CONTINUOUS DEPENDENCE OF δ ON ϵ AS A SELECTION PROPERTY

Camillo Costantini

Department of Mathematics, University of Torino, Via Carlo Alberto 10, 10123 Torino, Italy

Umberto Marconi

Department of Pure and Applied Mathematics, University of Padova, Via Belzoni 7, 35131 Padova, Italy

Received: September 2005

MSC 2000: 54 C 05, 54 C 65; 54 C 08

Keywords: Metric space, modulus of continuity, continuity-like predicate, admissible predicate, continuous selection, degree of discontinuity, α -continuity, oscillation of a function.

Abstract: We give a negative answer to a question of Malešič and Repovš, about continuous selections of the modulus of continuity. We also provide a shorter proof for a theorem of the same authors, which generalizes a classical result about continuous dependence of δ on ε in the definition of continuous function.

1. Introduction

Let (X,d), (Y,ρ) be metric spaces, and let C(X,Y) be the space of continuous functions from X to Y, equipped with the uniform convergence topology. Then for every $(x,\varepsilon,f)\in X\times]0,+\infty[\times C(X,Y)$ there exists a positive number $\delta(x,\varepsilon,f)$, such that whenever $d(x,x')<<\delta(x,\varepsilon,f)$ we have $\rho(f(x),f(x'))<\varepsilon$.

One could wonder whether the map $\delta(x, \varepsilon, f)$ may be chosen to be continuous with respect to the product topology on $X \times]0, +\infty[\times \times C(X, Y)]$. The answer is affirmative and different proofs have been provided (see [6], [1], [3], [2]). Among them, the shortest and most elegant one is due to G. De Marco [1, 2].

In [5, Th. 1.4] J. Malešič and D. Repovš developed the idea of G. De Marco in a more general setting, providing a criterion for the existence of a continuous map $\delta_P(x,\varepsilon,f,d,\rho)$, where P is a continuity-like predicate (which includes, in particular, the case of continuity and of upper semi-continuity). In the first section of the present paper, we provide a shorter and more direct proof of that criterion.

In the second section we give a negative answer to a conjecture about α -continuity [5, Conj. 3.6]. At the same time, we show that under some slight modifications of the hypotheses such a conjecture may become true — see Ths. 2 and 3.

2. Modulus of continuity

Before tackling the subject, we need a preliminary result which is of some independent interest.

Proposition 1. Let X be a normal, countably paracompact space, and φ a map from X to $]0,+\infty[$ (with no assumption about continuity). Then the following are equivalent:

- (1) $\forall x \in X : \exists V \text{ neighbourhood of } x : \inf \varphi(V) > 0;$
- (2) there exists a continuous $h: X \to]0, +\infty[$, such that $\forall x \in X: h(x) < \varphi(x)$.

Proof. Suppose first that (2) holds: given an arbitrary $\bar{x} \in X$, take $\hat{\varepsilon} > 0$ with $\hat{\varepsilon} < h(\bar{x})$. Then the continuity of h at \bar{x} implies that there exists a neighbourhood V of \bar{x} with $h(\bar{x}) - \hat{\varepsilon} \le h(y) \le h(\bar{x}) + \hat{\varepsilon}$ for every $y \in V$. Then, for every $y \in V$, we have in particular that $\varphi(y) > h(y) \ge h(\bar{x}) - \hat{\varepsilon}$, so that $\inf \varphi(V) \ge h(\bar{x}) - \hat{\varepsilon} > 0$. Thus, (1) is fulfilled.

Suppose now that (1) holds. Then there exists an open covering \mathcal{V} of X, such that $\forall V \in \mathcal{V}: c_V = \inf \varphi(V) > 0$. If χ_V denotes the characteristic function of each $V \in \mathcal{V}$, then $g_V = c_V \chi_V$ is lower semi-continuous. Therefore, $g = \sup_{V \in \mathcal{V}} g_V$ is lower semi-continuous, too, and is nonzero everywhere. Observe that $g(x) \leq \varphi(x)$ for every $x \in X$, because $\varphi(x) \geq c_V$ whenever $x \in V \in \mathcal{V}$. By a well-known

result of Dowker–Katetov (see [4, Exc. 5.5.20]), there exists a continuous function $h: X \to R$ such that $0 < h(x) < g(x) \le \varphi(x)$ for every $x \in X$. \Diamond

