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Abstract: The purpose of this paper is to study numerical approximations
for the solution of stochastic lattice differential equations perturbed by addi-
tive fractional nmoise. An implicit Euler scheme is used and it is proved that
the approximations converge almost surely to the solution of the considered
equation. Computer simulations for these approximations are given.

1. Introduction

Let £2(Z) be the linear space of all families (u;)iez of real numbers
such that the family (Ju;|?)iez is summable. 1t is well-known that the
function (-, -) : £2(Z) x £#(Z) — R, defined by
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(u7 ‘U) = Z UiV
1EL

for all w = (u;)iez,v = (Vi)iez is a scalar product and that 2(7)
endowed with this scalar product is a Hilbert space. The corresponding
norm we denote by || - ||

In this paper, we study the numerical approximation of the solu-
tion for the following stochastic lattice differential equation

. B e
(1) 'd(z# = (Ui—l(t)_QUi@)"*'Ui—i—l(t))"‘f(Ui(t))'{'a'iﬂzlt(Qa i € Z,
where t € [0,T], U(t) = (Us(t))iez € £(Z), f is a smooth function
satisfying a dissipative condition, (a;)icz € (*(Z), and (B )icz are
independent fractional Brownian motions with Hurst index H € (0, 1).

Stochastic lattice differential equations have many applications in
models where the spatial structure has a discrete character and ran-
dom influences are taken into account. In equation (1) we have an
one-dimensional lattice with diffusive nearest neighbour interaction, a
dissipative nonlinear reaction term and additive independent fractional
noise at each node. The long time behaviour of the solution of equations
of this type has been studied in [1].

In the present paper we give an implicit Euler scheme to approx-
imate the solution of the considered equation and prove that the ap-
proximations converge in probability to the solution. We point out that
our nonlinear reaction term f is assumed to be locally Lipschitz and the
perturbation is a fractional noise (not only standard Brownian motion).
Many results about numerical methods for stochastic differential equa-
tions with globally Lipschitz nonlinearities driven by standard Brown-
ian motion can be found in the books [11] and [15]. The method in this
article is closely related to implicit Euler schemes used for deterministic
equations. We also use the properties of a fractional Brownian motion
with values in a Hilbert space (as in [16]). For real-valued fractional
Brownian motions we consider trigonometric series approximation as
investigated in [9] and [14]. At the end of our paper we give computer
simulations using Matlab programs.

Deterministic lattice differential equations are used to model sys-
tems as cellular neural networks ([6], [7]), propagation of pulses in myeli-
nated axons ([2], [3]), in image processing and pattern recognition ([4],
5]), in chemical reaction theory ([13], [10}).
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2. Stochastic lattice differential equation

We consider the stochastic lattice differential equation (1) over a
probability space (£2, F, P).

For convenience, we will formulate system (1) as a stochastic dif-
ferential equation in £2(7Z). We denote by €' € ¢*(Z) (i € Z) the element
having 1 at position i and all the other components 0.

Denote by A, A* and A the operators from ¢%(Z) to £*(Z) defined
for each u = (u;)iez € £2(Z) as follows:

(Au); = ujp1 — ug, (A u); = ui—1 — ug,
and
(Au); = —ui1 + 2u; — Uit
for each 1 € 7. Then it can be seen that A = AA* = A*A and that
(A*u,v) = (u, Av) forall u,v € 2(Z).
Hence

(2) (Au,u) >0 forallu e (7).

The assumptions on the nonlinearity f occurring in the equation
(1) are: Let f € C'(R) be such that it satisfies

(3) (fiz)— fly)(e—y) >0 for allz,yeR
and the polynomial growth condition
(4) |F(z)] < cplz|(1+2%P) for allz€R
where p is a positive integer.
If f(z Za 22! with a; > 0 for each j = 0,...,p, then it is
§=0

easy to verify that the conditions (3) and (4) are satisfied. This kind of
nonlinearity was considered for deterministic equations in [4] and [3].

For each v = (Ui)iez € (Z), let flu) = (f(ui))iez. For an
arbitrary finite subset of indexes ¥" C Z we write

(5) SOl = 1Flw) = FOF = PRI DIRIE
igY iy iy
with & = 7u; for some 7 € (0,1). Since |&] < Ju| < |lu]| and f is

smooth, it follows that there exists a constant u (depending on u) such
that
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S 1) < p )y ful® = wllul®.

ieY i€z

It follows that f(u) € £2(Z) and f : ¢*(Z) — (*(Z) is the Nemytski
operator associated with f. One can see that f is locally Lipschitz from
¢2(Z) to £2(Z), more precisely, for each R > 0 there exists a constant
[g such that

(6)

1F(z) — F)ll < lrllz =yl for all z,y € £(Z) with ||z < R, |ly| < k.
In the sequel, we identify f with f.

