Mathematica Panncnica
16/2 (2005), 231-240

NEWTON ITERATION FOR THE
CLOSEST NORMAL MATRIX OF
ORDER TWO

Lajos Laszlé

Department of Numerical Analysis, Fotvos University Budapest,
H-1117 Budapest, Pdzmdny Péter sétdny 1/C, Hungary

Received: September 2005

MSC 2000: 15 A 60; 15 A 57,65 F 30

Keywords: Normal matrix, Newton’s method, order of convergence, fixed
point, Taylor series.

Abstract: Instead of the existing Jacobi-type algorithms we propose a New-
ton-like iteration for the closest normal matrix. For second order matrices a
convergent iteration will be obtained. Representations of the iterates by help
of Chebyshev moments and central binomial coefficients also are discussed.

1. Introduction

All the iterative methods for solving the approximation problem

V(A) =inf{||4 - X||: XX = XX, X ¢ cr ny,
where A € C™*™ is a given complex matrix of order n, and =11z
stands for the Frobenius norm, are based on the Jacobi-idea, see e.g. 1],
(5], [2], and the references in them. (Some of them discuss the closely
related eigenproblem.) At the same time, the closest unitary matrix
can be computed via the Newton method as

1 .
Xo=A, Xgo1= 5(}@ XD, k=01,

F4]

cf. [4], where further interesting iterations are found. The simplicity of
this method leads us to find a similar procedure for the best normal
approximation problem, as well.
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In Sections 2 and 3 we develop a Newton-like approach for second
order matrices, while in this first and also the last sections we discuss
matrices of arbitrary order, for our hope is that there exists a Newton-
type iteration for them as well. Note that the existing formula forn=2
makes use of the eigenvalues of the matrix — while the iteration below
is a rational process!

To define the iteration, it is natural to start with Xo = A and to
write

X1 = X — F/(Xe) 7 f(Xe),
where f(X) = X*X — XX*. The main trouble is that the inverse here
does not exist. However, the set of tangential directions

LX) = (Y : FX)Y = F(0)

Y . X'V - YX*"+YV* X - XY*=X"X - XX"}

calculated in Ruhe [5] is well defined. Obviously ¥ = X/2 belongs to
L(X), therefore it suffices to examine the homogeneous system

LX) ={Y : XY - YX*+Y*'X - XY" =0}.

Our point is to find a linearly independent system (Yk(i)) in £Pom(Xy)
and to determine the coefficients ( cg)) in the representation

AX;H_]‘ P X/C/Q + Z CS)Yk(i)
i

from the requirement
N Xgr1 — Al — min.

For instance, here are two sequences from LX)

1. I, X*, (X*)?2, (X*)3,..., the Krylov sequence, and

2.4 X, i XX*X, i XX*XX*X,..., i= V=1

Members of the first list can be multiplied by any complex, while
those from the second by any real number only. This may motivate
choosing the Krylov sequence, which certainly works for second order
matrices.

2. The case n=2

Tt is known [3] that the best normal approximant to a given A €
e C¥*2 4

2]
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1 ‘ 1 5
BN(A) = ;2-(.4 + zA®) + Ztrace(A —zA®), z =sign(A; — \9)”,

where A1, A5 are the eigenvalues of 4, and sign(z) = |—;’§—| forall0#zx &
€ C. (If A\; = )\, then |z| =1 is arbitrary and BN(A4) is not unique.
This case will be excluded from the discussion.) In the algorithm to be
developed, we ask for a pure rational process, i.e. we must not make
use of neither the eigenvalues nor the sign function.

Observe that BN(A) is a linear combination of the matrices
{I,A,A*}; and that in general, a matrix (of arbitrary order) of the
form ~ol + y1A + 72 A* is normal if and only if |y;| = |72|, while this
equality, of course, does not need to hold for the iterates below.

Assume without loss of generality that our matrix is of the form

*4:(2 g), 0B £ 0.

