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Abstract: In this paper two new graded radicals o® and & of graded rings
which can be associated with a given radical a of ordinary associative rings,
are introduced and some results relating to these are proved.

1. Introduction

In this paper we introduce two graded radicals o* and & of graded
rings, which can be associated with a given radical o of ordinary as-
sociative rings, and prove some results relating to them. Throughout
the paper we consider G-graded (associative) rings R, where G is a
multiplicative group with identity element e. For general notation and
terminology of graded rings we refer to [4], for radical theory of or-
dinary associative rings to [2], [6], [7], [8], and for radical theory of
graded rings to (3], [9]. In particular, if R is a graded ring we denote
by h(R) the set of all homogeneous elements of R. The symbols <y,
py Dhsps Jher Tpn: Jsphy Jen denote respectively a homogeneous,
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graded prime, graded semiprime, graded essential, prime homogeneous,
semiprime homogeneous, and an essential homogeneous ideal of E. If
1<, R, the annihilator of I in R, that is, the set {reR:rz=0,zr=0,
vz € I} is denoted by ann’]. By I we mean the largest homogeneous
ideal of R in I, where [ is an ideal of R.

We now mention some definitions and results which we may use
in the sequel.

Definition 1.1. A non-empty class o of graded rings is called a graded
radical class (or a graded radical) if o satisfies the following conditions:

(i) « is graded homomorphically closed.

(ii) Each graded ring R contains a largest homogeneous ideal in
«, denoted by a(R), that is, a(R) is the sum of all the homogeneous
ideals of R in o.

(iii) a(R/a(R)) = 0.

We say that R is an a-radical ring if a(R) = R and a-semisimple if
a(R) = 0.

If @, v are two graded radicals, we write o C v if the a-radical
class is contained in the v-radical class or equivalently a(R) C v(R) for
all R. Clearly o C «~ if and only if S, C S5, where S, denotes the class
of a-semisimple rings.

Theorem 1.2. (i) If I QxR, then annfI <, R.

(ii) If P Qpp (Spn)R and I <LR, then PN 1y, (Dpn) 1.

(iii) If J <nsp (Dspn)I InR, then J IR,

(iv) If I <y R such that I is a graded semiprime ring, then ann*] =

=0 and R is itself a graded semiprime Ting.

We have the following result for ordinary associative rings R (see
(8, Th. 29]).

Theorem 1.3. The upper radical of a semisimple class S is hereditary
if and only if S is closed under essential extensions, that is, if I <R
and I € S, then R€ S.

We state here its graded version.

Theorem 1.4. The upper graded radical of a graded semisimple class S
is graded hereditary if and only if S is closed under graded essential ex-
tensions.

2. Graded radical o

We shall show that we can associate with a given radical o of
ordinary associative rings a graded radical o* of graded rings. First,
we prove two lemmas which have their own interest.
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Lemma 2.1. Let R be a graded ring and J Q1 < R. Ifr € h(R),
then the mapping 6 : J — I/J, defined by 0(z) =rz+ J, Yz € J, is
a graded ring homomorphism and its kernel K <, 1.

Proof. We have,Vz, ye J, 0z +y)=r(z+y +J = (re+J)+
+ry +J) = 0(z) +0(y), and O(zy) = rzy +J = J = rary +J =
= (rz+J)(ry+J) = 0(z)f(y). Hence § is a graded ring homomorphism
of degree (k, ¢), where k = deg(r). Itskernel K ={z € J: rz € J}is
a homogeneous ideal of J. We shall show that K <,1. Let z € K and
a €1, then rax € Iz C J,s0 az € K. Also r(za) = (rz)a € JI C J,
whence za € K. Thus K <,1. ¢

Lemma 2.2. Let S be a graded hereditary class of graded rings, which
is closed under graded extensions and graded isomorphisms. Let I be
a homogeneous ideal of a graded ring R, minimal with respect to the
property that R/I € S. Let J be such a homogeneous ideal of I, the
J=1.

