SOME GRADED RADICALS OF GRADED RINGS

A. D. Sands

Department of Mathematics and Computer Science, The University Dundee, Dundee, DD1 4HN, Scotland

H. Yahya

Faculty of Arts and Science, University of Lethbridge, Edmonton Campus#1200, 10707-100th Avenue, Edmonton, Alberta, Canada T5J 3M1

Received: February 2005

MSC 2000: 16 N 80, 13 A 02, 13 A 10

Keywords: Graded rings, graded radical class, graded semisimple class, graded supernilpotent, supernilpotent graded, graded special, special graded.

Abstract: In this paper two new graded radicals α^* and $\bar{\alpha}$ of graded rings which can be associated with a given radical α of ordinary associative rings, are introduced and some results relating to these are proved.

1. Introduction

In this paper we introduce two graded radicals α^* and $\tilde{\alpha}$ of graded rings, which can be associated with a given radical α of ordinary associative rings, and prove some results relating to them. Throughout the paper we consider G-graded (associative) rings R, where G is a multiplicative group with identity element e. For general notation and terminology of graded rings we refer to [4], for radical theory of ordinary associative rings to [2], [6], [7], [8], and for radical theory of graded rings to [3], [9]. In particular, if R is a graded ring we denote by h(R) the set of all homogeneous elements of R. The symbols \leq_h , \leq_{hp} , \leq_{hp} , \leq_{hp} , \leq_{ph} , \leq_{sph} , \leq_{eh} denote respectively a homogeneous,

graded prime, graded semiprime, graded essential, prime homogeneous, semiprime homogeneous, and an essential homogeneous ideal of R. If $I \leq_h R$, the annihilator of I in R, that is, the set $\{r \in R : rx = 0, xr = 0, \forall x \in I\}$ is denoted by ann^RI. By I_G we mean the largest homogeneous ideal of R in I, where I is an ideal of R.

We now mention some definitions and results which we may use in the sequel.

Definition 1.1. A non-empty class α of graded rings is called a *graded radical class* (or a *graded radical*) if α satisfies the following conditions:

(i) α is graded homomorphically closed.

- (ii) Each graded ring R contains a largest homogeneous ideal in α , denoted by $\alpha(R)$, that is, $\alpha(R)$ is the sum of all the homogeneous ideals of R in α .
- (iii) $\alpha(R/\alpha(R)) = 0$. We say that R is an α -radical ring if $\alpha(R) = R$ and α -semisimple if $\alpha(R) = 0$.

If α , γ are two graded radicals, we write $\alpha \subseteq \gamma$ if the α -radical class is contained in the γ -radical class or equivalently $\alpha(R) \subseteq \gamma(R)$ for all R. Clearly $\alpha \subseteq \gamma$ if and only if $S_{\gamma} \subseteq S_{\alpha}$, where S_{α} denotes the class of α -semisimple rings.

Theorem 1.2. (i) If $I \leq_h R$, then $\operatorname{ann}^R I \leq_h R$.

(ii) If $P \leq_{hp} (\leq_{ph})R$ and $I \leq_{h} R$, then $P \cap I \leq_{hp} (\leq_{ph})I$.

(iii) If $J \leq_{hsp} (\leq_{sph}) I \leq_{h} R$, then $J \leq_{h} R$.

(iv) If $I \leq_{he} R$ such that I is a graded semiprime ring, then $\operatorname{ann}^R I = 0$ and R is itself a graded semiprime ring.

We have the following result for ordinary associative rings R (see

[8, Th. 29]).

Theorem 1.3. The upper radical of a semisimple class S is hereditary if and only if S is closed under essential extensions, that is, if $I \subseteq_e R$ and $I \in S$, then $R \in S$.

We state here its graded version.

Theorem 1.4. The upper graded radical of a graded semisimple class S is graded hereditary if and only if S is closed under graded essential extensions.

2. Graded radical α^*

We shall show that we can associate with a given radical α of ordinary associative rings a graded radical α^* of graded rings. First, we prove two lemmas which have their own interest.