Any square matrix can be brought to such zero-diagonal form ([6], p. 77)
by a translation A — A—~I, and a subsequent unitary similarity, under
both of which the best normal approximation problem is invariant.
Then, as a direct calculation shows,

(1) :szﬂ;ﬁﬁg@sﬁw)

4

Let Xg = A = (;O moo), Xy = (yok e ), and seek X1 in the
form of

1 E3
(2) K1 = 5 & + 1 X5

omitting the identity because of the special zero-diagonal form of Xj.
The requirement || Xz+1 — Al — min yields

_ Tk T _ Yk | =
Thpe1 = — TTe Yk Ye+1 = 5 TTETE
2 2

4]

with the overline denoting complex conjugate transpose, and

) trace(AX}) — trace(X})/2  ayg + Bzy — Tryk
T = —_ - 5
o 1 [ ? + lysl?

Tt will be proved that the matrix sequence (X}) converges to (1). Let

2
2

o ’Bv
Tp = —Uk, Yk = = Vk
k B Ey Yk B k>

then the iteration assumes ug = |e], vo = |G,| and
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ss = L L7, laur + lé’luh — URUy
| lug? + |vg]?

|atlug + |Blug — wiv
|ug]? + |vs]?

2

(4)

W[ W

Vg1 = 5 T Uk
It is easy to see by induction that ug,vo € R implies ug, v € R for
all k. However, more is true. Denote to this for brevity

a=lal, b=|0|
and assume a < b.
Lemma 1. (ug,vx) € [a,b]? implies (Ugs1,Ve+1) € [a,b].
Proof. First we prove the lower bound for ug.1. Omitting the sub-
scripts we have to show that

a <

ol e
+
N
N

holds for all u,v with a < u,v < b, which is a consequence of
(u? + 2bv) — (v +2au) = u(u —a) +v(b—v) + a(b—u)+blv—a)>0.
The upper bound for ugy1, i.e.

U av + bu — uv
-4+ —— <
2 u2 + v?
follows from the equivalent inequality
bu 2
D2hH -9 Vo ——ooo |
(u+2b —2a) (L U+ 2b — 2a> N
2
u” 91 0y ‘2\\
+u+2b_2a((b—a,)(3o—a)—(u a) ) > 0.

The bounds for vj.1 are shown analogously. O
This means that for the function G = (g1,92) : R? — R* with
U av + bu — uv

gr(w,v) =5 +v =55 g2(u,v) =

av + bu — uv

[
- U 5

o<

u? +v
it holds that

G(la,b]*) C [a,b]?,
i e. the first condition of Banach’ fixed point theorem is satisfied. How-
ever, G is not a contraction with respect to the most known norms,
hence we proceed in a different way, decomposing the plane iteration

into two scalar problems. To this we will need the bounds for the func-
tion
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av + bu — uv

r(wv) = u? + v?

(u.v) € [a,b]*.

Lemma 2. We have

| &

b
< r(u,v) < >

(R
<

=

Proof. Observe that, the partial derivative r,, of r with respect to v is
negative on [a, b} due to
(u? + )27, (u,v) = (@ — u)(u® +v*) — 2v(av + bu — wv) <0,
and the positiveness of the numerator of r:
av+bu—uwv=(b—v)(u—a)+ab>ab>0.
Hence minimum occurs for v = b with
ab S @
w402 = 2
while maximum is attained at v = a with
2
a* +u(b—a) _
e STw=
After this we can prove the main result.
Theorem 1. The iteration (4) is convergent, and

r(u,v) > r(u,b) =

r(u,v) <r(u,a) = O

b
20

a-+b

hm up = lim vy =
k—oo k—co 2

Proof. Dividing the first equation by the second gives
Ug+1 = Vk+1 Up — Uk 1—2ry
——— =gy ———, k= 5
Uga1 + Vg+1 Yug 4k 1+ 27

where 7 = 7{ug, Ug). Since
b—a
lgr] < — <1
b+a

by virtue of the bounds for ry, we have
. Ul — Uk
lim — =10,
k—oco U + Vg
and at the same time

