SOME GRADED RADICALS OF GRADED RINGS #### A. D. Sands Department of Mathematics and Computer Science, The University Dundee, Dundee, DD1 4HN, Scotland # H. Yahya Faculty of Arts and Science, University of Lethbridge, Edmonton Campus#1200, 10707-100th Avenue, Edmonton, Alberta, Canada T5J 3M1 Received: February 2005 MSC 2000: 16 N 80, 13 A 02, 13 A 10 Keywords: Graded rings, graded radical class, graded semisimple class, graded supernilpotent, supernilpotent graded, graded special, special graded. Abstract: In this paper two new graded radicals α^* and $\bar{\alpha}$ of graded rings which can be associated with a given radical α of ordinary associative rings, are introduced and some results relating to these are proved. ## 1. Introduction In this paper we introduce two graded radicals α^* and $\tilde{\alpha}$ of graded rings, which can be associated with a given radical α of ordinary associative rings, and prove some results relating to them. Throughout the paper we consider G-graded (associative) rings R, where G is a multiplicative group with identity element e. For general notation and terminology of graded rings we refer to [4], for radical theory of ordinary associative rings to [2], [6], [7], [8], and for radical theory of graded rings to [3], [9]. In particular, if R is a graded ring we denote by h(R) the set of all homogeneous elements of R. The symbols \leq_h , \leq_{hp} , \leq_{hp} , \leq_{hp} , \leq_{ph} , \leq_{sph} , \leq_{eh} denote respectively a homogeneous, graded prime, graded semiprime, graded essential, prime homogeneous, semiprime homogeneous, and an essential homogeneous ideal of R. If $I \leq_h R$, the annihilator of I in R, that is, the set $\{r \in R : rx = 0, xr = 0, \forall x \in I\}$ is denoted by ann^RI. By I_G we mean the largest homogeneous ideal of R in I, where I is an ideal of R. We now mention some definitions and results which we may use in the sequel. **Definition 1.1.** A non-empty class α of graded rings is called a *graded radical class* (or a *graded radical*) if α satisfies the following conditions: (i) α is graded homomorphically closed. - (ii) Each graded ring R contains a largest homogeneous ideal in α , denoted by $\alpha(R)$, that is, $\alpha(R)$ is the sum of all the homogeneous ideals of R in α . - (iii) $\alpha(R/\alpha(R)) = 0$. We say that R is an α -radical ring if $\alpha(R) = R$ and α -semisimple if $\alpha(R) = 0$. If α , γ are two graded radicals, we write $\alpha \subseteq \gamma$ if the α -radical class is contained in the γ -radical class or equivalently $\alpha(R) \subseteq \gamma(R)$ for all R. Clearly $\alpha \subseteq \gamma$ if and only if $S_{\gamma} \subseteq S_{\alpha}$, where S_{α} denotes the class of α -semisimple rings. **Theorem 1.2.** (i) If $I \leq_h R$, then $\operatorname{ann}^R I \leq_h R$. (ii) If $P \leq_{hp} (\leq_{ph})R$ and $I \leq_{h} R$, then $P \cap I \leq_{hp} (\leq_{ph})I$. (iii) If $J \leq_{hsp} (\leq_{sph}) I \leq_{h} R$, then $J \leq_{h} R$. (iv) If $I \leq_{he} R$ such that I is a graded semiprime ring, then $\operatorname{ann}^R I = 0$ and R is itself a graded semiprime ring. We have the following result for ordinary associative rings R (see [8, Th. 29]). **Theorem 1.3.** The upper radical of a semisimple class S is hereditary if and only if S is closed under essential extensions, that is, if $I \subseteq_e R$ and $I \in S$, then $R \in S$. We state here its graded version. **Theorem 1.4.