Lemma 2.1. Let R be a graded ring and $J \subseteq_h I \subseteq_h R$. If $r \in h(R)$, then the mapping $\theta: J \longrightarrow I/J$, defined by $\theta(x) = rx + J$, $\forall x \in J$, is a graded ring homomorphism and its kernel $K \subseteq_h I$.

Proof. We have, $\forall x, y \in J$, $\theta(x+y) = r(x+y) + J = (rx+J) + +(ry+J) = \theta(x) + \theta(y)$, and $\theta(xy) = rxy + J = J = rxry + J = = (rx+J)(ry+J) = \theta(x)\theta(y)$. Hence θ is a graded ring homomorphism of degree (k,e), where $k = \deg(r)$. Its kernel $K = \{x \in J : rx \in J\}$ is a homogeneous ideal of J. We shall show that $K \subseteq I$. Let I is a I is

Lemma 2.2. Let S be a graded hereditary class of graded rings, which is closed under graded extensions and graded isomorphisms. Let I be a homogeneous ideal of a graded ring R, minimal with respect to the property that $R/I \in S$. Let J be such a homogeneous ideal of I, the J = I.

Proof. We define θ as in Lemma 2.1, then its kernel $K \leq_h I$. Also $\operatorname{Im}(\theta) = (rJ+J)/J \leq_h I/J \in S$. Hence $J/K \cong \operatorname{Im}(\theta) \in S$. Now $I/K/J/K \cong I/J \in S$, so $I/K \in S$. Hence, by the minimality of J, K = J, so T so T is arbitrary, T is a since T is arbitrary, T is a since T is a sinc

Let R be a graded ring and let $\{C_{\lambda}\}_{{\lambda}\in\Lambda}$ be the family of all homogeneous ideals of R such that $R/C_{\lambda}\in S_{\alpha}\ \forall\ \lambda\in\Lambda$, where S_{α} is the semisimple class of the given radical α . We define $\alpha^*(R)=$ $=\cap_{{\lambda}\in\Lambda}\ C_{\lambda}=R^*$ say. Clearly, $\alpha(R)\subseteq\alpha^*(R)$, and $R/R^*\in S_{\alpha}$. By taking S to be the class of all graded rings in S_{α} in Lemma 2.2, we get the following:

Theorem 2.3. $\alpha^*(R^*) = R^*$, where $R^* = \alpha^*(R)$.

Also we note that $\alpha(R) = 0$ if and only if $\alpha^*(R) = 0$.

Theorem 2.4. α^* is a graded radical of graded rings.

Proof. We shall show that conditions (i), (ii) and (iii) of Def. 1.1 are satisfied.

Let $R^*\!/I$ be a graded homomorphic image of R^* and let $\alpha^*(R^*\!/I) = K/I$, where $K \leq_h R^*$. Hence $R^*/K \cong (R^*/I)/(K/I) \in \mathcal{S}_\alpha$, so $K \supseteq \alpha^*(R^*) = R^*$. Thus $K = R^*$ and $\alpha^*(R^*/I) = R^*/I$, satisfying (i). Now let $S \leq_h R$, and let $S^* = \alpha^*(S)$. Then $S^*/(S^* \cap R^*) \cong (S^* + R^*)/R^* \in \mathcal{S}_\alpha$, so $S^* = \alpha^*(S^*) \subseteq S^* \cap R^* \subseteq R^*$. This proves (ii). Since $R/R^* \in \mathcal{S}_\alpha$, $\alpha^*(R/R^*) = 0$, and (iii) is also satisfied. \Diamond

It is now easy to prove the following

Theorem 2.5. The class S_G of all graded rings which belong to S_{α} as ordinary associative rings is a graded semisimple class and α^* is the

upper graded radical of S_G .