Proof. We define 8 as in Lemma 2.1, then its kernel K <,I. Also
Im(0) = (rJ + J)/J <pI/J € S. Hence J/K = Im(f) € S. Now I/K/
JJ/K=I/JeS, s0l/KeS. Hence, by the minimality of J, K = J,
sorz € J,Vz € J. Similarly zr € J, ¥ z € J. Since r is arbitrary,
J<,R. Since R/J/I/J 2 R/I € S,and I/J € §,50 R/J € S. By the
minimality of I, we have J =1. {

Let R be a graded ring and let {Cy}reca be the family of all
homogeneous ideals of R such that R/Cy € So V A € A, where S,
is the semisimple class of the given radical a. We define o*(R) =
= Myea Or = R* say. Clearly, a(R) C a*(R), and R/R* € S,. By
taking S to be the class of all graded rings in S, in Lemma 2.2, we get
the following:

Theorem 2.3. o*(R*) = R*, where R* = a*(R).

Also we note that o(R) = 0 if and only if o*(R) = 0.

Theorem 2.4. o* is a graded radical of graded rings. ,
Proof. We shall show that conditions (i), (ii) and (iii) of Def. 1.1 are
satisfied.

Let R71 be a graded homomorphic image of R* and let a” (RYI)
= K/I, where K <,R*. Hence R*/K = (R*/I)/(K/I) € 84, s0 K 2
O o*(R*) = R*. Thus K = R* and o*(R*/I) = R*/I, satisfying (i).

Now let S<, R, and let S* = a*(5). Then S*/(S* N R*)
~ (§*+ R*)/R* € Sy, 50 S* = o*(5*) € S*NR* C R*. This proves (ii).

Since R/R* € S,, o*(R/R*) =0, and (iil) is also satisfied. O

t is now easy to prove the following

I

o~
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Theorem 2.5. The class Sq of all graded rings which belong to S,
as ordinary associative Tings is a graded semisimple class and o* s the
upper graded radical of Sg.

In [3] the authors introduce a graded radical a®. For a graded ring
R they define a®(R) to be the largest homogeneous a-ideal of R. In
general a®(R) # a*(R) # (a(R))c as shown by the following example.
Example 2.6. We take o = (3, the prime radical and R to be the group
ring Fp[Cp], where Cp is a cyclic group of order p and Fjp is a field of p
elements. Then B(R) is the augmentation ideal of R, §*(R) = R, and
B%(R) = 0, Ba(R) =0, (B(R))g = 0, where B¢ denotes the graded
prime radical.

We recall that a graded radical o is graded supernilpotent if f¢ C «
and « is graded hereditary see [3].

We shall say that a graded radical « is supernilpotent graded if
B8* C « and « is graded hereditary.
Theorem 2.7. If o is a supernilpotent radical of ordinary associative
rings, then a* is supernilpotent graded.
Proof. Since « is supernilpotent, 8 C «, so Sq © Sg, whence So- C
C Sp«, and so §* C o*. Now we show that o* is graded hereditary.
Let R be a graded ring and I <,.R such that I € S,«. We show that
I, in fact, is an essential ideal of R. Let 0 # K <R and suppose that
KNI=0. Then IK =0 = KI, so K C annf*I <4 R. Thus ann®] # 0.
Since I <, R, L = I'Nann®l # 0. But then L? = 0, and L1 €
€ Sg« € Sg+, so L =0, a contradiction. Hence KNI#0,and isan
essential ideal. Since « is hereditary, R € S, by Th. 1.3, s0 R € Su-.
Hence a* is graded hereditary by Th. 1.4. ¢
Corollary 2.8. (* is the least supernilpotent graded radical.
Remark 2.9. We note that Sg- consists of all semiprime graded rings,
that is, graded rings which have no non-zero nilpotent ideals and Sgg
consists of all graded semiprime rings, that is, graded rings which have
no nonzero homogeneous nilpotent ideals. Hence Sg- C Sgg, 50 B €
C f*. It follows, therefore, that a supernilpotent graded radical is also
graded supernilpotent but the converse need not be true. For example,
B¢ is graded supernilpotent but not supernilpotent graded, for 8* € O¢
as shown by Ex. 2.6.