A Gaussian random process (,BH (t)) is called one-dimensional
£>0

fractional Brownian motion with Hurst index H € (0,1), if it has zero
mean, continuous sample paths and the covariance function

B(8% ()67 (1)) = -;-(tH w5 s —iPH), sieR

Note that if H = %, then the fractional Brownian motion is the ordinary
standard Brownian motion.

Let (87 );cz be independent one-dimensional fractional Brownian
motions with Hurst index H € (0,1) and let T > 0. Then

(1) BE@E) = aiBF(t)e with (a)iez € £(Z), te(0,T],

i€z

s a fractional Brownian motion with values in £2(Z). Note that B is a.s.
the sum of the family (ai/BZH e')icz. B H has a Holder continuous version
(because we can apply the Kolmogorov continuity criterion Th. 1.4.1
from [12] and use the properties of the moments of the increments of
the one-dimensional fractional Brownian motion; see also [18], [16]): for
alle > 0 and T > 0, there exists a nonnegative random variable ¢ such
that E6P < oo for all p > 1 and '

HBH(t) — BH(s)|| <5}t — s|F=¢ for all s,t € [0,T].
In other words, the parameter H controls the regularity of the trajec-
tories, which are almost surely Holder continuous of order v = H —«.
We will work with such a Holder continuous version and denote it also
by BE.
The equation (1) with initial value ug = (ug,i)iez € £7(Z) can be
rewritten as an integral equation in £%(Z) :
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(8) Ut) = uo+/ —~AU(s)— U(_s))>ds+BH(t), t€ (0,7, we .
0
Theorem 2.1. The equation (8) admits a unique solution U €

e L£2(0,C([0,T],£2)). Moreover, there ezists a constant ¢ > 0 such
that for all w € Q) we have

sup HU(t)HQSCOI'ufJHE 1 Ll
te[0,77] €lo

3

o o
(B + 157 61 ds).

Proof. Denote z(t) = U(t) — BE (t) for all ¢t € [0, ] The equation (8)
has a unique solution U € £2(,C([0,T],3(Z))) for all w € © if and

((ml if for each w € Q the following equation
10

wot [ (= As(s) = Flals) + B () ~ ABT(5))ds, t€ 0.T)
0

has a unique solution z € £2(Q,C([0,T),¢*(Z))). For each fixed w €
€ Q, the equation (10) is a deterministic equation. By standard ar-
gument (see [17]), the equation (10) has a unique local solution z €
€ C([0, Tmax), £3(Z)), where [0, Tmax) is the maximal interval of exis-
tence of the solution of (10). We claim that this local solution is a
global solution. Indeed, let w € . From: (10) it follows that for all
t € [0, Tmax) it holds
¢

I)IP = ol +2 [ [ = (A=(9), () = (Fal6) + B (9)-
0
— F(BA(8)), 2(s)) + (—ABY (s) — (BT (5)), () ds.

Hence
£

1) IO <ol +eo [ (IBH@IF + 1B ()]s,
0

for all.t € [0, Tmax), where cg is a positive constant depending on f
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and A. Then we obtain that ||z|| is bounded by a continuous function,
so there exists a global solution on the interval [0,7]. Using (11) it
follows that for all w € 2 we have

T

(12 sup =1 < Juoll + <o [ (1B @ + 187 (:)]7* ) ds.

tc[0,T .
(0,77 2

By taking expectation on both sides of this inequality it follows ac-
cording to the properties of white noise that z € L£2(Q,C([0, T, 2(Z))).

Therefore equation (8) has a global solution U € £2(,C([0, T, £2(Z))).
From (12) it follows that the inequality (9) holds, where ¢ =2+ 2¢p. O

3. Implicit Euler scheme

Tn this section we approximate (8) by using an implicit Buler
scheme:
Let NeNandlet A =(to=0<t; < <ty = T) be a division

of [0,T]. We denote |A] = o max T where T = tgs1 — tx for
c=0,1,..., /N —

each k € {0,1,...,N — 1}. For each w € (1 we put U9 .= up and
(13) U+l = UF 4 mp PO + B (1) — B (t),

for k € {0,1,..., N — 1}, where F': (*(Z) — £%(Z) is defined by F' =
= —A— f. The existence of Ukt ¢ 2(Z) for each k € {0,1,..., N — 1}
is assured by the well-known result of Browder for maximal monotone
operators (in our case A) perturbed by pseudo-monotone, demicontin-
uous, coercive operators (see [19], Th. 32.A, p. 867, and the remark on
page 344).