In [3] the authors introduce a graded radical α^G . For a graded ring R they define $\alpha^G(R)$ to be the largest homogeneous α -ideal of R. In general $\alpha^G(R) \neq \alpha^*(R) \neq (\alpha(R))_G$ as shown by the following example. **Example 2.6.** We take $\alpha = \beta$, the prime radical and R to be the group ring $F_p[C_p]$, where C_p is a cyclic group of order $P_p[C_p]$ and $P_p[C_p]$ is a field of $P_p[C_p]$ elements. Then $P_p[C_p]$ is the augmentation ideal of $P_p[C_p]$ and $P_p[C_p]$ is the augmentation ideal of $P_p[C_p]$ denotes the graded prime radical.

We recall that a graded radical α is graded supernilpotent if $\beta_G \subseteq \alpha$ and α is graded hereditary see [3].

We shall say that a graded radical α is supernilpotent graded if $\beta^* \subset \alpha$ and α is graded hereditary.

Theorem 2.7. If α is a supernilpotent radical of ordinary associative rings, then α^* is supernilpotent graded.

Proof. Since α is supernilpotent, $\beta \subseteq \alpha$, so $S_{\alpha} \subseteq S_{\beta}$, whence $S_{\alpha^*} \subseteq S_{\beta^*}$, and so $\beta^* \subseteq \alpha^*$. Now we show that α^* is graded hereditary. Let R be a graded ring and $I \unlhd_{he} R$ such that $I \in S_{\alpha^*}$. We show that I, in fact, is an essential ideal of R. Let $0 \neq K \unlhd R$ and suppose that $K \cap I = 0$. Then IK = 0 = KI, so $K \subseteq \operatorname{ann}^R I \unlhd_h R$. Thus $\operatorname{ann}^R I \neq 0$. Since $I \unlhd_{he} R$, $L = I \cap \operatorname{ann}^R I \neq 0$. But then $L^2 = 0$, and $L \unlhd_h I \in S_{\alpha^*} \subseteq S_{\beta^*}$, so L = 0, a contradiction. Hence $K \cap I \neq 0$, and I is an essential ideal. Since α is hereditary, $R \in S_{\alpha}$ by Th. 1.3, so $R \in S_{\alpha^*}$. Hence α^* is graded hereditary by Th. 1.4. \Diamond

Corollary 2.8. β^* is the least supernilpotent graded radical.

Remark 2.9. We note that S_{β^*} consists of all semiprime graded rings, that is, graded rings which have no non-zero nilpotent ideals and S_{β_G} consists of all graded semiprime rings, that is, graded rings which have no nonzero homogeneous nilpotent ideals. Hence $S_{\beta^*} \subseteq S_{\beta_G}$, so $\beta_G \subseteq \beta^*$. It follows, therefore, that a supernilpotent graded radical is also graded supernilpotent but the converse need not be true. For example, β_G is graded supernilpotent but not supernilpotent graded, for $\beta^* \not\subseteq \beta_G$ as shown by Ex. 2.6.

We have a theorem corresponding to Th. 2 in [3]. First, we define a weakly special graded class.

Definition 2.10. We call a non-empty class K of graded rings weakly special graded if

- (i) K consists of semiprime graded rings,
- (ii) $I \leq_h R$ and $R \in \mathcal{K}$, then $I \in \mathcal{K}$ and
- (iii) $I \leq_{eh} R$ and $I \in \mathcal{K}$, then $R \in \mathcal{K}$.

Again, by some modifications in the proof of Ryabukhin's theorem (see [6, Th. 11.5]), we can prove the following

Theorem 2.11. A graded radical α is supernilpotent graded if and only if it coincides with the graded upper radical determined by a weakly special graded class K. Then for any graded ring R, $\alpha(R) = \bigcap_{\lambda \in \Lambda} I_{\lambda}$, where $\{I_{\lambda} : \lambda \in \Lambda\}$ is the family of all those homogeneous ideals I_{λ} of R for which $R/I_{\lambda} \in K$, and thus an α -semisimple graded ring is a graded subdirect sum of rings from K.

