Cit

with
Co=11...1, and C,=00...011...1, 1<k<t,
N—— S e —~
yo bits zp bits y; bits

where zj, v, > 1, except for Cy which also may consist of zeros only.
Note that t = t(m). Formally, let zo :=0, fo:=0andfor 1 <r <t+1,
r—1
fr= (@i +wa).
i=0
Of course we have f;11 = m. We define
(0 ~(0) 7 O) N(D\
¢O) = (O (glm)y = O:](L 20

m
¢ =W (glm)y = O.zgl) oz
as follows in several steps. In each step we show for 0 < r <t how the

digits 37(1]7')3 1<h<2 of (™ with f. +1<n < frr1 are to be chosen.
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STEP 1. Concerning Cp, let

c®.=0.11...1... and ¢"W:=0.00...0....
S —’ N’
yg bits yo bits
STEP 2. Concerning C4, let

...1010...1011...1... if 1 even,
N e e’ !

C(O) . z1 bits yy bits
' ..1010...10100...0... if z1 odd,
(kg Raiie L g

r1 bits y1 bits

..0101...0100...0... if x4 even,
N e N e’
gu) — x1 bits y1 bits
' ..0101...01011...1... if z1 odd.
Nl e e
T3 bits y1 bits

STEP 3. Concerning Cr, 2<r<t—1,letfor 1 < h <2

(...1010...1011...1... if:z;,revenand:(-h) . =0,
;-ﬂ/——/h\/—'/ .ILT'——l‘I‘Ir-l
x,. bits y,~ bits
..1010...10100...0... if z, odd and 2™ N =0,
‘-—q/—‘/\-ﬁ/—/ jT‘—l TTr—1
C(h) - T, bits yr bits
' 0101...0100...0... ifz evenand 2™ =1,
R e fro1+Tr-1
T, bits yr bits
5101...01011...1... ifz,oddand s . =1
e N o Sr—1+Tr_1

L T, Dits yr bits
STEP 4. Concerning Cy, let for 1 <h <2
1010...101100...0 if ; even and 24"
S e N f
z;: bits 1y bits
1010...10100...0  if z; odd and 2
e N
T bits 9y bits
..0101...0100...0 if z; even and :;fl)
L S — t
Ty Dits 9t bits
0101...01100...0  if 7, odd and 2
NS — fi

L T bits y¢ bits
STEP 4da. If t =1, let

t—1tTe—1

feo1t+Ti-1

—1 Tt

1TYi-1

=0,

=0,

=1,

= L.
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0.1010...101100...0 if z1 even,
N e e
(0) . 1 bits y1 bits
0.1010...10100...0 if z1 odd,
S et N —

x; bits y1 bits

Ty

0.0101...0100...0 if 1 even,
e
C(l) . x1 bits y1 bits
0.0101...01100...0 if z1 odd.
N e e e’

£, bits  y: bits
STEP 4b. If o{™ = Cy, let
¢ =¢® =0.00...0.
Note that, except for the case o{™ = Cp, ¢(O 4+ ¢ =1,
Further, we divide o(™) = (o1, ... ,0m) into blocks
o™ = B.B,...B,
with

Bp=11...100...0, 1<k < w,
S ——
u) bits v bits

with ug, vy > 1, except for B, which also may consist of ones only. Let
ep:=0and for 2 <r <w-+1,

r—1
e Z(u1 +v;).
i=1
Of course we have ey+1 = m. We define
5 = 5O (om)y = 0.4 ... 4D,
s =M (pm)) = 0.(l§l) dd)

as follows in several steps. In each step we show for 1 < r < w how the
digits cl.%h), 1< h <2, of 6 with e, +1 < n < ey.q are to be chosen.
STEP 1. Concerning By, let

0.1010...1011...1... if uy even,
[ S —
(5\0) . u1 bits v bits
' 0.1010...10100...0... if w1 odd,
N i e, e

u1 bits v, bits




—
w
L]

P.