Let t € [0,7). Then there exists a unique ke{01,....N-1}
such that t € [tg, ter1) - We define

(14) Ua(t) = Uk + (¢ — ts) F(U*Y) + BY(2) - B (ty)
and consider Ua(T) 1= UN . We observe that U is a continuous process
on [0,7]. We set

N-1

(15) Ua(t) = ) UMy, (1) for t€[0,T) and Un(T)=U",
k=0

where Iz, t,,,) 18 the indicator function of the interval [tg, tg+1). Then
we have
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t ~
Ua(t) = ug +/ F(U(s))ds + BE(t) for each € [0,7].
0

1
Lemma 3.1. Let |[A] < 5. There ezists a random variable R > 0

independent of A such that for all w € Q the following inequalities
hold:

sup UA(t)] <R, sup [Us(®)| <R and sup |U(t)| < R.
t2[0,T] t€[0,T) t[0,T]

Proof. From (13) we get

for each k € {0,1,...,N —1}. Put Zy := U¥ — BE(t},) for k €
€ {0,1,..., N} and consider
Gz, t) := —Az — f(z + BE(t)) — ABH (t) = F(z + B ().
Then (16) can be written as follows:
Zye1 = Z + 1.G(Zkr1,tpe) for each k € {0,1,...,N — 1}.
Now, fix any k € {0,1,..., N —1}. By using (2) and (3) we obtain
1Zksall? = (Z, Zi41) +TA(G(ZA+1 th+1), Zpt) <

—

< S\ Zel? +—HZA+1H + Tka(B (ter1))—

Q]

~ ABH (tp1)|” + ngHZk—'rlll;-
Consequently, we have

1 Zos1l® < W26l + 7ell F(BY (te41)) — ABT (trr)1? + il Zira 17,
hence

(1= Zen P < NZall? + mall £ (BT (1)) = AB® (trsn)lI”.
This inequality yielcs

1 Zrr1l® < 1267+

(B (tp1))—AB™ (tx11)|.

But 1 —|A] < l—T,L;,SO
1 < 1
L—7 — l—lf_/l!,

thus
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a7 |
12l < 12317+ 37 (126l + 5B (s - ABH (b)),

Let n € {1 ..... ,N'}. Summing up the inequalities obtained by
putting k :=0,...,n— 1 in (17), we get

1Zal® < 1 Zol*+

18 i
1s) + 1—1|A| ZTI-»' (“Zhnz + Hf(BH(tk—i—l))‘ABH(tk—Fl)Hg)-

We consider

N—-1 .
Z(t) =Y I tuyn)(t) Zs for t € [0,7) and Z(T) = Zn,
k=0
N-1
B(t) =Y Iyt )BH (ty41) for t € [0,T) and B(T):= BH(T).
k=0

Then by (18) we obtain

sup HZkHQ <
ke{0,1,...,n}

<126l + g [ (1ZGIP + (B - AB(s)|?)ds

Let t € [0, 7] be arbitrary. Then there exists a uniquen € {1,...,N—1}
such that t, <t < tpy1 (we taken =N if t = T). Then
sup || Zkl]* = sup \lZ S)|2 <
Ji:E{O.l,...,n}
< W2olP + 775 / (12 +17(B(s)) — AB(s)I )ds
Using Gronwall’'s lemma we get
N 5 1 ¢ A P N\ 1
sup 126)1° < (10lP + =7z |, 15(BO) = 4B =
s<[0,t] l \ J0

Hence



!
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12> = sup | Z(s)|* <

sup
S‘: 0 T

k={0,1,....N}

(19) A
(HuoH + I—\l/ F(B(s))—AB(s)|d >el-m.T

T
Next we prove that / |7(B(s)) — AB(s)||*ds is bounded. We denote
0

M = sup ||BH(s)|| < co.
s€[0,T)

Then we have
T

| 1B - ABOPds < Tar(e; + 1411+ er 2%,
0

because
sup || B(s)]] < M.
s€[0,77
We assumed |A| < %, then N < 2. We consider the random
variable .
0> = lluoll® + 2T M3 (cy + [|All + ¢ M7P)%e?