3. Graded radical $\tilde{\alpha}$

Corresponding to a special class and special radical of ordinary associative rings are defined a graded special class and graded special radical of graded rings (see [3]). We now define a special graded class. **Definition 3.1.** We shall say that a non-empty class \mathcal{K} of graded rings R is special graded if

- (i) K consists of prime graded rings,
- (ii) $I \leq_h R$ and $R \in \mathcal{K}$, then $I \in \mathcal{K}$ and
- (iii) $I \leq_{eh} R$ and $I \in \mathcal{K}$, then $R \in \mathcal{K}$.

Thus a special graded class is also weakly special graded, and so by Th. 2.11, determines a supernilpotent graded radical α which we call special graded. Then for any graded ring R, $\alpha(R) = \bigcap_{\lambda \in \Lambda} P_{\lambda}$, where $\{P_{\lambda} : \lambda \in \Lambda\}$ is the family of all those prime homogeneous ideals P_{λ} of R such that $R/P_{\lambda} \in \mathcal{K}$.

Since a prime graded ring is also graded prime, a special graded radical is also graded special, but the converse may not be true. For example, β_G is graded special but not special graded, for it is not supernilpotent graded by Remark 2.9.

Theorem 3.2. Let α be a supernilpotent radical of ordinary associative rings such that the class K of all prime graded rings in S_{α} is non-empty. Then K is a special graded class.

Proof. We need to verify only 3.1 (ii) and (iii). Since any nonzero ideal of a prime ring is a prime ring (ii) is satisfied. Now let R be a graded ring with $I \subseteq_{eh} R$, $I \in \mathcal{K}$. Since α is hereditary $R \in \mathcal{S}_{\alpha}$ by Th. 1.3. Also if A, B are nonzero ideals of R, then $I \cap A$ and $I \cap B$ are nonzero ideals

of I. If AB = 0, then $(I \cap A)(I \cap B) = 0$, a contradiction, so $AB \neq 0$ and R is prime. Hence $R \in \mathcal{K}$. \diamondsuit

Thus K determines a special graded radical $\tilde{\alpha}$. Clearly $\alpha^* \subseteq \tilde{\alpha}$. **Theorem 3.3.** $\tilde{\alpha}$ is the smallest graded radical among special graded radicals containing α^* .

Proof. Let γ be a special graded radical such that $\gamma \supseteq \alpha_*$. Then for a graded ring R, $\gamma(R) = \cap P_i$, where $P_i \unlhd_{\tilde{p}h} R$ such that $R/P_i \in S_{\gamma}$. But $S_{\gamma} \subseteq S_{\alpha^*}$, so $R/P_i \in S_{\alpha^*}$ and $\tilde{\alpha}(R) \subseteq \gamma(R)$. \Diamond

Corollary 3.4. $\tilde{\beta}$ is the least special graded radical.

If α is a special radical, then α^* need not be special graded as shown by the following example by taking $\alpha = \beta$.

Example 3.5. Let R be the group ring $F_p[C_{p-1}(g)]$, where p is an odd prime and $C_{p-1}(g)$ is a cyclic group of order p-1, generated by g. Let I and K be the ideals of R generated by the idempotents $-(e+g+g^2+\cdots+g^{p-2})$ and $-(e-g+g^2-g^3+\cdots-g^{p-2})$, where e is the identity of $C_{p-1}(g)$. Then $I \neq 0$ and $K \neq 0$ but $IK \subseteq I \cap K = 0$. Hence R is not a prime ring. Moreover, I and K are prime ideals of R for $R/I \simeq F_p \simeq R/K$, so I and K are maximal and hence prime ideals of R. Thus (0) is a semiprime homogeneous ideal of R. Hence $R \in \mathcal{S}_{\beta^*}$. But R has no prime homogeneous ideals of which (0) is the intersection. Hence β^* is not special graded. Also $\beta_G(R) = \beta(R) = \beta^*(R) = 0$, but $\tilde{\beta}(R) = R$.

