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Abstract: Let k1, k2 be two fields, f: k1 — k2 and a € k1, A € ka. We call
fla) + k1 — k2, flg (z) := f(z+a) the a-translate and Af the A-scaled of f. A
function f : k1 — ko has the superposition property, if for every a € ki, A € ko
the superposition f -+ Afy] is again a scaled translate of f, i.e. there exist b €
€ k1, B € ko with f+Af(g = Bfip). We characterize the functions with the su-
perposition property which are continuous from R to R (resp. R to C) or holo-
morphic from C to C. The methods used hereby do not apply to functions from
C to R. This case is not treated in this paper and therefore an open problem.

In [4] the authors determined all continuous functions f: R — R
such that
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(1) a,,iYE!R b,BHER mZR fz) + Af(z +a) = Bf(z+b)
under the additional hypothesis that the number of zeroes of f is at
most countable. ,

During the 415* ISFE Miklés Laczkovich presented a talk entitled
Linear functional equations and Shapiro's conjecture ([1]). The second
author, also a participant of this symposium, discussed with him pos-
sibilities to apply his results to solve (1). Indeed he found a way to do
this. Interestingly enough it even turned out that “only” the ideas how
to make his results applicable are of importance and not the results as
such. The authors are indebted to Miklés Laczkovich for his important
contribution to this paper.

In the following we will

1. prove that the main result of [4] remains true without the above
hypothesis on the zeroes of f,

2. determine all continuous functions g : R — C such that

2 A =
2 aER\,V/AEC beR,HBE'C :L‘ZR 9(z) + Agz +a) = Bg(z +0)

3. all holomorphic functions i : C — C such that

(3) G’XE@ b,Baec IZ’C h{z) + Ah(z + a) = Bh(z +b).
The basic (and deep) tools we need come from the famous paper [5].

In this paper Laurent Schwartz considers the (metrizable) topo-
logical vector spaces C'(R,C) and O(C) of continuous (holomorphic)
mappings from R (C) to C, equipped with the topology of uniform
convergence on compact subsets.

A subspace V of C(R, C) is called translation invariant if it contains
with f all the functions z — f(z+t), where t € R. Likewise, a subspace
V of O(C) is called translation invariant if it contains with h all the
functions z — h(z +t), where t € C.

A function F is called an exponential monomial if it is of the form
E(z) = zd exp(Az) (E(z) = 27 exp(\2)) for some complex number A
and some j € Np.

Then, Th. 5 from [5] together with some remarks from [5, p. 876]
says the following. -
Theorem 1 (Laurent Schwartz). Any closed translation invariant sub-
space V of C(R,C) different from C(R,C) is the closure of the linear
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subspace of V' generated by all exponential monomials contained in V.
Especially, even if V = C(R,C), any closed translation invari-
ant subspace V #{0} of C(R,C) contains an ezxponential function E),
Ex(z) = exp(Az) for some A € C and all z € R.
For O(C) the situation is similar ({3, p. 926]).
Theorem 2 (Laurent Schwartz). Any closed translation invariant sub-
space V' of O(C) different from O(C) is the closure of the linear subspace
of V generated by all exponential monomials contained in V.
Especially, even if V=0(C), any closed translation invariant sub-
space V #{0} of O(C) contains an exponential function Ey, Ex(z) =
= exp(Az) for some A € C and all z € C.
Using the ideas of Laczkovich we now formulate and prove the
following lemma.
Lemma 1. Let f € C(R,R) be a non zero solution of (1), let b =
= b(a,A), B = B(a,A) be suitable functions from R x R to R such
that :

(4) fle)+Af(z4+a)=Bla,A)f(z+bla,A4), a A zeR
Then there is some A € C such that By € V, where

V:={ge C(R,C)|g satisfies (4)}.

Proof. Obviously V as defined in the lemma is a closed translation
invariant subspace of C(R,C). Since V contains f # 0, this subspace
is different from {0}. Thus by Th. 1 there is some A € C such that
ExeV. o

The next lemma makes the ideas from {4] work.
Lemma 2. Let f € C(R,R) be a solution of (1). Then there are
Ag,a0 € R\ {0}, Ap <0 such that

() f(:c)—_i—Aof(:zt%—ao):D, z €R.

Proof. We obviously may assume that f # 0. Let b = b(a, 4) and
B = B(a, A) as in Lemma 1. Then, by this lemma there is some A such
that E) satisfies (4). Thus, with A = g +1v, u,v € R and after some
calculations, we get

(6) 1+ Aexp(Na) = Bexp(Ab), a, AER,

and, on considering the real and imaginary part separately,
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(7) 1+ Aexp(ua)cos(va) = Bexp(ub) cos(vb), a,A€R
(8) Aexp(pa)sin(va) = Bexp(ub)sin(vd), a, A€R.

-Obviously, even if v = 0, we may choose some ag € R \ {0} such that
cos(vag) = 1. Then, putting Ao := —exp(—pao) < 0 equation (7) im-
plies B cos(vb) = 0. But sin(vag) = 0 since cos(vag) = 1. Accordingly
by (8) we also have Bsin(vb) = 0. So

B2 = B2 cos?(vb) + B?sin*(vb) =0+ 0=10.