0.

s =
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0101...0100...0... if uy even,
N e e ;
uy bits v, bits
0101...01011...1... if wy odd.
N, e e

uy bits vy bits

STEP 2. Concerning B,, 2<r<w—1letfor 1< <2

,

o) =

k :

U~ bits

u,~ bits

..0101...0100...0...  ifu, even and d{
ey e’ e, o

U, bits

u,- bits

_1+LLT~..1_

..1010...1011...1... if 1, even and dg:) =0,

vy bits

1010...10100...0... ifu,oddandd®™ =0,
e e e e’ ermltUr—1 )

v, bits
h)
Pl T Ur—1 1?
v, bits
h

..0101...01011...1... ifuroddandd®™ . =1.
e i p—1 T U —1

v, bits

STEP 3. Concerning By, let for 1 <h <2

-

(..1010...101100...0 if uy even and di
S e S —

h)

we1Tlw—1

=0,

U,y bDits vw bits

..1010. ..
e —

10100...0 if u,, odd and dgl) =0,

w—1tUw—1

U Dits Uy bits

..0101 ...
S e’

0100...0 if Uy, even and d .
‘_\/__/ w—1T7T w1

Il

1,

Uy bits Uy Dits

..0101 ...
el e

01100...0  if uy odd and dJ¥ = 1.

w—1T Uw—1

Uqy Dbits Uy Dits

STEP 3a. If w =1, let

5O .=

s .=

0.1010...101100...0 if uy even,
N
uq bits v1 bits
0.1010...10100...0 if uy odd,
R e Ve
%1 bits v, bits
0.0101...0100...0, up even,
e e
uy bits vy bits
0.0101...01100...0, w; odd.
S e N

uy bits vy bits

Observe that 59 + 5 = 1.
We now show the following

~
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Lemma 1. Let o™ = (61,09,... ,0m)7
0<r<l.

€ Z with o1 = 1, and let

(a) The minimum

\Y

m—1
4 mm ‘ (/‘uﬁ S ]!7“6’|| U“+1> = min Z(xk,oc™ m,3)
3 bit ’

3 m—Dbit
is attained for B = 6 (U(m)) defined as above.
(b) The minimum

m—1
min ( %0 + 3—‘ ngﬂll G'u—}—lw —=: 1min E(_H) cr(‘m),‘m,,a)
\ —

3 m—bit 8 m—bit
U= /

is attained for = 60 (™)) defined as above.

(c) The mazimum

max. (hﬁ Zl]?“ﬁll U““) = max X%(k,c™ m,B)

B m— 3 m—Dbit
=0 /

is attained for B = (O (c(™)) defined as above.

(d) The mazimum

8 m—bit 8 m—Dbit

m—1
max. (—ﬁﬂ TIL“BH ”“+1> = max %(—k,o™ m,8)

is attained for 8 = ¢ (o™ defined as above.
Proof. We show the results in (a), (b), (¢), and (d) simultaneously by
induction on m.

For m = 1,2 the result is easily verified numerically.

Assume now the results in (a), (b), (c), and (d) have already been
shown for m — 1. We start by showing (a).

In order to minimize X(k, o™ m, B) it is necessary that the first
digit of 8 equals zero (otherwise 1 — 5 would yield a lower value). Since
the first component of (™ is one, we obtain for such a 3
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m—1
64 5 2Bl (e = kg Bl + 3 1228l (1 =

u=0 —
m—1
= (= 18+ D 12°B] (-1)7r =
u=1
k— 1 w
=8 e
u=0
where 3 = 0.0z ... B and o’ = (02, ... aCTn{T. However, —1 < 5+ <
3

< 0. If g3 = 1, we are done by the induction assumption for (b).
If, on the other hand, o3 =0, minimizing