Ryabukhin (see [6]) gave an example of a supernilpotent radical which is not special. We shall now show that a graded supernilpotent (respectively supernilpotent graded) radical may not be graded special (respectively special graded). Let $G = C_{p-1}(g)$ where p is an odd prime, and let \mathcal{K} be the class of all G-graded rings R satisfying the conditions $x^p = x$, px = 0, $\forall x \in h(R)$. Then \mathcal{K} is a graded radical graded semisimple class and each ring in \mathcal{K} is a graded subdirect sum of graded fields in \mathcal{F} , where \mathcal{F} consists of $F_p[C_{p-1}]$ and its graded subfields (see [5, Sect. 4]).

We now prove, by an example, the existence of a nonzero graded ring in $\mathcal K$ which does not contain a homogeneous ideal which is a finite graded field in $\mathcal F$.

Example 3.6. Let S be the set of symbols x_i , where $i \in \mathbb{Q}$, the set of rationals. We multiply these symbols by the rule $x_i x_j = x_k$ where $k = \max(i, j)$. Then S is a multiplicative commutative semigroup. Let R be the group ring A[G], where A is the semigroup ring $F_p[S]$. We shall show that $y^p = y$, $\forall y \in h(R)$, by induction on the number of nonzero

components of y. Suppose that $y \in R_k$ has only one nonzero component and let $y = ax_ig^k$. Then $y^p = a^px_i^pg^{kp} = ax_ig^k$. Now suppose $y^p = y$ if y has less than m components. Let $y = \sum_{j=1}^m a_{i_j}x_{i_j}g^k = b+c$ where $b = \sum_{j=1}^{m-1} a_{i_j}x_{i_j}g^k$ and $c = a_{i_m}x_{i_m}g^k$. Then $y^p = (b+c)^p = b^p + (p)^{p-1}c + \cdots + (p)^{p-1}bc^{p-1} + c^p$. Since p divides $p = b^p + c^p$. By the inductive hypothesis $p = b^p$ and p = c. Also $p = b^p + c^p$. By the inductive hypothesis $p = b^p$ and let p = c. Also $p = b^p + c^p$. Then we can write $p = \sum_{l=1}^r a_l y_{i_l} g^k$, $p = b^p + c^p = c$ and p = c and p = c and p = c and p = c. If $p \neq c = c$ and p = c and p = c

Theorem 3.7. Let K_1 be the subclass of graded rings in K that do not have any homogeneous ideal which is a graded field in K. Then K_1 is a graded weakly special class. The upper graded radical α determined by K_1 is graded supernilpotent but not graded special.

Proof. The class $K_1 \neq \emptyset$ because of the above example. The rings in K_1 are graded semiprime for they have no nonzero nilpotent homogeneous elements and clearly K_1 is graded hereditary. Let $I \subseteq_{he} R$ where R is a graded ring and $I \in K_1$. Then, by Th. 1.2 (iv), $\operatorname{ann}^R I = 0$ and R is graded semiprime. Now let $r \in h(R)$ and $x \in h(I)$. Then $rx \in I$ and $0 = (rx)^p - rx = r^px - rx = (r^p - r)x$. Since $\operatorname{ann}^R I = 0$, $r^p - r = 0$. Also 0 = p(rx) = prx implies that pr = 0. Hence $R \in K$. Suppose now that $0 \neq K \subseteq_h R$, where K is a graded field in \mathcal{F} . Since $I \subseteq_{he} R$, $K \cap I \neq 0$ but $K \cap I \subseteq_h K$, so $K \cap I = K$. Hence $K \subseteq I$, a contradiction. Thus $R \in K_1$ and so K_1 is a graded weakly special class. Now any graded prime ring in S_α is a graded field in K, so in \mathcal{F} . But this is an α -radical ring. Hence no graded prime ring exists in S_α . Therefore α is graded supernilpotent but not graded special. \Diamond

Remark 3.8. We note that the graded rings R in \mathcal{K}_1 also satisfy $r^p = r$, $\forall r \in R$. Hence the rings in \mathcal{K}_1 are semiprime graded. Therefore α is a supernilpotent graded radical.