Let us recall some definitions from [5]. Let X, Y be metric spaces, and F the set of all (not necessarily continuous) maps from X to Y. Suppose also to have fixed a compatible metric $\hat{\rho}$ on Y, and endow F with the metric $\tilde{\rho}$ defined by:

$$\tilde{\rho}(f,g) = \sup_{x \in X} \min \{1, \rho(f(x), g(x))\},\$$

for $f, g \in F$. Finally, let M_X and M_Y be the sets of all compatible metrics on X and Y, respectively, endowed with the metrics

$$dist(d, d') = \sup_{x, x' \in X} \min\{1, |d(x, x') - d'(x, x')|\}$$

and

$$\mathrm{dist'}(\rho, \rho') = \sup_{y, y' \in Y} \min\{1, |\rho(y, y') - \rho'(y, y')|\}.$$

Given a predicate P on $X \times X \times]0$, $+\infty[\times F \times M_X \times M_Y]$, we denote by P^+ the subset of $X \times X \times]0$, $+\infty[\times F \times M_X \times M_Y]$ consisting of all 6-tuples $(x,x',\varepsilon,f,d,\rho)$ for which the proposition $P(x,x',\varepsilon,f,d,\rho)$ is valid. A map $f\colon X \to Y$ is said to be P-continuous if for each $x \in X$, $\varepsilon > 0$, $d \in M_X$ and $\rho \in M_Y$, there exists a neighbourhood U of x in X, such that $\{x\} \times U \times \{\varepsilon\} \times \{f\} \times \{d\} \times \{\rho\} \subseteq P^+$. We also denote by F_P the set of all P-continuous maps from X into Y; the predicate P is said to be continuity-like if the set F_P is nonempty.

Finally, the multivalued map $\Delta_P: X \times]0, +\infty[\times F_P \times M_X \times M_Y \rightarrow -]0, +\infty[$, defined by the formula:

$$\Delta_{P}(x,\varepsilon,f,d,\rho) = \left\{ \delta > 0 \mid \forall x' \in S_{d}(x,\delta) : (x,x',\varepsilon,f,d,\rho) \in P^{+} \right\}$$

— where $S_d(x, \delta) = \{x' \in X \mid d(x, x') < \delta\}$ — is said to be the modulus (of continuity) of the predicate P. Observe that, for every $(x, \varepsilon, f, d, \rho) \in X \times]0, +\infty[\times F_P \times M_X \times M_Y$, the set $\Delta_P(x, \varepsilon, f, d, \rho)$ is either of the form $]0, \delta']$ (for some $\delta' > 0$), or $]0, +\infty[$.

We have the following immediate consequence of Prop. 1. collary 1. Let P be a continuity-like predicate on $X \times X \times X$

Corollary 1. Let P be a continuity-like predicate on $X \times [0, +\infty[\times F \times M_X \times M_Y]]$. Then the following are equivalent:

(i) for every $(x, \varepsilon, f, d, \rho) \in X \times]0, +\infty[\times F_P \times M_X \times M_Y, \text{ there are a neighbourhood } W \text{ of } (x, \varepsilon, f, d, \rho) \text{ in } X \times]0, +\infty[\times F_P \times M_X \times M_Y \text{ and a } \delta > 0, \text{ such that:}$

$$\forall (x', \varepsilon', f', d', \rho') \in W : \delta \in \Delta_P(x', \varepsilon', f', d', \rho');$$

(ii) there exists a continuous selection $\hat{\delta}: X \times]0, +\infty[\times F_P \times M_X \times M_Y \rightarrow]0, +\infty[$ of the modulus Δ_P .

Proof. If (ii) holds, then let $(x, \varepsilon, f, d, \rho) \in X \times]0, +\infty[\times F_P \times M_X \times M_Y, \text{ and take } \vartheta > 0 \text{ with } \hat{\delta}(x, \varepsilon, f, d, \rho) > \vartheta$: by continuity of $\hat{\delta}$, there exists a neighbourhood W of $(x, \varepsilon, f, d, \rho)$ in $X \times]0, +\infty[\times F_P \times M_X \times M_Y \text{ such that}]$

$$\hat{\delta}(x,\varepsilon,f,d,\rho) - \vartheta \leq \hat{\delta}(x',\varepsilon',f',d',\rho') \leq \hat{\delta}(x,\varepsilon,f,d,\rho) + \vartheta$$
 for every $(x',\varepsilon',f',d',\rho') \in W$. Since every $\Delta_P(x',\varepsilon',f',d',\rho')$ is an initial segment of $]0,+\infty[$, we have that

$$\hat{\delta}(x, \varepsilon, f, d, \rho) - \vartheta \in \Delta_P(x', \varepsilon', f', d', \rho')$$

for every $(x', \varepsilon', f', d', \rho') \in W$.