** The upper graded radical of a graded semisimple class S is graded hereditary if and only if S is closed under graded essential extensions. ## 2. Graded radical α^* We shall show that we can associate with a given radical α of ordinary associative rings a graded radical α^* of graded rings. First, we prove two lemmas which have their own interest. **Lemma 2.1.** Let R be a graded ring and $J \subseteq_h I \subseteq_h R$. If $r \in h(R)$, then the mapping $\theta: J \longrightarrow I/J$, defined by $\theta(x) = rx + J$, $\forall x \in J$, is a graded ring homomorphism and its kernel $K \subseteq_h I$. **Proof.** We have, $\forall x, y \in J$, $\theta(x+y) = r(x+y) + J = (rx+J) + +(ry+J) = \theta(x) + \theta(y)$, and $\theta(xy) = rxy + J = J = rxry + J = = (rx+J)(ry+J) = \theta(x)\theta(y)$. Hence θ is a graded ring homomorphism of degree (k,e), where $k = \deg(r)$. Its kernel $K = \{x \in J : rx \in J\}$ is a homogeneous ideal of J. We shall show that $K \subseteq I$. Let I is a **Lemma 2.2.** Let S be a graded hereditary class of graded rings, which is closed under graded extensions and graded isomorphisms. Let I be a homogeneous ideal of a graded ring R, minimal with respect to the property that $R/I \in S$. Let J be such a homogeneous ideal of I, the J = I. **Proof.** We define θ as in Lemma 2.1, then its kernel $K \leq_h I$. Also $\operatorname{Im}(\theta) = (rJ+J)/J \leq_h I/J \in S$. Hence $J/K \cong \operatorname{Im}(\theta) \in S$. Now $I/K/J/K \cong I/J \in S$, so $I/K \in S$. Hence, by the minimality of J, K = J, so T so T is arbitrary, T is a since T is arbitrary, T is a since sinc Let R be a graded ring and let $\{C_{\lambda}\}_{{\lambda}\in\Lambda}$ be the family of all homogeneous ideals of R such that $R/C_{\lambda}\in S_{\alpha}\ \forall\ \lambda\in\Lambda$, where S_{α} is the semisimple class of the given radical α . We define $\alpha^*(R)=$ $=\cap_{{\lambda}\in\Lambda}\ C_{\lambda}=R^*$ say. Clearly, $\alpha(R)\subseteq\alpha^*(R)$, and $R/R^*\in S_{\alpha}$. By taking S to be the class of all graded rings in S_{α} in Lemma 2.2, we get the following: Theorem 2.3. $\alpha^*(R^*) = R^*$, where $R^* = \alpha^*(R)$. Also we note that $\alpha(R) = 0$ if and only if $\alpha^*(R) = 0$. **Theorem 2.4.** α^* is a graded radical of graded rings. **Proof.** We shall show that conditions (i), (ii) and (iii) of Def. 1.1 are satisfied. Let $R^*\!/I$ be a graded homomorphic image of R^* and let $\alpha^*(R^*\!/I) = K/I$, where $K \leq_h R^*$. Hence $R^*/K \cong (R^*/I)/(K/I) \in \mathcal{S}_\alpha$, so $K \supseteq \alpha^*(R^*) = R^*$. Thus $K = R^*$ and $\alpha^*(R^*/I) = R^*/I$, satisfying (i). Now let $S \leq_h R$, and let $S^* = \alpha^*(S)$. Then $S^*/(S^* \cap R^*) \cong (S^* + R^*)/R^* \in \mathcal{S}_\alpha$, so $S^* = \alpha^*(S^*) \subseteq S^* \cap R^* \subseteq R^*$. This proves (ii). Since $R/R^* \in \mathcal{S}_\alpha$, $\alpha^*(R/R^*) = 0$, and (iii) is also satisfied. \Diamond It is now easy to prove the following **Theorem 2.5.** The class S_G of all graded rings which belong to S_{α} as ordinary associative rings is a graded semisimple class and α^* is the upper graded radical of S_G . In [3] the authors introduce a graded radical α^G . For a graded ring R they define $\alpha^G(R)$ to be the largest homogeneous α -ideal of R. In general $\alpha^G(R) \neq \alpha^*(R) \neq (\alpha(R))_G$ as shown by the following example. **Example 2.6.