We can similarly prove the following theorem.

Theorem 3.9. Let K_2 be the subclass of graded rings in K that do not have any homogeneous ideal which is the field F_p . Then K_2 is weakly special graded but not special graded. The upper graded radical determined by K_2 is supernilpotent graded but not special graded.

Remark 3.10. We note that $\mathcal{K}_1 \subseteq \mathcal{K}_2$, but $\mathcal{K}_1 \neq \mathcal{K}_2$, for $R = F_p[C_{p-1}(g)] \in \mathcal{K}_2$ but $R \notin \mathcal{K}_1$.

We have the following:

Theorem 3.11. Every supernilpotent graded (graded supernilpotent) radical α whose graded semisimple class contains prime graded (graded prime) rings can be extended to a special graded (graded special) radical α_1 , and α_1 is the least special graded (graded special) radical containing α .

Proof. Similar to that of Thms. 3.2 and 3.3. \Diamond

Corollary 3.12. Let α be a supernilpotent radical of ordinary associative rings such that S_{α} contains prime graded rings, then $\alpha_1^* = \tilde{\alpha}$.

We shall now consider graded rings with chain conditions on homogeneous ideals. First, a lemma.

Lemma 3.13. Let R be a $\bar{\beta}$ -semisimple graded ring and $I \leq_h R$ which is not a prime ring, then I contains two nonzero homogeneous ideals I_1 , K_1 of R such that $I_1K_1 = 0$.

Proof. There exist two nonzero ideals A, B of I such that AB = 0. Since I is also $\tilde{\beta}$ -semisimple we have $\bigcap_{\lambda \in \Lambda} P_{\lambda} = 0$, where $\{P_{\lambda} : \lambda \in \Lambda\}$ is the family of all prime homogeneous ideals of I. Now $AB \subseteq P_{\lambda}$, $\forall \lambda \in \Lambda$, so $A \subseteq P_{\lambda}$ or $B \subseteq P_{\lambda}$, but not all P_{λ} , $\lambda \in \Lambda$, contain A or B. Let $\Lambda_1 = \{\lambda \in \Lambda : A \subseteq P_{\lambda}\}$ and let $\Lambda = \Lambda_1 \dot{\cup} \Lambda_2$, where $\dot{\cup}$ denotes disjoint union. Then $A \subseteq I_1 = \bigcap_{\lambda \in \Lambda_1} P_{\lambda}$, $B \subseteq K_1 = \bigcap_{\lambda \in \Lambda_2} P_{\lambda}$. Hence I_1 , K_1 are nonzero semiprime homogeneous ideals of I, so also homogeneous ideals of R by Th. 1.2 (iii), such that $I_1K_1 \subseteq I_1 \cap K_1 = 0$. \Diamond

Theorem 3.14. Let R be a $\tilde{\beta}$ -semisimple graded ring satisfying the ascending chain condition (ACC) or the descending chain condition (DCC) on homogeneous ideals, then every nonzero homogeneous ideal of R contains a homogeneous ideal of R, which is a prime graded ring. **Proof.** Let R satisfy ACC and let $0 \neq I \leq_h R$. If I is a prime ring, we are finished. If not, by Lemma 3.13, I contains two nonzero homogeneous ideals I_1 and K_1 of R such that $I_1K_1 = 0$. If I_1 is a prime ring, we are done. Otherwise, there exist nonzero homogeneous ideals I_2 , K_2 of R in I_1 such that $I_2K_2 = 0$. Then the argument proceeds as in the ungraded case (see [1, Lemma 1.6])

Now let R satisfy DCC, and $0 \neq I \leq_h R$. Let J be a (non-zero) minimal homogeneous ideal of R contained in I. Then J is a prime graded ring by Lemma 3.13, for $J^2 \neq 0$. \Diamond

Theorem 3.15. Let α be a supernilpotent graded (graded supernilpotent) radical whose graded semisimple class S_{α} contains prime graded

(graded prime) rings, and let α_1 be the least special graded (graded special) radical containing α . Let R be a graded ring such that every nonzero homogeneous ideal of a graded homomorphic image of R in S_{α} contains a prime graded (graded prime) ring as its homogeneous ideal, then $\alpha(R) = \alpha_1(R)$.