Conversely, if (i) holds, then let $\varphi: X \times]0, +\infty[\times F_P \times M_X \times M_Y \to -]0, +\infty[$ be defined by:

$$\varphi(x,\varepsilon,f,d,\rho) = (1/2)\min\{1,\sup \Delta_P(x,\varepsilon,f,d,\rho)\}.$$

Observe that condition (1) of Prop. 1 is fulfilled for φ . Indeed, given $(x, \varepsilon, f, d, \rho) \in X \times]0, +\infty[\times F_P \times M_X \times M_Y]$, let W a neighbourhood of $(x, \varepsilon, f, d, \rho)$ and $\delta > 0$, such that (\sharp) holds. Then it is easily seen that $\inf \varphi(W) \geq (1/2) \min\{1, \delta\} > 0$.

By Prop. 1, there exists a continuous $h: X \times]0, +\infty[\times F_P \times M_X \times M_Y \to]0, +\infty[$, with $h(\mathbf{w}) \leq \varphi(\mathbf{w}) = (1/2) \min\{1, \sup \Delta_P(\mathbf{w})\}$ for every $\mathbf{w} \in X \times]0, +\infty[\times F_P \times M_X \times M_Y]$. Since it is clear that $\varphi(\mathbf{w}) < \sup \Delta_P(\mathbf{w})$, and $\Delta_P(\mathbf{w})$ is an initial segment of $]0, +\infty[$, we have that h is a selection of Δ_P . \Diamond

Corollary 2. A sufficient condition, for the modulus Δ_P of a continuity-like predicate P on $X \times X \times]0, +\infty[\times F \times M_X \times M_Y]$ to have a continuous selection, is that:

$$\forall (x, \varepsilon, f, d, \rho) \in X \times]0, +\infty[\times F_P \times M_X \times M_Y:$$

 $\exists W_1 \times W_2 \times W_3 \times W_4 \times W_5$ neighbourhood of $(x, \varepsilon, f, d, \rho)$:

$$\forall x', x'' \in W_1: \forall (\varepsilon', f', d', \rho') \in W_2 \times W_3 \times W_4 \times W_5:$$

$$(x', x'', \varepsilon', f', d', \rho') \in P^+.$$

Proof. It will suffice to prove condition (i) of Cor. 1. Given an arbitrary $(x, \varepsilon, f, d, \rho) \in X \times]0, +\infty[\times F_P \times M_X \times M_Y, \text{ let } W_1 \times W_2 \times W_3 \times W_4 \times W_5 \text{ be a neighbourhood of it, for which the property of the above statement is fulfilled. We may suppose <math>W_1$ to be of the form $S_d(x, \vartheta)$:

putting $\delta = \vartheta/3$ and $W = S_d(x, \vartheta/3) \times W_2 \times W_3 \times (W_4 \cap S_{\text{dist}}(d, \vartheta/3)) \times W_5$, we have that every $(x', \varepsilon', f', d', \rho') \in W$ is also in $W_1 \times W_2 \times W_3 \times W_4 \times W_5$, and moreover every $x'' \in S_{d'}(x', \delta) = S_{d'}(x', \vartheta/3)$ is in turn in W_1 (because $d(x, x'') \leq d(x, x') + d(x', x'') < d(x, x') + d'(x', x'') + (\vartheta/3) < (\vartheta/3) + (\vartheta/3) + (\vartheta/3) = \vartheta$). Therefore formula (\sharp) of condition (i), in the statement of Cor. 1, is fulfilled. \Diamond

Let us recall here another definition from [5]. For a predicate P on $X \times]0, +\infty[\times F \times M_X \times M_Y)$, we put $P_0^+ = P^+ \cap (X \times X \times]0, +\infty[\times F_P \times M_X \times M_Y)$. The definition of P-continuous map implies that $\operatorname{diag} X \times]0, +\infty[\times F_P \times M_X \times M_Y \subseteq P_0^+]$, where $\operatorname{diag} X$ is the diagonal of X. Now we are in condition to prove [5, Th. 1.4]

Corollary 3. Let P be a continuous-like predicate on $X \times X \times [0, +\infty[\times F \times M_X \times M_Y]$. Then the following two properties are equivalent:

(a) the set diag $X \times]0, +\infty[\times F_P \times M_X \times M_Y]$ lies in the interior of the set P_0^+ ;

(b) there exists a continuous selection $\hat{\delta}$ of Δ_P . **Proof.** By Cor. 1, it will suffice to prove that condition (i) of Cor. 1 is

equivalent to condition (a) above.