** We take $\alpha = \beta$, the prime radical and R to be the group ring $F_p[C_p]$, where C_p is a cyclic group of order $P_p[C_p]$ and $P_p[C_p]$ is a field of $P_p[C_p]$ elements. Then $P_p[C_p]$ is the augmentation ideal of $P_p[C_p]$ and $P_p[C_p]$ is the augmentation ideal of $P_p[C_p]$ denotes the graded prime radical. We recall that a graded radical α is graded supernilpotent if $\beta_G \subseteq \alpha$ and α is graded hereditary see [3]. We shall say that a graded radical α is supernilpotent graded if $\beta^* \subset \alpha$ and α is graded hereditary. **Theorem 2.7.** If α is a supernilpotent radical of ordinary associative rings, then α^* is supernilpotent graded. **Proof.** Since α is supernilpotent, $\beta \subseteq \alpha$, so $S_{\alpha} \subseteq S_{\beta}$, whence $S_{\alpha^*} \subseteq S_{\beta^*}$, and so $\beta^* \subseteq \alpha^*$. Now we show that α^* is graded hereditary. Let R be a graded ring and $I \unlhd_{he} R$ such that $I \in S_{\alpha^*}$. We show that I, in fact, is an essential ideal of R. Let $0 \neq K \unlhd R$ and suppose that $K \cap I = 0$. Then IK = 0 = KI, so $K \subseteq \operatorname{ann}^R I \unlhd_h R$. Thus $\operatorname{ann}^R I \neq 0$. Since $I \unlhd_{he} R$, $L = I \cap \operatorname{ann}^R I \neq 0$. But then $L^2 = 0$, and $L \unlhd_h I \in S_{\alpha^*} \subseteq S_{\beta^*}$, so L = 0, a contradiction. Hence $K \cap I \neq 0$, and I is an essential ideal. Since α is hereditary, $R \in S_{\alpha}$ by Th. 1.3, so $R \in S_{\alpha^*}$. Hence α^* is graded hereditary by Th. 1.4. \Diamond Corollary 2.8. β^* is the least supernilpotent graded radical. Remark 2.9. We note that S_{β^*} consists of all semiprime graded rings, that is, graded rings which have no non-zero nilpotent ideals and S_{β_G} consists of all graded semiprime rings, that is, graded rings which have no nonzero homogeneous nilpotent ideals. Hence $S_{\beta^*} \subseteq S_{\beta_G}$, so $\beta_G \subseteq \beta^*$. It follows, therefore, that a supernilpotent graded radical is also graded supernilpotent but the converse need not be true. For example, β_G is graded supernilpotent but not supernilpotent graded, for $\beta^* \not\subseteq \beta_G$ as shown by Ex. 2.6. We have a theorem corresponding to Th. 2 in [3]. First, we define a weakly special graded class. **Definition 2.10.** We call a non-empty class K of graded rings weakly special graded if - (i) K consists of semiprime graded rings, - (ii) $I \leq_h R$ and $R \in \mathcal{K}$, then $I \in \mathcal{K}$ and - (iii) $I \leq_{eh} R$ and $I \in \mathcal{K}$, then $R \in \mathcal{K}$. Again, by some modifications in the proof of Ryabukhin's theorem (see [6, Th. 11.5]), we can prove the following **Theorem 2.11.** A graded radical α is supernilpotent graded if and only if it coincides with the graded upper radical determined by a weakly special graded class K. Then for any graded ring R, $\alpha(R) = \bigcap_{\lambda \in \Lambda} I_{\lambda}$, where $\{I_{\lambda} : \lambda \in \Lambda\}$ is the family of all those homogeneous ideals I_{λ} of R for which $R/I_{\lambda} \in K$, and thus an α -semisimple graded ring is a graded subdirect sum of rings from K. #### 3. Graded radical $\tilde{\alpha}$ Corresponding to a special class and special radical of ordinary associative rings are defined a graded special class and graded special radical of graded rings (see [3]). We now define a special graded class. **Definition 3.1.