ON THE NUMBER OF PRIME DIVI-SORS OF THE ITERATES OF THE CARMICHAEL FUNCTION

Imre Kátai

Eötvös Loránd University, Department of Computer Algebra, and Research Group of Applied Number Theory of the Hungarian Academy of Sciences, Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary

Dedicated to Professor László Leindler on his 70th anniversary

Received: May 2005

MSC 2000: 11 N 60

Keywords: Carmichael function, limit distribution, iterates.

Abstract: Let $\lambda(n)$ be the Carmichael function, $\lambda_k(n)$ be its k-fold iterate,

$$\omega(n) \text{ be the number of prime factors of } n. \text{ Let}$$

$$\mu_k(n) := \frac{\omega(\lambda_k(n)) - a_k(\log\log n)^{k+1}}{b_k \cdot (\log\log n)^{k+1/2}}, \ a_k = \frac{1}{(k+1)!}, \ b_k = \frac{1}{\sqrt{2k+1}} \cdot \frac{1}{k!}.$$

It is proved that

$$\lim_{x \to \infty} \frac{1}{x} \# \{ n \le x \mid \mu_k(n) < y \} = \Phi(y),$$

and that

$$\lim_{x \to \infty} \frac{1}{\text{li } x} \# \{ p \le x \mid \mu_k(p+a) < y \} = \Phi(y),$$

where p runs over the set of primes, $a \neq 0$, a integer, Φ is the Gaussian law.

E-mail address: katai@compalg.inf.elte.hu

Research supported by the Applied Number Theory Research Group of the Hungarian Academy of Sciences and by a grant from OTKA T46993.

206 I. Kátai

§ 1. Introduction

Let \mathcal{P} be the set of primes, p,q with and without suffixes denote primes.

The so called Carmichael function λ is defined for prime powers p^{α} according to

$$\lambda(p^{\alpha}) = \begin{cases} p^{\nu-1}(p-1) & \text{if } p \ge 3, \text{ or } \nu \le 2, \\ 2^{\nu-2} & \text{if } p = 2 \text{ and } \nu \ge 3, \end{cases}$$

and for $n = p_1^{\alpha_1} \dots p_r^{\alpha_r}$,

$$\lambda(n) = LCM \left[\lambda(p_1^{\alpha_1}), \dots, \lambda(p_r^{\alpha_r}) \right],$$

if p_1, \ldots, p_r are distinct primes. Here LCM = least common multiple.

Let $\omega(n)$ be the number of prime factors of n, and $\varphi(n)$ be Euler's totient function.

Let $\lambda_k(n) = \lambda(\lambda_{k-1}(n)), \ \varphi_k(n) = \varphi(\varphi_{k-1}(n)) \quad (k = 2, 3, ...)$ be the k-fold iterate of λ and φ .

Let $x_1 = \log x$, $x_2 = \log x_1$, $x_3 = \log x_2$,... Let P(n) be the largest prime divisor of n.

In [1] it was proved

Theorem A. Let $k \geq 1$ be a fixed integer, $a_k = \frac{1}{(k+1)!}$, $b_k = \frac{1}{\sqrt{2k+1}} \cdot \frac{1}{k!}$, and

(1.1)
$$\nu_k(n) := \frac{\omega(\varphi_k(n)) - a_k (\log \log n)^{k+1}}{b_k (\log \log n)^{k+1/2}}.$$

Then $\nu_k(n)$ is distributed according to the Gaussian law, i.e.

(1.2)
$$\lim_{x \to \infty} \frac{1}{x} \# \{ n \le x \mid \nu_k(n) < y \} = \Phi(y).$$

Furthermore, if a is a nonzero integer, then

(1.3)
$$\lim_{x \to \infty} \frac{1}{\lim_{x \to \infty} \frac{1}{x}} \#\{p \le x \mid \nu_k(p+a) < y\} = \Phi(y).$$

In this short paper hence we deduce

Theorem 1. Let $k \ge 1$ be a fixed integer, $a_k = \frac{1}{(k+1)!}$, $b_k = \frac{1}{\sqrt{2k+1}} \cdot \frac{1}{k!}$ and

(1.4)
$$\mu_k(n) := \frac{\omega(\lambda_k(n)) - a_k(\log\log n)^{k+1}}{b_k(\log\log n)^{k+1/2}}.$$

Then

(1.5)
$$\lim_{x \to \infty} \frac{1}{x} \# \{ n \le x \mid \mu_k(n) < y \} = \Phi(y),$$

and for every nonzero integer a,

(1.6)
$$\lim_{x \to \infty} \frac{1}{\operatorname{li} x} \# \{ \mu_k(p+a) < y \} = \Phi(y).$$

§ 2. Lemmata

Lemma 1. (Brun–Titchmarsh inequality.) Let $\pi(x, k, l) = \#\{p \le x, p \equiv l \pmod{k}\}$. Then, for k < x, (l, k) = 1,

$$\pi(x, k, l) < c \frac{x}{\varphi(k) \log \frac{x}{k}},$$

where c is an absolute constant.