Proof. Let $\alpha(R) \neq \alpha_1(R)$. Then $0 \neq \alpha_1(R)/\alpha(R) \leq_h R/\alpha(R) \in \mathcal{S}_{\alpha}$, so it contains a nonzero homogeneous ideal, say K, which is a prime (graded prime) ring. Since α and α_1 are both graded hereditary K is both an α_1 -radical ring and an α_1 -semisimple ring, but $K \neq 0$, a contradiction. \Diamond

Corollary 3.16. Let α be a supernilpotent graded radical such that $\alpha \supseteq \tilde{\beta}$ and S_{α} contains prime graded rings. If α_1 is the least special graded radical containing α , then α coincides with α_1 on every graded ring R satisfying ACC or DCC on homogeneous ideals.

Proof. By Th. 3.14 and Th. 3.15. ◊

We can similarly prove a corresponding result for a graded supernilpotent radical. Also, we have the following:

Theorem 3.17. Let α be a graded supernilpotent radical with S_{α} containing graded prime rings, and let α_1 be the least graded special radical containing α . Let R be a graded ring such that in every graded semiprime homomorphic image of R the zero ideal (0) is a finite product of graded prime ideals, then $\alpha(R) = \alpha_1(R)$.

Proof. Let R_1 be a graded homomorphic image of R in S_{α} , so R_1 is graded semiprime. Let $I \leq_h R_1$, then we shall show that I has a homogeneous ideal which is a graded prime ring. If I is itself a graded prime ring we are done. Otherwise, there exists a finite set $\{P_1, P_2, \ldots, P_k\}$, $k \geq 2$, of graded prime ideals of R such that $\prod_{i=1}^k P_i = 0$. Then $0 \neq Q_i = I \cap P_i$ is a graded prime ideal of I such that $\prod_{i=1}^k Q_i = 0$. There is no loss of generality in supposing that $\prod_{i=1}^{k-1} Q_i \neq 0$. Then $K = \operatorname{ann}^I Q_k \neq 0$, for it contains $\prod_{i=1}^{k-1} Q_i$. But $K \cap Q_k = 0$, for R_1 is graded semiprime. Hence (0) is a graded prime ideal of K, so K is a graded prime ring. The result then follows from Th. 3.15. \Diamond

Corollary 3.18. α coincides with α_1 on every graded ring satisfying ACC or DCC on homogeneous ideals.

References

[1] ANDRUNAKIEVIC, V. A.: Radicals of Associative rings I, Mat. Sb. 44 (1958), 179–212, Translations of Amer. Math. Soc. 52 (1966), 95–128.

- [2] DIVINSKY, N. J.: Rings and Radicals, University of Toronto Press, 1965.
- [3] FANG, H. and STEWART, P.: Radical theory for graded rings, J. Austr. Math. Soc. 52 (series A) (1992), 143–153.
- [4] NĂSTĂSESCU, C. and OSTAEYEN, F. V.: Graded Ring Theory, North-Holland, 1982.
- [5] SANDS, A. D. and YAHYA, H.: Graded varieties of graded rings, Acta Math. Hungar. 67 (1995), 171–186.
- [6] SZÁSZ, F. A.: Radicals of Rings, John Wiley and Sons, 1981.
- [7] WIEGANDT, R.: Radical and Semisimple Classes of Rings, Queen's University Papers, Kingston, Ontario, No. 37, 1974.
- [8] WIEGANDT, R.: Radical theory of rings, Math. Student 51, No. 1-4 (1983), 145-185.
- [9] YAHYA, H.: Graded radical graded semisimple classes, Acta Math. Hungar. 66 (1995), 163–175.