** We shall say that a non-empty class \mathcal{K} of graded rings R is special graded if - (i) K consists of prime graded rings, - (ii) $I \leq_h R$ and $R \in \mathcal{K}$, then $I \in \mathcal{K}$ and - (iii) $I \leq_{eh} R$ and $I \in \mathcal{K}$, then $R \in \mathcal{K}$. Thus a special graded class is also weakly special graded, and so by Th. 2.11, determines a supernilpotent graded radical α which we call special graded. Then for any graded ring R, $\alpha(R) = \bigcap_{\lambda \in \Lambda} P_{\lambda}$, where $\{P_{\lambda} : \lambda \in \Lambda\}$ is the family of all those prime homogeneous ideals P_{λ} of R such that $R/P_{\lambda} \in \mathcal{K}$. Since a prime graded ring is also graded prime, a special graded radical is also graded special, but the converse may not be true. For example, β_G is graded special but not special graded, for it is not supernilpotent graded by Remark 2.9. **Theorem 3.2.** Let α be a supernilpotent radical of ordinary associative rings such that the class K of all prime graded rings in S_{α} is non-empty. Then K is a special graded class. **Proof.** We need to verify only 3.1 (ii) and (iii). Since any nonzero ideal of a prime ring is a prime ring (ii) is satisfied. Now let R be a graded ring with $I \subseteq_{eh} R$, $I \in \mathcal{K}$. Since α is hereditary $R \in \mathcal{S}_{\alpha}$ by Th. 1.3. Also if A, B are nonzero ideals of R, then $I \cap A$ and $I \cap B$ are nonzero ideals of I. If AB = 0, then $(I \cap A)(I \cap B) = 0$, a contradiction, so $AB \neq 0$ and R is prime. Hence $R \in \mathcal{K}$. \diamondsuit Thus K determines a special graded radical $\tilde{\alpha}$. Clearly $\alpha^* \subseteq \tilde{\alpha}$. **Theorem 3.3.** $\tilde{\alpha}$ is the smallest graded radical among special graded radicals containing α^* . **Proof.** Let γ be a special graded radical such that $\gamma \supseteq \alpha_*$. Then for a graded ring R, $\gamma(R) = \cap P_i$, where $P_i \unlhd_{\tilde{p}h} R$ such that $R/P_i \in S_{\gamma}$. But $S_{\gamma} \subseteq S_{\alpha^*}$, so $R/P_i \in S_{\alpha^*}$ and $\tilde{\alpha}(R) \subseteq \gamma(R)$. \Diamond Corollary 3.4. $\tilde{\beta}$ is the least special graded radical. If α is a special radical, then α^* need not be special graded as shown by the following example by taking $\alpha = \beta$. Example 3.5. Let R be the group ring $F_p[C_{p-1}(g)]$, where p is an odd prime and $C_{p-1}(g)$ is a cyclic group of order p-1, generated by g. Let I and K be the ideals of R generated by the idempotents $-(e+g+g^2+\cdots+g^{p-2})$ and $-(e-g+g^2-g^3+\cdots-g^{p-2})$, where e is the identity of $C_{p-1}(g)$. Then $I \neq 0$ and $K \neq 0$ but $IK \subseteq I \cap K = 0$. Hence R is not a prime ring. Moreover, I and K are prime ideals of R for $R/I \simeq F_p \simeq R/K$, so I and K are maximal and hence prime ideals of R. Thus (0) is a semiprime homogeneous ideal of R. Hence $R \in \mathcal{S}_{\beta^*}$. But R has no prime homogeneous ideals of which (0) is the intersection. Hence β^* is not special graded. Also $\beta_G(R) = \beta(R) = \beta^*(R) = 