Lemma 2. Let $a \neq 0$ be a fixed integer. Then for $0 < \delta < 1/2$

$$\#\{p < x \mid P(p+a) > x^{1-\delta}\} < c\delta \operatorname{li} x,$$

where c may depend only on a.

The proof of Lemma 1 can be found in [2], and Lemma 2 can be deduced from Cor. 2.4.1 in [2].

Lemma 3. Let q be an arbitrary prime, q < x. Then

$$\sum_{\substack{p \le x \\ p \equiv 1 \pmod{q}}} \frac{1}{p} < c \frac{x_2}{q},$$

where c is an absolute constant.

This is known. A proof is given in [1].

§ 3. Proof of Theorem 1

From the definition we have:

a. if d|n, then $\varphi(d)|\varphi(n)$, $\lambda(d)|\lambda(n)$, and

b. $\lambda(n)|\varphi(n)$.

Hence, by induction on k,

(3.1)
$$\lambda_k(n) \mid \varphi_k(n) \quad (k = 1, 2, \dots),$$

and so

(3.2)
$$\Delta_k(n) := \omega(\varphi_k(n)) - \omega(\lambda_k(n)) \quad (k = 1, 2, \dots)$$

is nonnegative.

If $q_0|\varphi_k(n)$, then either there exists $q_1 \equiv 1 \pmod{q_0}$, $q_1|\varphi_{k-1}(n)$.

or $q_0^2|\varphi_{k-1}(n)$, whence especially $q_0|\varphi_{k-1}(n)$.

Continuing this argument, we obtain that $q_0|\varphi_k(n)$ implies the existence of a "chain of primes" (defined in [1]): q_0, q_1, \ldots, q_h such that $q_j - 1 \equiv 0 \pmod{q_{j-1}}$ $(j = 1, \ldots, h)$, and $q_h|n$, and the length $h \leq k$.

Let us observe that if the chain is of maximal length, i.e. h = k,

then $q_0|\lambda_k(n)$ holds as well.

Thus

(3.3)
$$\sum_{n \le x} \Delta_k(n) \le \sum_{h=0}^{k-1} \sum_{q_0 \to \dots \to q_h} \frac{x}{q_h}.$$

We observe that

$$\sum_{q_0 \to \dots \to q_h} \frac{1}{q_h} \le c_1 x_2 \sum \frac{1}{q_{h-1}} \le \dots \le c_1^h x_2^{h+1},$$

whence (3.3) is less than $O(xx_2^k)$. Hence we obtain that

$$\frac{1}{x} \# \left\{ n \le x \mid |\Delta_k(n)| > x_2^{k+1/4} \right\} = O\left(\frac{x}{x_2^{1/4}}\right),$$

and so

$$u_k(n) - \mu_k(n) = O\left(\frac{1}{x_2^{1/4}}\right) \quad \text{for all but} \quad O\left(\frac{x}{x_2^{1/4}}\right)$$

integers $n \leq x$. Hence (1.5) is straightforward (since ϕ is a continuous function).

To prove (1.6) we argue similarly. First we choose a small $\delta > 0$ and drop all the primes $p \leq x$ for which $P(p+a) > x^{1-\delta}$, the size of which is $O(\delta \operatorname{li} x)$. Let \mathcal{B}_{δ} be the set of primes $p \leq x$ which remain.

As earlier, we have

$$\sum_{p \in \mathcal{B}_{\delta}} \Delta_k(p+a) \le \sum_{h=0}^{k-1} \sum_{\substack{q_0 - \dots - q_h \\ q_h \le x^{1-\delta}}} \pi(x, q_h, -a).$$

Applying the Burn-Titchmarsh inequality, the right-hand side is less than

$$\ll \frac{1}{\delta} \operatorname{li} x \sum_{h=0}^{k-1} \sum_{\substack{q_0 \to \dots \to q_h \\ q_h \leqslant x}} \frac{1}{q_h} \ll \frac{\operatorname{li} x}{\delta} x_2^k,$$

and so

$$\#\left\{p \le x \mid p \in \mathcal{B}_{\delta}, |\Delta_k(p+a)| > \frac{x_2^{1/4}}{\delta}\right\} = O\left(\operatorname{li} x \cdot \frac{1}{x_2^{1/4}}\right).$$

Since the density of the primes which were dropped is $O(\delta)$, therefore

$$\limsup \frac{1}{\lim x} \#\{\mu_k(p+a) < y\} \le \Phi(y+\delta),$$

and

$$\lim \inf \frac{1}{\operatorname{li} x} \# \{ \mu_k(p+a) < y \} > \Phi(y-\delta).$$

The inequalities hold for every $\delta > 0$, therefore (1.6) is true. The proof of the theorem is completed. \Diamond

References

- [1] BASSILY, N. L., WIJSMULLER, M. and KÁTAI, I.: Number of prime divisors $\varphi_k(n)$ where φ_k is the k-fold iterate of φ , J. Number Theory **65** (1997), 226–239.
- [2] HALBERSTAM, H. and RICHERT, H.: Sieve methods, Academic Press, London, 1974.