From (19) we get
sup || Zx])* < o

ke{0,1,...,N}

Since U* = Zj + BH(ty), then

sup
{0,1,...,N}

.= 2(p? + M*?) we obtain

IUF? < 2(p” + %),

In
Il

[~ m

With the notation -
sup
ke{0,1,...,.N}
Then by (14) we have
D] <7 (gm0 4 ) + 21
'+ ,(Cf?" + Cf?“"p+l + HAH

IU*? = sup Ua(@®)* <72
te[0,T]

= +2M < oo.

for all t £ [0,T]. Denote 7 :=

Then
sup [|Ua(®)]] <72
t£[0,T]

and
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sup [|UA(2)]] < 7%
t€[0,T]

Finally we use the results from Th. 2.1 which estimate U7 and obtain
the statement of this lemma. ¢
Lemma 3.2. Using the notations (14) and (15) we have

T
P ( lim / |UA(t) — UA@)H?M = 1.
/

1A]—0 Jgo

Proof. Let A = (tp =0 <ty < -+ <ty = T) be a division of
[0,7] and let t € [0,T] be arbitrary. Then there exists a unique k €
e {0,1,...,N — 1} such that t; <t < ig+1. Then Ua(t) = UL (we
take k= N —1if t =T) and by (14) we have

Ua(t) = U* + (¢ — tp) F(U"Y) + BH (¢) — B (tx).
Then using (13) we have
Un(t) — Ua(t) = UF = UFL 4 (¢ — t) F(UR) + BR () — BH (1) =
— U* —UF — (tpy1 — t) F(UFY) — BH (tpp)+
+ BH(ty) + (t — tp) F(UR) + BE(t) — B (1) =
= (t — tpe1 ) F(UP) + BE(t) — B(t),
SO
1UA®) - Ua®I < 2AAIR (e + ¢, R% +[|A]l) + 2|87 (5) - BO)I”
This inequality yields

T
[ st~ Oa(e)Pae < AAIRT (o + B+ [IAT)+
(20)

T

+ 2/ | B (t) — B(¥)||*dt.
0

We prove that

T
/D B (t) — B(t)||*dt — 0 as |A] — 0.

BH is Hélder continuous with exponent v < H, then we get
IBE (&) — B@)|? < |t — trga 7767 for ¢ € [ty tir]-
Then
|BE (8) - BOI? < |AP78,

50
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v

(e 1]

T
/ | BH(t) — B(t)|IPdt < |A276°T — 0, when |A] — 0.
0

Using this result in (20), follows the statement of this lemma. O

The main result of our paper is the following theorem.
Theorem 3.3. The process Ua approzimates the solution U of equa-
tion (8) in the following sense:

P{ lim sup ||[U(t)—Ua(t)]|=0] =1
[Al=0¢ef0,1)

Proof. We have
t
U(t) — Ua(t) = / (F(U(s)) — F(Ua(s)))ds for each ¢ € [0, 7).
0

By using Lemma 3.1 and (6), it follows that

IU() — Ua()]? =2 / (FU(s)) — F(Ua()). Us) — Ua(s))ds <
<2 / AL+ U () — Da(o)l] - I1U(s) — Ua(s)lds <

T
< [ 201+ 1R) (176 - Ta() + 10 () - Da () )ds
According to Gronwall’s lemma there exists a constant C' > 0 such that

T
sup |U())~ Uale)|* < C [ |Ua(s) - Dals)fPds -7,
t€(0,T] 0

'To complete the proof we use Lemma 3.2. ¢

4. Simulations

We use Matlab programs to give simulations for the approxima-
tions Upa of the solution U of the infinite system (1) by considering
a system of d equations. We take d = 200 components (using the
notations from Sec. 3, the index 7 takes values in the set {-99, ...,
0,1,...,100}), consider f(z) = z> for the reaction term, 7' = 1 and
take an equidistant division of [0, 1]. For the one-dimensional fractional
‘Brownian motion we use trigonometric series approximation, as in [9]
and [14]. A simulated trajectory of an one-dimensional Brownian mo-
tion is given in Fig. 1.
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We give a simulation of Ua at the endpoint 7 =1 (in fact Ua =
= UN) by plotting the points (i, UN) for i = —99,...,0,1,...,100, in
Fig. 2. The initial value is up = 0.

Now we consider another initial value ug, whose components g,
i€ {-99,...,0,1,..., 100}, are plotted in Fig. 3. The simulation of
Ux at the endpoint 7' = 1 is shown in Fig. 4.

The evolution in time of the components with 1 = Qand i =1 of
U, is represented in Fig. 5. From this simulation we see that even two
neighbour components of Ux have very different trajectories.

5. Figures
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Fig. 1. Simulated trajectory of an one-dimensional fractional Brownian
motion, with H = 0.7

b,
T W hy

-3

- |

L : s f .
~100 -30 -50 -0 -20 Q9 20 0 &0 30 100
i

Fig. 2. Simulation of Ua at endpoint T' =1
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