0$, but $\tilde{\beta}(R) = R$. Ryabukhin (see [6]) gave an example of a supernilpotent radical which is not special. We shall now show that a graded supernilpotent (respectively supernilpotent graded) radical may not be graded special (respectively special graded). Let $G = C_{p-1}(g)$ where p is an odd prime, and let \mathcal{K} be the class of all G-graded rings R satisfying the conditions $x^p = x$, px = 0, $\forall x \in h(R)$. Then \mathcal{K} is a graded radical graded semisimple class and each ring in \mathcal{K} is a graded subdirect sum of graded fields in \mathcal{F} , where \mathcal{F} consists of $F_p[C_{p-1}]$ and its graded subfields (see [5, Sect. 4]). We now prove, by an example, the existence of a nonzero graded ring in $\mathcal K$ which does not contain a homogeneous ideal which is a finite graded field in $\mathcal F$. **Example 3.6.** Let S be the set of symbols x_i , where $i \in \mathbb{Q}$, the set of rationals. We multiply these symbols by the rule $x_i x_j = x_k$ where $k = \max(i, j)$. Then S is a multiplicative commutative semigroup. Let R be the group ring A[G], where A is the semigroup ring $F_p[S]$. We shall show that $y^p = y$, $\forall y \in h(R)$, by induction on the number of nonzero components of y. Suppose that $y \in R_k$ has only one nonzero component and let $y = ax_ig^k$. Then $y^p = a^px_i^pg^{kp} = ax_ig^k$. Now suppose $y^p = y$ if y has less than m components. Let $y = \sum_{j=1}^m a_{i_j}x_{i_j}g^k = b+c$ where $b = \sum_{j=1}^{m-1} a_{i_j}x_{i_j}g^k$ and $c = a_{i_m}x_{i_m}g^k$. Then $y^p = (b+c)^p = b^p + (p)^{p-1}c + \cdots + (p)^{p-1}bc^{p-1} + c^p$. Since p divides $p = b^p + c^p$. By the inductive hypothesis $p = b^p$ and p = c. Also $p = b^p + c^p$. By the inductive hypothesis $p = b^p$ and let p = c. Also $p = b^p + c^p$. Then we can write $p = \sum_{l=1}^r a_l y_{i_l} g^k$, $p = b^p + c^p = c$ and p = c and p = c and p = c and p = c. If $p \neq c = c$ and p = c **Theorem 3.7.** Let K_1 be the subclass of graded rings in K that do not have any homogeneous ideal which is a graded field in K. Then K_1 is a graded weakly special class. The upper graded radical α determined by K_1 is graded supernilpotent but not graded special. **Proof.** The class $K_1 \neq \emptyset$ because of the above example. The rings in K_1 are graded semiprime for they have no nonzero nilpotent homogeneous elements and clearly K_1 is graded hereditary. Let $I \subseteq_{he} R$ where R is a graded ring and $I \in K_1$. Then, by Th. 1.2 (iv), $\operatorname{ann}^R I = 0$ and R is graded semiprime. Now let $r \in h(R)$ and $x \in h(I)$. Then $rx \in I$ and $0 = (rx)^p - rx = r^px - rx = (r^p - r)x$. Since $\operatorname{ann}^R I = 0$, $r^p - r = 0$. Also 0 = p(rx) = prx implies that pr = 0. Hence $R \in K$. Suppose now that $0 \neq K \subseteq_h R$, where K is a graded field in \mathcal{F} . Since $I \subseteq_{he} R$, $K \cap I \neq 0$ but $K \cap I \subseteq_h K$, so $K \cap I = K$. Hence $K \subseteq I$, a contradiction. Thus $R \in K_1$ and so K_1 is a graded weakly special class. Now any graded prime ring in S_α is a graded field in K, so in \mathcal{F} . But this is an α -radical ring. Hence no graded prime ring exists in S_α . Therefore α is graded supernilpotent but not graded special. \Diamond Remark 3.8. We note that the graded rings R in \mathcal{K}_1 also satisfy $r^p = r$, $\forall r \in R$. Hence the rings in \mathcal{K}_1 are semiprime graded. Therefore α is a supernilpotent graded radical. We can similarly prove the following theorem. **Theorem 3.9.