/3/ <r’i;1> > Hr)uﬁ “( u-+-l

2
u=0

is the same task as maximizing

-5 (%5 )+?|W3 [ (=2)7ees,

u=0
where & = (1® 09,... ,1® om)T, which of course means that gy =1
In this case, the 1esult follows by the induction assumption for (c).
The proof of (b), (c), and (d) is similar. ¢
We now get the following theorem.
Theorem 5. Let ol™ = (01,09, .. ,crm)T € Z3 with o1 = 1.
(a) The minimum

m-1 )
s Q'LL . Tyl
pmin > 2060 (1)

is attained if B equals either 60 (ctm)) or 5§ (a(m)) given above.
(b) The mazimum

m—1
as .2u __1 Tud-1
,max UZ:O 12461l (~1)

is attained if 8 equals either @ (gm) or (B (g(™)) given above.
Proof. The result follows immediately from Lemma 1 Dy choosing
5 =0 0

It is easy to compute the average of the sum (7) over all m-bit
numbers.
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Lemma 2. Let again ln = #{l Su<m: oy, =0} and ¢(m) =l —
——”Zl. Then

1 T n\}—_\l AU 2 o , 'dl(m)

s 2 2 BT = =

8 m—bit u=0

Proof. For 0 <u <m — 1 it is true that (see [14])
> lzal=2 5, lsl=2m"
8 m—bit 3 (m—u)—bit
Hence,

m—1

1
= 2 Z”’“ﬁﬂ “““ZL “D)Tesn >, I2sl=

B m—bit u=0

8 m—bit
m~—1 m—1 1
3N
u=0 u.=0
u+1=0 ut1=1

(#{1<u<m o =0} —#{1<u<<m:o,=1}) =

=i(%+w<m>*(~—w< ) =40

2

=

We now want to find out more about the order of magnitude in
m of the term

m—1

Z ”’}LLBH )cru_

for given o™ ¢ 7. For tlns purpose, we discuss several different
cases. W. 1. o. g. we always assume olm = (1,02,... ,0m), Le., the
first digit of o equals 1.

As usual, for a real valued function f defined on N we may often
write f(m) = O(m®) if there exists a constant ¢ > 0 such that [f(m)| <
< em®. Further we write f(m) = ©(m®) if f(m) = O(m®) and f(m) #
# O(m ) with 8 < a.

CASE 1. o™ ¢ Z7 is such that ¥(m) = ©(m). Then it follows by
Lemma 2 that

mac

lm—1

max ’ \Y 2% 81 ( 1)”’*+1

L’—O

= O(m).

CASE 2. o™ e Z1 is such that (m) = O(m®), @ < 1. By Th. 5 (b)
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we know that

m—1 m—1
max S’ 248] (=1)7r = > 2“&0)(0)“ (—1)7ers
3 m—Dbit — =
m—1 ’
SHU -‘1 =1
=3 lzw )(”)H (—1)F=+,
u=0
As above, we write om) = CyC; ... C; with
Co=11...1 and Cp=00...011...1, 1<k<t,
S N S
yg bits z, bits 1y bits

where zz,yx > 1, except for C; which also may consist of zeros only.
Formally, let 79 :=0, fo=0and for 1 <r <¢-+1,
r—1
Iri= Z(ﬂfz + Yi).
i=0
Note that f;—1 = m. We denote the digits of ¢ © = ¢O(g(m)) con-
structed above by _
(O =00 2O

“m
Suppose u € {fr + Tr,. ., fre1 — 1}, 0 <7 <8 (this corresponds to
gus1 = 1), then it follows by the construction of ¢ that

Q“C(O)H = Q“O.zg ) :SS)\ = HO.zu+1 . z.,(,g)H < i
What f u € {fr,..., fr+zr— 1}, 1 <7 <t (this corresponds to
our1 = 0)7
Suppose, in the first place, u € {fr,. ., fr + 2r — 3} for an r €
c{1,...,t} with z. > 3.
Then we have
J 0.1010=%5 ... or
02002002 0e 2002l 0.0101=0, ... or
L 0.011,