We have a theorem corresponding to Th. 2 in [3]. First, we define
a weakly special graded class.
Definition 2.10. We call a non-empty class K of graded rings weakly
special graded if
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(i) IC consists of semiprime graded rings,

(ii) I 9 R and R € K, then I € K and

(iii) I Qep R and I € IC, then R € K.

Again, by some modifications in the proof of Ryabukhin’s theorem
(see [6, Th. 11.5]), we can prove the following
Theorem 2.11. A graded radical o is supernilpotent graded if and
only if it coincides with the graded upper radical determined by a weakly
special graded class KC. Then for any graded ring R, a(R) = Nxealy,
where {I : A € A} is the family of all those homogeneous ideals I of R
for which R/I) € K, and thus an a-semisimple graded ring 1s a graded
subdirect sum of rings from IC.

3. Graded.radical &

Corresponding to a special class and special radical of ordinary
associative rings are defined a graded special class and graded special
radical of graded rings (see [3]). We now define a special graded class.
Definition 3.1. We shall say that a non-empty class K of graded rings
R is special graded if

(i) K consists of prime graded rings,

(ii) I 9pR and R € IC, then I € K and

(i) I <.pR and I € KC, then R € K.

Thus a special graded class is also weakly special graded, and
so by Th. 2.11, determines a supernilpotent graded radical o which we
call special graded. Then for any graded ring R, a(R) = Naea Py, where
{Py : A € A} is the family of all those prime homogeneous ideals Py of
R such that R/ Py € K.

Since a prime graded ring is also graded prime, a special graded
radical is also graded special, but the converse may not be true. For
example, 8¢ is graded special but not special graded, for it is not su-
pernilpotent graded by Remark 2.9.

Theorem 3.2. Let a be a supernilpotent radical of ordinary associative
rings such that the class IC of all prime graded rings in S, 15 non-empty.
Then KC is a special graded class.

Proof. We need to verify only 3.1 (ii) and (iii). Since any nonzero ideal
of a prime ring is a prime ring (ii) is satisfied. Now let R be a graded
ring with [ <., R, I € K. Since « is hereditary R € S, by Th. 1.3. Also
if A, B are nonzero ideals of R, then 7N A and I N B are nonzero ideals




216 A. D. Sands and H. Yahya

of I. If AB =0, then (I N A)(I N B) =0, a contradiction, so AB # 0
and R is prime. Hence R € K. O

Thus X determines a special graded radical &. Clearly o® C &.
Theorem 3.3. & is the smallest graded radical among special graded
radicals containing o.

Proof. Let v be a special graded radical such that v 2 «.. Then for a
graded ring R, v(R) = NP;, where P;<,; R such that R/P; € 5. But
S, C Su+, 50 R/P; € Sqr and &(R) Cv(R). ¢

Corollary 3.4. B is the least special graded radical.

If o is a special radical, then a* need not be special graded as

shown by the following example by taking a = 0.
Example 3.5. Let R be the group ring Fp[Cp—1(g)], where p is an
odd prime and Cp_1(g) is a cyclic group of order p — 1, generated
by g. Let I and K be the ideals of R generated by the idempotents
—(e+g+g*>+---+gP?) and —(e—g+g*—g®+---—gP?), where e is
the identity of Cp—1(g). Then I # 0 and K # 0 but JK CINK = 0.
Hence R is not a prime ring. Moreover, I and K are prime ideals of R
for R/I ~ F, ~ R/K, so I and K are maximal and hence prime ideals
of R. Thus (0) is a semiprime homogeneous ideal of R. Hence R € Sp-.
But R has no prime homogeneous ideals of which (0) is the intersection.
Hence 8* is not special graded. Also Bg(R) = B(R) = 8*(R) =0, but
B(R) = R.

Ryabukhin (see [6]) gave an example of a supernilpotent radical
which is not special. We shall now show that a graded supernilpotent
(respectively supernilpotent graded) radical may not be graded special
(respectively special graded). Let &G = Cp—1(g) where p is an odd
prime, and let K be the class of all G-graded rings R satisfying the
conditions zP = z, pz = 0, Yz € h(R). Then K is a graded radical
graded semisimple class and each ring in K is a graded subdirect sum
of graded fields in F, where F consists of Fp[Cp—1] and its graded
subfields (see [3, Sect. 4]).