** Let K_2 be the subclass of graded rings in K that do not have any homogeneous ideal which is the field F_p . Then K_2 is weakly special graded but not special graded. The upper graded radical determined by K_2 is supernilpotent graded but not special graded. **Remark 3.10.** We note that $\mathcal{K}_1 \subseteq \mathcal{K}_2$, but $\mathcal{K}_1 \neq \mathcal{K}_2$, for $R = F_p[C_{p-1}(g)] \in \mathcal{K}_2$ but $R \notin \mathcal{K}_1$. We have the following: **Theorem 3.11.** Every supernilpotent graded (graded supernilpotent) radical α whose graded semisimple class contains prime graded (graded prime) rings can be extended to a special graded (graded special) radical α_1 , and α_1 is the least special graded (graded special) radical containing α . **Proof.** Similar to that of Thms. 3.2 and 3.3. \Diamond Corollary 3.12. Let α be a supernilpotent radical of ordinary associative rings such that S_{α} contains prime graded rings, then $\alpha_1^* = \tilde{\alpha}$. We shall now consider graded rings with chain conditions on homogeneous ideals. First, a lemma. **Lemma 3.13.** Let R be a $\bar{\beta}$ -semisimple graded ring and $I \leq_h R$ which is not a prime ring, then I contains two nonzero homogeneous ideals I_1 , K_1 of R such that $I_1K_1 = 0$. **Proof.** There exist two nonzero ideals A, B of I such that AB = 0. Since I is also $\tilde{\beta}$ -semisimple we have $\bigcap_{\lambda \in \Lambda} P_{\lambda} = 0$, where $\{P_{\lambda} : \lambda \in \Lambda\}$ is the family of all prime homogeneous ideals of I. Now $AB \subseteq P_{\lambda}$, $\forall \lambda \in \Lambda$, so $A \subseteq P_{\lambda}$ or $B \subseteq P_{\lambda}$, but not all P_{λ} , $\lambda \in \Lambda$, contain A or B. Let $\Lambda_1 = \{\lambda \in \Lambda : A \subseteq P_{\lambda}\}$ and let $\Lambda = \Lambda_1 \dot{\cup} \Lambda_2$, where $\dot{\cup}$ denotes disjoint union. Then $A \subseteq I_1 = \bigcap_{\lambda \in \Lambda_1} P_{\lambda}$, $B \subseteq K_1 = \bigcap_{\lambda \in \Lambda_2} P_{\lambda}$. Hence I_1 , K_1 are nonzero semiprime homogeneous ideals of I, so also homogeneous ideals of R by Th. 1.2 (iii), such that $I_1K_1 \subseteq I_1 \cap K_1 = 0$. \Diamond Theorem 3.14. Let R be a $\tilde{\beta}$ -semisimple graded ring satisfying the ascending chain condition (ACC) or the descending chain condition (DCC) on homogeneous ideals, then every nonzero homogeneous ideal of R contains a homogeneous ideal of R, which is a prime graded ring. **Proof.** Let R satisfy ACC and let $0 \neq I \leq_h R$. If I is a prime ring, we are finished. If not, by Lemma 3.13, I contains two nonzero homogeneous ideals I_1 and K_1 of R such that $I_1K_1 = 0$. If I_1 is a prime ring, we are done. Otherwise, there exist nonzero homogeneous ideals I_2 , K_2 of R in I_1 such that $I_2K_2 = 0$. Then the argument proceeds as in the ungraded case (see [1, Lemma 1.6]) Now let R satisfy DCC, and $0 \neq I \leq_h R$. Let J be a (non-zero) minimal homogeneous ideal of R contained in I. Then J is a prime graded ring by Lemma 3.13, for $J^2 \neq 0$. \Diamond **Theorem 3.15.