Suppose first that condition (a) holds. Given $(x, \varepsilon, f, d, \rho) \in X \times [0, +\infty[\times F_P \times M_X \times M_Y]$, we know that there must exist a $\delta > 0$ and open neighbourhoods V_1, V_2, V_3, V_4 of ε in $[0, +\infty[$, of f in F_P , of d in M_X and of ρ in M_Y , respectively, such that $S_d(x, \delta) \times S_d(x, \delta) \times V_1 \times V_2 \times V_3 \times V_4 \subseteq P_0^+$. Therefore, putting $W = S_d(x, \delta) \times V_1 \times V_2 \times V_3 \times V_4$, we have that:

 $\forall (x', \varepsilon', f', d', \rho') \in W : \forall x'' \in S_d(x, \delta) : (x', x'', \varepsilon', f', d', \rho') \in P^+,$ i.e.: $\forall w \in W : \delta \in \Delta_P(w).$

The proof that condition (i) of Cor. 1 implies condition (a) above is completely similar (we consider an arbitrary element of diag $X \times [0, +\infty[\times F_P \times M_X \times M_Y],$ and we find a neighbourhood of it in $X \times X \times [0, +\infty[\times F_P \times M_X \times M_Y],$ which is included in P_0^+). \Diamond

3. Degree of discontinuity

Now we use the results obtained so far to produce a counterexample to [5, Conj. 3.6].

We recall that if X is a metrizable space and (Y, ρ) a metric space, a function $\alpha: X \to [0, +\infty]$ is said to be a degree of discontinuity (with

respect to ρ) for a function $f: X \to Y$, if:

 $\forall \varepsilon > 0 : \forall x \in X : \exists V \text{ neighbourhood of }$

$$x: \forall x' \in V: \rho(f(x), f(x')) < \alpha(x) + \varepsilon.$$

Of course, every $\alpha: X \to [0, +\infty]$ is a degree of discontinuity (with respect to any $\rho \in M_Y$) for every continuous function h from X to Y. This implies, in particular, that the predicate P_{α} on $X \times X \times]0, +\infty[\times F \times M_X \times M_Y$, defined by:

$$P_{\alpha}(x, x', \varepsilon, f, d, \rho) \iff \rho(f(x), f(x')) < \alpha(x) + \varepsilon,$$

is always continuity-like. Of course, a generic function $f: X \to Y$ belongs to $F_{P_{\alpha}}$ if and only if there is a $\rho \in M_Y$ such that α is a degree of discontinuity for α with respect to ρ .

Example 1. Let X and Y be the real line (endowed with the Euclidean topology). Then there is a lower semi-continuous (actually, continuous) function $\alpha^{\sharp}: R \to [0, +\infty[$, such that $\Delta_{P_{\alpha^{\sharp}}}$ has no continuous selection.

Proof. Let α^{\sharp} to be the map on R with constant value 1. Observe that α^{\sharp} is a degree of discontinuity (with respect to the Euclidean metric ρ^{\sharp} on R) for the function $f^{\sharp}: R \to R$, defined by:

$$f^{\sharp}(x) = \begin{cases} -1 & \text{if } x < 0; \\ 0 & \text{if } x = 0; \\ 1 & \text{if } x > 0. \end{cases}$$

By contradiction, suppose condition (i) of Cor. 1 is satisfied. Then there would be a neighbourhood W of $(0,(1/2),f^{\sharp},\rho^{\sharp})$ in $R\times [\times F_{P_{\alpha^{\sharp}}}\times M_R\times M_R]$, and a $\hat{\delta}>0$, such that:

$$\forall (x', \varepsilon', f', d', \rho') \in W : \forall x'' \in S_{d'}\left(x', \hat{\delta}\right) : \rho'\left(f'(x'), f'(x'')\right) < 1 + \varepsilon'.$$