We now prove, by an example, the existence of a nonzero graded
ring in }C which does not contain a homogeneous ideal which is a finite
graded field in F.

Example 3.6. Let S be the set of symbols ;, where i € Q, the set of
rationals. We multiply these symbols by the rule z;z; = x5 where k =
= max(, ). Then S is a multiplicative commutative semigroup. Let R
be the group ring A[G], where A is the semigroup ring F[S]. We shall
show that y? =y, Yy € h(R), by induction on the number of nonzero
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components of y. Suppose that y € R, has only one nonzero component
and let y = az;g®. Then y? = aPz?g" = axr,g". Now suppose y? =y
if y has less than m components. Let y = E;n:l Qi; Ty, g"® = b+ c where

b = T;”_ll ai, Ti; g and ¢ = a;_z;,. 9% Then y? = (b+¢)? = b +

+ B te4 -+ (p_l)bcp !+ ¢P. Since p divides (), 1 <r <p—1,
yP = bP + cP. By the inductive hypothesis 0P = b and c? = c. Also
py =20, Yy € h(R),so R€ K. Nowlet 0 # IR and let 0 # y €
€ Ige. Then we can write y = Z{zl alyilgk, 1 <y < - <1 and
1<aq <p-1. Ipt (3_,a) then for every j > 4., we have
0 # yz;9° = (X]-,a)z;g*® € I and so there are infinitely many
elements in I. If p|(3>"_; ai), then for j with i,y < j < 4, we have
yzigt = (=) an)z;9%* + arzs.9°F € I. Hence, in either case, [ is
infinite, so I € F.
Theorem 3.7. Let K1 be the subclass of graded rings in IC that do not
have any homogeneous ideal which is a graded field in IC. Then Ky is a
graded weakly special class. The upper graded radical o determined by
IC1 is graded supernilpotent but not graded special.
Proof. The class K1 # () because of the above example. The rings in Ky
are graded semiprime for they have no nonzero nilpotent homogeneous
elements and clearly K is graded hereditary. Let I <,.R where R is a
graded ring and I € Ky. Then, by Th. 1.2 (iv), ann*] = 0 and R is
graded semiprime. Now let r € h(R) and = € h(I). Then rz € I and
0= (rz)? —rz = rPz — rz = (r? — r)z. Since ann®l =0, 7P —r = 0.
Also 0 = p(rz) = prz implies that pr = 0. Hence R € KC. Suppose now
that 0 # K <, R, where K is a graded field in F. Since I <R, KN
NI#0but KNI<,K,s0 KNI =K. Hence K C I, a contradiction.
Thus R € K; and so Ky is a graded weakly special class. Now any
graded prime ring in S, is a graded field in K, so in . But this is an
c-radical ring. Hence no graded prime ring exists in S,. Therefore
is graded supernilpotent but not graded special. ¢
Remark 3.8. We note that the graded rings R in K, also satisfy r? =
=r, Vr € R. Hence the rings in K; are semiprime graded. Therefore
« is a supernilpotent graded radical.

We can similarly prove the following theorem.
Theorem 3.9. Let Ky be the subclass of graded rings in K that do
not have any homogeneous ideal which is the field F,. Then Ko is
weakly special graded but not special graded. The upper gmded radical
determined by Ko is supernilpotent graded but not special graded.
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Remark 3.10. We note that £; C g, but £; # Ky, for R =
= F,[Cp-1(g)] € K3 but R ¢ K;.

We have the following:

Theorem 3.11. Fuvery supernilpotent graded (graded supernilpotent)
radical o whose graded semisimple class contains prime graded (graded
prime) rings can be extended to a special graded (graded special) radical
o, and o 18 the least special graded (gmded special) radical contain-
ing o.

Proof. Similar to that of Thms. 3.2 and 3.3. ¢

Corollary 3.12. Let o be a supernilpotent radical of ordinary associa-
tive rings such that S, contains prime graded rings, then aj = Q.

We shall now consider graded rings with chain conditions on ho-
mogeneous ideals. First, a lemma.