lim (ur —vg) =0,

k—co
On the other hand, for the error e, = ug + v — (a + b) we obtain
ui — vp + 2bvg — 2auy
3 2
2(uy +vi)

showing — since the factor at (ug — vy) is bounded —, that

epe1 = (s — Uk)
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lim (ug +ve) =a+0

k—oo

also holds to prove the theorem. ¢
Remark 1. This means, that the original iteration (2-3) is convergent.
too.
Remark 2. The quantity t = b/a plays the role of “condition number”
for the problem. Indeed, t = 1is “ideal,” (the matrix at issue is normal),
while t > 1 results in a poor convergence. In case of a = 0 convergence
does not hold at all.
Remark 3. Before this fairly simple proof, we had experimented with
other methods, for instance by “recomplexizing” the pair (ug,vy), and
also by using Taylor expansions, to which we devote the next section.

As for the first, notice that the definitions
_ l;zuk-i— 12 1%, o= l;ch_ 12 Zb
result in an equivalent complex scalar iteration
. 1 <:k + %[(26 ey zk)zk]> ’ 20 =c.

2. —
k41 5

F

™y

k

o
<l

If both zj, and c are real, then zx 1 = c¢. What is more, the following is
valid:

lim 2 =
k—oo

R, i [R()] > 1S
{ iS(c), else.

Observe that, while this statement holds true for ¢ € C arbitrary, in
our case of ¢ = 9—‘2‘—b + z“—;—b we have always to do with case 1.

3. Series expansions

3.1. Chebyshev-moments
Go back to the original variables zj, yx, and substitute this time

T = by, Yr = B
to obtain

& |
Sb+1 = 7 + NPy Thtl =

]

with
_ Sp e = Sk
P = &k + ¢2n;
The advantage of this change of variables is that only one parameter —
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the condition number ¢ = b/a — is present, enabling us to expand the
iterates into a formal power series with respect to t.

Calculations with Maple suggest that the functions
C

§(t) = lim & (¢) and n(t) = lim ()
k—o00 k—cc )

can be expanded as

(Y — 11 2 1 .2 2 1 2 3
6(5)—17‘1(?5 _l)_ﬁ(t —l) —f—g_—z—(_t —1) -

S 4 [ 5

“amet T T apl U

and

t) =1 t’1'3t3 1)? 5~1"
n(t) =1——( —)T‘l‘é( —)*3—2@—)—

39 (.2 . 63 s 5

556 ( BRI

where we can recognize the even moments

(1 _ /1 s d (2) _ /l 2k /4 24
L - —— S, Hap = §7y L — 5°as
2k ./-—1 \/1 — 5 k _1

of the powers for the Chebyshev weights of the first and second kind

(1), g _ L,y 1 3 5 }
{““ ]‘ZO}_‘”{Q’ 116 320 0

(W) k> 0} = ,—{1 115 9
{Wl mzof =i 5 55 55 )

In possession of these expansions, their formal sums can be calculated.
Lemma 3.

and

J

2 oo

R T _'1';\ (2 Ik 1+t

§@) =1+ —- pon (1= 12)F = ——,
¥ o 2
77@):1”—%2_,,“%“—7?> = oy

Proof. Using the integral representation of the moments and changing
the 01der of the summation and integration (if possible), the formulas

V1 — s%ds o rt ds

. ‘ =
R D e S B L (R D) (VAT

yield the result. ¢

o |
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Unfortunately, the manipulation of the sum is not allowed for any
t > 1. Since Iu](cl)l <1, l,ug)| < 1, it is certainly correct for [t —1| < 1,
i.e. fort € (1,+/2) — a quite limited interval. To enlarge the convergence
interval, we look for another change of variables.