** Let α be a supernilpotent graded (graded supernilpotent) radical whose graded semisimple class S_{α} contains prime graded (graded prime) rings, and let α_1 be the least special graded (graded special) radical containing α . Let R be a graded ring such that every nonzero homogeneous ideal of a graded homomorphic image of R in S_{α} contains a prime graded (graded prime) ring as its homogeneous ideal, then $\alpha(R) = \alpha_1(R)$. **Proof.** Let $\alpha(R) \neq \alpha_1(R)$. Then $0 \neq \alpha_1(R)/\alpha(R) \leq_h R/\alpha(R) \in \mathcal{S}_{\alpha}$, so it contains a nonzero homogeneous ideal, say K, which is a prime (graded prime) ring. Since α and α_1 are both graded hereditary K is both an α_1 -radical ring and an α_1 -semisimple ring, but $K \neq 0$, a contradiction. \Diamond **Corollary 3.16.** Let α be a supernilpotent graded radical such that $\alpha \supseteq \tilde{\beta}$ and S_{α} contains prime graded rings. If α_1 is the least special graded radical containing α , then α coincides with α_1 on every graded ring R satisfying ACC or DCC on homogeneous ideals. **Proof.** By Th. 3.14 and Th. 3.15. ◊ We can similarly prove a corresponding result for a graded supernilpotent radical. Also, we have the following: **Theorem 3.17.** Let α be a graded supernilpotent radical with S_{α} containing graded prime rings, and let α_1 be the least graded special radical containing α . Let R be a graded ring such that in every graded semiprime homomorphic image of R the zero ideal (0) is a finite product of graded prime ideals, then $\alpha(R) = \alpha_1(R)$. **Proof.** Let R_1 be a graded homomorphic image of R in S_{α} , so R_1 is graded semiprime. Let $I \leq_h R_1$, then we shall show that I has a homogeneous ideal which is a graded prime ring. If I is itself a graded prime ring we are done. Otherwise, there exists a finite set $\{P_1, P_2, \ldots, P_k\}$, $k \geq 2$, of graded prime ideals of R such that $\prod_{i=1}^k P_i = 0$. Then $0 \neq Q_i = I \cap P_i$ is a graded prime ideal of I such that $\prod_{i=1}^k Q_i = 0$. There is no loss of generality in supposing that $\prod_{i=1}^{k-1} Q_i \neq 0$. Then $K = \operatorname{ann}^I Q_k \neq 0$, for it contains $\prod_{i=1}^{k-1} Q_i$. But $K \cap Q_k = 0$, for R_1 is graded semiprime. Hence (0) is a graded prime ideal of K, so K is a graded prime ring. The result then follows from Th. 3.15. \Diamond Corollary 3.18. α coincides with α_1 on every graded ring satisfying ACC or DCC on homogeneous ideals. ## References [1] ANDRUNAKIEVIC, V. A.: Radicals of Associative rings I, Mat. Sb. 44 (1958), 179–212, Translations of Amer. Math. Soc. 52 (1966), 95–128. - [2] DIVINSKY, N. J.: Rings and Radicals, University of Toronto Press, 1965. - [3] FANG, H. and STEWART, P.: Radical theory for graded rings, J. Austr. Math. Soc. 52 (series A) (1992), 143–153. - [4] NĂSTĂSESCU, C. and OSTAEYEN, F. V.: Graded Ring Theory, North-Holland, 1982. - [5] SANDS, A. D. and YAHYA, H.: Graded varieties of graded rings, Acta Math. Hungar. 67 (1995), 171–186. - [6] SZÁSZ, F. A.: Radicals of Rings, John Wiley and Sons, 1981. - [7] WIEGANDT, R.: Radical and Semisimple Classes of Rings, Queen's University Papers, Kingston, Ontario, No. 37, 1974. - [8] WIEGANDT, R.: Radical theory of rings, Math. Student 51, No. 1-4 (1983), 145-185. - [9] YAHYA, H.: Graded radical graded semisimple classes, Acta Math. Hungar. 66 (1995), 163–175.