Lemma 3.13. Let R be a §-semisimple graded ring and I <, R which
1§ not a prime ring, then I contains two nonzero homogeneous ideals
Il, Kl OfR such that IlKl =0.

Proof. There exist two nonzero ideals 4, B of I such that AB = 0.
Since I is also B-semisimple we have Nyegp Py = 0, where {P : A € A}
is the family of all prime homogeneous ideals of I. Now AB C P,V A €
€A, s0 AC Py or BC P,, but not all Py, A € A, contain A or B. Let
Ay ={NeA: AC P} and let A = A1UA,, where U denotes disjoint
union. Then A C I1 = Nyen, P, B € K1 = Nyea, Py. Hence I, Ky
are nonzero semiprime homogeneous ideals of I, so also homogeneous
ideals of R by Th. 1.2 (iii), such that 1 K; C L1 NK; =0. ¢
Theorem 3.14. Let R be a B-semisimple graded ring satisfying the
ascending chain condition (ACC) or the descending chain condition
(DC’C) on homogeneous ideals, then every monzero homogeneous ideal
of R contains a homogeneous ideal of R, which is a prime graded ring.
Proof. Let R satisfy ACC and let 0 # I Iy R. If I is a prime ring, we
are finished. If not, by Lemma 3.13, I contains two nonzero homoge-
neous ideals I; and K, of R such that I; K; = 0. If [ is a prime ring,
we are done. Otherwise, there exist nonzero homogeneous ideals I», K3
of R in I; such that I3Ks = 0. Then the argument proceeds as in the
ungraded case (see [1, Lemma 1.6])

Now let R satisfy DCC, and 0 # I <3 R. Let J be a (non-zero)
minimal homogeneous ideal of R contained in /. Then J is a prime
graded ring by Lemma 3.13, for J? #0.0
Theorem 3.15. Let a be a supernilpotent graded (graded supernilpo-
tent) radical whose graded semisimple class S, contains prime graded
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(graded prime) rings, and let o be the least special graded (graded
special) radical containing «. Let R be a graded ring such that ev-
ery nonzero homogeneous ideal of a graded homomorphic image of R
in Sq contains a prime graded (graded prime) ring as its homogeneous
ideal, then a(R) = a3 (R).

Proof. Let a(R) # ai1(R). Then 0 # a1(R)/a(R)<yR/a(R) € S,,
so it contains a nonzero homogeneous ideal, say K, which is a prime
(graded prime) ring. Since « and «; are both graded hereditary K
is both an aj-radical ring and an «;-semisimple ring, but K # 0, a
contradiction. ¢

Corollary 3.16. Let a be a supernilpotent graded radical such that
a 2 f and S, contains prime graded rings. If oy is the least special
graded radical containing o, then o coincides with ay on every graded

ring R satisfying ACC or DCC on homogeneous ideals.
Proof. By Th. 3.14 and Th. 3.15. 0

We can similarly prove a corresponding result for a graded su-
pernilpotent radical. Also, we have the following:
Theorem 3.17. Let a be a graded supernilpotent radical with S, con-
taining graded prime rings, and let oy be the least graded special rad-
ical containing . Let R be a graded ring such that in every graded
semiprime homomorphic image of R the zero ideal (0) is a finite prod-
uct of graded prime ideals, then a(R) = a1(R).
Proof. Let R; be a graded homomorphic image of R in Sg, so R; is
graded semiprime. Let [ <, R;, then we shall show that I has a homo-
geneous ideal which is a graded prime ring. If I is itself a graded prime
ring we are done. Otherwise, there exists a finite set {P1, Ps,..., Py},
k > 2, of graded prime ideals of R such that H§=1Pi = 0. Then 0 #
# Qi = I N P;is a graded prime ideal of I such that II¥_,Q; = 0.
There is no loss of generality in supposing that Hf;ll i 7 0. Then
K = ann’Qy # 0, for it contains Hf;llQi. But KNQr =0, for R; is
graded semiprime. Hence (0) is a graded prime ideal of K, so K is a
graded prime ring. The result then follows from Th. 3.15. ¢
Corollary 3.18. o coincides with oy on every graded ring satisfying
ACC or DCC on homogeneous ideals.
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