which results in

(8) 2¢O > 7+ =

16

On the other hand, whenever z, > 2, and uv = f, + z, — 2, we
have
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i QuC(O)“ o 2u+1§(0)H _
0) _(0) (0 _(0) 0) _(0) _(o
= ‘ 0. "“1(1,~1 11.—1—_.*’11,—,—3”“1L+—L H HO ~L(l,—r)-r7 1(1, )3 LTM H =
HO.lOlz 1 I + ”O DL&CL ’ (Case (a)), or
_ “o 0102, .. H + ”o 102, .. H (Case (b)), or
10.11] + [[0.1]] se (c)), or
({10011 + 1{0.1]] (Ca (d))-
In Case (a),
Ho.lolzf& H + Ho 015, || = 1= 01012, .+ 0.0127,. =
- 1109, © _1.15,0
= 5’ - —'O 017 +DO]'~’LL—1- e s T §' 5‘0 Ol"”lL—r—L Z
1 1 1 1
> — b — =2 =4+ —
=278 <4 16>
In Case (b),
‘\0.01025224 “ + “o 1029, ... H 001029, +1-010:7, . =
1510, (0) L 10:©
250103“_*_4—{— 010a1b+4 ..21—50.103u+4... 2
1 5 1 1
>1-201l=2>=2{-+—].
- 2 8 <4 16\
In Case (c) and Case (d), we obviously obtain
l 1
ou (o)” o lgutt (o)” 259
¢ ‘ ¢ ~L 16

So, in any of the Cases (a), (b), (c), and (d),

(9) 2¢O 4 221 2 2 G + 1%) .

From (8) and (9) we conclude
fr¥z-—1 N
1 1
3 HZ <0>N S
PN R R A VRRT:
u=f-
for 1 <r <t whenever z, > 2
If, however, z, = 1 and v = fr +z, — 1 = f,, then
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o (o>“ HO 9 0 0 O H_ 0.0112,... o
Ryl a2 u+3 %
i 0.100=%, ... .

This implies again

£
i
[w)
=3
Il
—
‘:
u,’
-

r= O u=fr1+,

t 1 t fr+111
zzmr@ ) > i-

r=0u=fr+z,

4 8) Gom) -

~ We summarize:
Theorem 6. There exists a constant ¢ > 0 such that the inequality

Z 28] (—1)7+

holds for infinitely many values of m € N.

Finally we use the results from this section to give the
Proof of Theorem 4. Let o* = (1,0,1,0,...)7. We show that
q(c*) = 1/(20log 2). The result then follows.

From (3) and the proof of Th. 2 we find that for IV < 2™ and for
any shift o € Z5° we have

”Il&LV > cm

o
=

m—1 \ T

(NLa n( Yo ))? ( ZHWV/"”LH U“Tl) + O(m),

where ™) = (G1,... ,0m)" is the vector (M) with the components in
reversed order.

We have to compute
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m—1
(10 Jma, |3 sl (<17,

m—Dbit ;

for 7™ = (G, ....0m) = (1,0,1,0,...) € Z5* and 7™ = (G1,...,0m) =
=(0,1,0,1,...) € Z*. Note that it is enough to consider only the first
one of these two cases.

From Th. 5 we know that the maximum (10) is attained for § =
= 6O (GF™) or for g = ¢O(E™). For '™ = (1,0,1,0,...)T € Z7
we have

0.10011001 ...10011010, if m = 4k,
o 0.10011001...100110011,  ifm =4k +1,
O(O)(g(m)) —

0.10011001...1001100110, if m =4k +2,
0.10011001...10011001101, if m = 4k + 3,
and
0.110011001...1001101, if mo= 4k,
(O (30m) = 0.110011001...10011010, ifm=dk+1,

0.110011001...100110011, if m=4k + 2,
0.110011001...1001100110, if m =4k + 3.

Therefore we obtain by tedious but straightforward calculations that

m—1
- m
3 A —1)%utl = — 1 1
RuCH ;)H 8l (=1) 5 tow
Hence
2 m / 2
i 5o = (3 +00) 0l
log N >
= <9010009 +O(l)> + O(log N)
20 log 2

and the result follows. ¢
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