Thus B = B(ao, 4p) = 0, from which we get (5). O

So for any continuous solution f : R — R equation (5) holds for
some ag # 0, Ap < 0. Then the results from [4] may be applied to get
the following theorem.
Theorem 3. A function f € C(R,R) satisfies (1) if and only if there
are a,b,c,d € R such that

(9) f(z) = exp(cz + d)cos(az +b), z€R,

Note that any function f 3 0 of the form (9) may be written as
the real part of some function g : R — C of the form g(z) = exp(pz+q)
(p=c+ia,q=d+ib & C). Obviously this g and g = 0 solve (2). Now
we determine all continuous solutions of (2).

Theorem 4. A function g € C(R,C) satisfies (2) if and only if either
g =0 or g(z) = exp(pz + q) for all z € R with some p,q € C.

Proof. As mentioned above these function indeed satisfy (2). So let
0 # g € C(R,C) be a solution of (2). Proceeding as in Lemma 1 we
may find functions b: R x C — R and B :R x C — C such that

(10) g(z) + Ag(z +a) = B(a, A)g (z+b(a,4), z,0eR AecC

By the same ideas as in the proof of Lemma 1 we then may find an
exponential function Ey which satisfies (10). This implies

1+ Aexp(Aa) = Bla, A) exp (Ab(a, 4)), a &R, AeC.

Putting ag = 27 and Ap = —exp(—Aag) # 0 we find that B =

= B(ao, Ao) = 0. Thus g satisfies
g(z) + 4og(z +ap) =0, zeR

Accordingly, following the procedures in [4], we may write g in the form
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g(z) = exp(Az)h(z), zeR,
where h: R — C is a continuous function with period aq = 27
h(z +ag) = h(z), z€R.

By [4, Lemma 2] h is also a solution of (2). Thus the Fourier coefficients
ck = cx(h) of A,

. Lo .
ck = cx(h) = 7—-/ h(t) exp(—ikt)dt, k€ Z,
27 Jo
satisfy
(11) ci (1 + Aexp(ika)) = cxBexp(ikb), k€ Z.

This immediately follows from multiplying (2) (with t=z) by exp(—ik{)
and from integrating the resulting equation between 0 and 2w.

We want to show that at most one of the c’'s is different from zero.
So, let ¢, # 0 # ¢ Choosing a € R\ 27Q and A := — exp(—ina) it fol-
lows from (11) that Bexp(inb) = 0. Thus B exp(imb) = 0, too. Using
cm 7 0 then implies A = —exp(—ima). Hence exp(ina) = exp(ima)
and (n — m)a € 27Z, which for a € 27Q is only possible when n = m.

Therefore for some n € Z all Fourier coefficients of the continu-
ous function h — cp(h) B, vanish. Hence by [2, Th. 2.2, p. 261] h —
—cn(h)Ein =0 or

h(z) = c,exp(inz), z €R

with some complex constant c,.

Since g # 0 the function h also must be different from zero. Thus
cn # 0 and we get the desired form for g with p = A +in and ¢ =
= 1Og(cn)' 0

Finally we consider (3) for h € O(C).

Theorem 5. A function h € O(C) satisfies (3) if and only if either
h=0or

(12) h(z) =explpz+¢q), z2€C

with some p,q € C.

Proof. Obviously h = 0 and h with (12) satisfy (3). So, let 0 # A €
€ O(C) satisfy (3). Then, after choosing functions 0, B : CxC—C
such that
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(13) h(z) + Ah(z +a) = Bla, A)h (2 +b(a, A4)), a, Az
let
W = {¢ € O(C)| ¢ satisfies (13)}.

Then W # {0} since 0 # h € W. Moreover W is a translation invariant
subspace of O(C) which is also closed with respect to the topology of
uniform convergence on compact subsets of C. Accordingly, by Th. 2,
there is some complex number A such that Ey € W. (13) for E, then
implies

(14) 1+ Aexp(Aa) = Bexp(Ab), a,AcC,
where B = B(a, A) and b = b(a, 4).
Fixing ag # 0 and putting Ag = —=Ip(—Aap) implies B = 0.
Consequently £ satisfies
(15) h(z) + Aoh(z +ap) =0, zecC.

Thus h = &r with £(2) := exp (A\z) (and £ € O(C)), where r = h/{ €
€ O(C) has period ag and satisfies (3).
By [3, Chap. 12.3, Th.] we have

i 2kmi
16 r(z) = Cp X z|, zeC,
(16) A=Y eew(5%) o

where this Laurent series converges uniformly on compact subsets of C

and where for arbitrary complex d the Fourier coefficients ci, are given
by

- 1 271
(17) cp = ci(r) = — r(¢) exp _-&—kg ¢, ke€Z
0

a0 Jd,d+ao)

([d,d + ao] denotes the path from d to d + ag along the straight line
between d an d + ag). It is easy to see that the Fourier coefficients of
the translated function (g, 7o) := r(z + a), are given by cu(r)) =

= exp (%a) e (r).
Thus (3) for r implies

. ' 2k 2k
(18) ck<1+Aexp< Ma))z%B@cp( lza), ke Z.

o) )

Since £ # 0 we only have to show that c, # 0 for exactly one neZ.
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Because of 1 = h/¢ 5 0 there is some k, say k& = n, such that ¢
£ 0. So, let ¢, # 0 # ¢, and let a € C be such that a/ag &

(18) for ¥ = n and A = —exp (—Ma> implies B = 0. The same

ag

© .

equation now for k = m implies 1 + Aexp (”j—(}’”a) = 0. Accordingly

exp <2(n - m)ma—“o> = 1. Hence 2(n — m)wig € 2miZ which because
of a% € Q impliesn —m =0orn =m. With p :== A+ 'i'zc'fo'” and
q := log(c,) we finally get the desired result. ¢
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