In particular, there would be a $\vartheta > 0$ such that:

$$\forall x' \in S_{\rho^{\sharp}}\left(0,\vartheta\right): \forall x'' \in S_{\rho^{\sharp}}\left(x',\hat{\delta}\right): \rho^{\sharp}\left(f^{\sharp}(x'),f^{\sharp}(x'')\right) < 1 + (1/2).$$

Take $x' \in R$ with $0 < x' < \min\{\hat{\delta}, \vartheta\}$, and $x'' \in R$ with x'' < 0 and $x' + |x''| = |x' - x''| = \rho^{\sharp}(x', x'') < \min\{\hat{\delta}, \vartheta\}$. Then $x' \in S_{\rho^{\sharp}}(0, \vartheta)$, $x'' \in S_{\rho^{\sharp}}(x', \hat{\delta})$, but

$$\rho^{\sharp} \big(f^{\sharp}(x'), f^{\sharp}(x'') \big) = |f^{\sharp}(x') - f^{\sharp}(x'')| = |1 - (-1)| = 2 > 1 + (1/2).$$

A contradiction. ◊

Consider now the case of a 4-variable predicate P on $X \times X \times [0, +\infty[\times M_X, \text{ and define (as in the 6-variable case) } P^+$ to be the set of all quadruplets (x, x', ε, d) such that the proposition $P(x, x', \varepsilon, d)$ holds. We will say that the predicate P is admissible if

 $\forall (x, \varepsilon, d) \in X \times [0, +\infty[\times M_X : \exists U \text{ neighbourhood of } x :$

$$\{x\} \times U \times \{\varepsilon\} \times \{d\} \subseteq P^+$$

(such a notion replaces that of continuity-like). As is natural to guess, the multi-valued map $\Delta_P: X \times]0, +\infty[\times M_X \to]0, +\infty[$ will be defined by:

$$\Delta_P(x,\varepsilon,d) = \{\delta > 0 \mid \forall x' \in S_d(x,\delta) : (x,x',\varepsilon,d) \in P^+ \}.$$

It is very easy to check that Cors. 2, 3 and 4 hold as well if we suppose P to be a 4-variable admissible predicate, instead of a 6-variable continuity-like predicate.

Using the above-introduced definitions, we obtain two positive results in the same vein of the Malešič-Repovš conjecture.

Theorem 2. Let f be a function from X to Y, $\rho \in M_Y$ and α a lower semi-continuous function from X to $[0, +\infty]$, which is a degree of discontinuity for f with respect to ρ . Then the predicate $P_{\alpha,f,\rho}$ on $X \times X \times]0, +\infty[\times M_X, \text{ defined by:}$

$$P_{\alpha,f,\rho}(x,x',\varepsilon,d) \iff \rho(f(x),f(x')) < 2\alpha(x) + \varepsilon,$$

is admissible, and there exists a continuous selection for the multivalued mapping $\Delta_{P_{\alpha,f},\rho}$.

Proof. Since α is a degree of discontinuity for f with respect to ρ , we clearly have that the predicate P is admissible.

By Cor. 2, to prove the existence of a continuous selection for $\Delta_{P_{\alpha,f,\rho}}$ it will suffice to show that for every $(x,\varepsilon,d)\in X\times]0,+\infty[\times X_X]$, there is a neighbourhood $W_1\times W_2\times W_3$ of it, such that:

$$\forall x', x'' \in W_1: \forall (\varepsilon', d') \in W_2 \times W_3: \rho(f(x'), f(x'')) < 2\alpha(x') + \varepsilon'$$
 (observe that, in this case, the metric d' is not involved in the final inequality).

Let $(x, \varepsilon, d) \in X \times]0, +\infty[M_X]$: the lower semi-continuity of α implies that there exists a neighbourhood W' of x such that:

$$\forall x' \in W' : \alpha(x) - \alpha(x') < \varepsilon/5.$$

On the other hand, the fact that α is a degree of discontinuity for f implies that there is a neighbourhood W'' of x such that:

$$\forall x' \in W'': \rho(f(x), f(x')) < \alpha(x) + (\varepsilon/5).$$

Put $W_1 = W' \cap W''$, $W_2 =](4/5)\varepsilon$, $(6/5)\varepsilon$ [and $W_3 = M_X$: then $W_1 \times W_2 \times W_3$ is a neighbourhood of (x, ε, d) in $X \times]0, +\infty[\times M_X]$, and we claim that

$$\forall x', x'' \in W_1: \forall \varepsilon' \in W_2: \forall d' \in W_3: \rho(f(x'), f(x'')) < 2\alpha(x') + \varepsilon'.$$