3.2. Central binomial coefficients

Let us introduce a new variable 7 by help of

o 1427 1r-1 10 —a
120 2811 20 +a
2

where 7 ranges in (0,1/2). The Taylor expansion yields now

£) =€) =1+ 7+ 7% +27° + 371 + 67° + 107° + 2077

n(t)zﬁ('r):l—7‘+'rz—27'3+3 —67° +107% — 2077 + ...,
where the numbers can be recognized as the (modified) central binomial
coefficients (Lﬂ% J> with |z] = floor(z). Then we have a result analogous
to the above.
Lemma 4. The sums of the above series exist for 0 < 7 < .—é—, and

1 1 /1427 1+t
no__ - _
(T)—l—}-TE <L /7> —-2+2 T~

n=0

oo
B n L1 1 [T=2r 1+t
‘1_T2<Ln/2j>(_T) Sy teV iy T T
n=0

Proof. By virtue of the known [7] formula

. n , 1—dr? —+/1 —dr?
1427 4372 +67° + 107* + T . T
: (27 — 1)
valid for || < 3, the series assume
- , o1 —dr? — /1 —4r?
flr) =147+ 272(27 — 1) ’

and the formulas follow immediately by the connection between 7
and t.



Newton iteration for the closest normal matriz of order two 239

4, An example — and the order of convergence

We apply the method (2-3) for the matrix of Ruhe [5]
q— © 0.7616 + 1.22967  —1.4740 — 45773
T\ —1.6290 — .u.63 87 0.1885 — 0.8575¢
with closest normal matrix
o [ 114494 0.83241 —2.0841 — 0.9957%
BN(4) = <—l.0695 —2.04737 —0.1948 — 0.4603i>

The first six iteration errors e = [|A — Xj|| are shown in the
left hand table, while the three columns on the right with contain the
quantities egy1/ eﬁ forp=1, p= l+\/~ , and p = 2, respectively:

0.5105 0.367189 | 0.2995 | 0.2641
0.0902 0.176712 | 0.2678 | 0.3462
0.0097 0.107263 | 0.4744 | 1.1890
2.6432e-004 0.027317 | 0.4801 | 2.8230
7.4437e-007 0.002816 | 0.4580 | 10.654
5.5709e-011 0.000075 | 0.4588 | 100.54

Remark 4. The figures indicate a superlinear convergence: the middle
column on the right makes one to think that p = 1+‘/— is the exact order
of convergence. Additional calculations in Maple Show that, expanding
£k(7) into Taylor series around 7 = 0, the first 2f; terms of &x(7) and
£() coincide, where (f;) is a Fibonacci sequence with initial values
fo =1, fi = 1. This confirms the guess, and, with regard to the well
known property of the Newton iteration, raises the question: “why not
quadratical?”

5. The case of general matrices

In this last section we briefly discuss the possibility of constructing
a Newton-like iteration converging to the closest normal matrix of an
arbitrary order. As we have seen, one has to characterize the subspace
Lrom (X)) (by determining a suitable basis), to choose a subspace in it
(by dropping the “superfluous” basis elements), and to find the good
coefficients ensuring convergence.

In case of n = 3 we tried the choice {I, X*, (X*)*} - a natural
continuation of {I,X*} for n = 2 —, however couldn t ﬁnd to them
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appropriate coefficients. It seems that the Krylov sequence does not
suffice to this aim for n > 3. There are, however, further “generic”
sequences of O(n) members in L™ (X), e.g.

12

XY XD (X TROMX) T B=1,2,
and

k
(X)X )T D) Y TIXTHX)R, k=12,
=1

The special cases of both sequences for k = 1 coincide, and the matrix
Y = (X) obtained has an interesting property: ¢ is idempotent, or,
in other words, it holds the inversion formula:

YV =X+ (XXX

X=Y 4+ ")y (¥,
which can be proved using the Sherman—Morrison—Woodbury formula
for perturbed matrices.

We close the section by observing that discussing the subspace
L™ (X) is — according to the above — interesting in its own right,
while it may contribute to finding a new iteration related to the best
normal approximation problem.
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