Indeed, let $x', x'' \in W_1$ and $\varepsilon' \in W_2$. We have:

$$\rho(f(x'), f(x'')) \le \rho(f(x'), f(x)) + \rho(f(x), f(x'')) \le$$

$$\le \alpha(x) + (\varepsilon/5) + \alpha(x) + (\varepsilon/5) =$$

$$= 2\alpha(x) + (2/5)\varepsilon \le 2(\alpha(x') + (\varepsilon/5)) + (2/5)\varepsilon =$$

$$= 2\alpha(x') + (4/5)\varepsilon < 2\alpha(x') + \varepsilon'. \diamond$$

Theorem 3. Let f be a function from X to Y, and $\rho \in M_Y$. Suppose that the oscillation $\omega_{f,\rho}: X \to [0, +\infty[$ of f with respect to ρ , defined by:

$$\omega_{f,\rho}(x) = \inf \{ \operatorname{diam}_{\rho}(f(V)) \mid V \text{ neighbourhood of } x \},$$

is a lower semi-continuous (actually, continuous) function. Then the predicate $P_{f,\rho}$ on $X \times X \times]0, +\infty[\times M_X,$ defined by:

$$P_{f,\rho}(x,x',\varepsilon,d) \iff (f(x),f(x')) < \omega_{f,\rho}(x) + \varepsilon,$$

is admissible, and there exists a continuous selection for the multivalued mapping $\Delta_{P_{f,g}}$.

Proof. The admissibility of $P_{f,\rho}$ is a direct consequence of the definition of $\omega_{f,\rho}$.

To prove the existence of a continuous selection for $\Delta_{P_{f,\rho}}$, we will use again Cor. 2. Let $(x, \varepsilon, d) \in X \times]0, +\infty[\times M_X]$: by the definition of $\omega_{f,\rho}$, there will exist an open neighbourhood W' of x such that $\operatorname{diam}_{\rho} f(W') < \omega_{f,\rho}(x) + (\varepsilon/3)$, whence:

$$\forall x', x'' \in W': \rho(f(x'), f(x'')) < \omega_{f,\rho}(x) + (\varepsilon/3).$$

Moreover, the lower semi-continuity of $\omega_{f,\rho}$ at X gives us a neighbourhood W'' of x such that

$$\forall x' \in W'' : \omega_{f,\rho}(x') > \omega_{f,\rho}(x) - (\varepsilon/3).$$

Put $W_1 = W' \cap W''$, $W_2 =](2/3)\varepsilon, (4/3)\varepsilon[$ and $W_3 = M_X$: we claim that

$$\forall x', x'' \in W_1: \forall \varepsilon' \in W_2: \forall d' \in W_3: \rho(f(x'), f(x'')) < \omega_{f, \rho}(x') + \varepsilon'.$$

Indeed, for $x', x'' \in W' \cap W''$ and $\varepsilon' \in](2/3)\varepsilon, (4/3)\varepsilon[$ we have:

$$\rho(f(x'), f(x'')) \le \omega_{f,\rho}(x) + (\varepsilon/3) < \omega_{f,\rho}(x') + (\varepsilon/3) + (\varepsilon/3) =$$

$$= \omega_{f,\rho}(x') + (2/3)\varepsilon < \omega_{f,\rho}(x') + \varepsilon'. \diamond$$

References

- [1] ARTICO, G. and MARCONI, U.: A continuity result in calculus, Rend. Sem. Mat. Fis. Univ. Trieste 25 (1993), 5-8.
- [2] DE MARCO, G.: For every ε there continuously exist a δ , Amer. Math. Monthly 108 (2001), 443–444.
- [3] ENAYAT, A.: δ as a continuous function of x and ε , Amer. Math. Monthly 107 (2000), 151–155.
- [4] ENGELKING, R.: General Topology. Revised and completed edition, Sigma Series in Pure Mathematics, n. 6, Heldermann Verlag, Berlin, 1989.
- [5] MALEŠIČ, J. and REPOVŠ, D.: Continuity-like properties and continuous selections, *Acta Math. Hungar.* **73** (1996), 141–154.
- [6] REPOVŠ, D. and SEMENOV, P. V.: An application of the theory of selections in Analysis, Rend. Sem. Mat. Fis. Univ. Trieste 25 (1993), 441–446.