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Abstract: This paper investigates a number of relations between geomet-
ric objects in Buclidean R?® from the viewpoint of tolerance zones and error
propagation. Our investigations are based on an certain inequality concerning
the linearization error useful for quadratic constraint problems. By collecting
numerical data and looking at limit cases we investigate the influence of the
choice of coordinate system on the tolerance analysis of a collection of qua-
dratic constraint equations, which represent geometric problems in Euclidean
space.

1. Introduction

Geometric constraint solving means the problems which arise when
the location of geometric objects is described via relations between
them. Issues important in applications of this concept are solvability
of constraint problems and their sensitivity to errors [2]. Many methods
have been proposed for geometric constraint solving: based on depen-
dency graphs, rule-based and numerical ones, and methods based on
symbolic computing. For the literature on these topics in the context
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of Computer-Aided design, see [8]. This paper is concerned with the
propagation of errors through implicit constraints, based on the con-
cept of tolerance zone [3, 4, 6, 7]. The present paper is a sequel of [8],
which describes a general analysis of the propagation of tolerance zones
through implicit constraints, with a focus on geometric constructions.
A more detailed version comprises part of the thesis [9].

We assume that a certain number of geometric objects is given
imprecisely — each of them is known to be contained in a certain tol-
erance zone. Other geometric objects are located via constraints, and
we want to give tolerance zones for them. This is done by linearizing
the system of constraints and estimating the linearization error. Ior
each configuration, this works only up to a certain maximum size of
tolerance zones, dependent on the particular instance of the constraint
problem we wish to analyze, on the number of objects and constraints
involved, and on the behaviour of the constraints’ derivatives. Estimat-
ing the linearization error in the way presented here is most efficient
if the constraints are quadratic polynomials. Conveniently, it is hard
to think of geometric relations which are not expressible via quadratic
polynomials. A short discussion of the relation of this work and tol-
erance zones in general to interval arithmetic can be also found in the
introductions to [7] and [8].

2. Preliminaries

We consider two kinds of entities: the fixed variables z =
= (z1,..., Tn), and the moving variables y = (y1,..., Ym) With z;, y; €
€ R. The constraints which are assume to hold are collected in a C?
function F' as follows:

F:UxV = W:Fy = Fy),. . Fulzy)

(1) (U =R"V =W =R™),

where each component F;(z,y) represents a constraint. Solving the
constraint problem means finding y for given z such that I (z,y) =0.

We shortly discuss solvability and uniqueness of a solution: Sup-
pose that F'(u,v) = 0. A local solution of the constraint problem which
extends the solution (u,v) is a function G : U — V', defined in a con-
nected neighbourhood of u such that F(z,G(z)) =0 for all z where
G is defined. It follows from the inverse function theorem that such a
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local solution exists if £ (u,v) is nonsingular. If we are interested in
only one y;, we write y; = G;(z).

2.1. Linear and bilinear mappings: notation

For the convenience of the reader we repeat some facts concerning
linear and bilinear operators, their norms, and their relation to the
Taylor expansion in Sec. 2.1-Sec. 2.4.

We use the symbols U, V, W for linear spaces. L(U, W) and
B(U,V,W) denote the spaces of linear mappings from U to W and
and bilinear mappings from U x V to W, respectively. We employ the
notation “a-u” and “Blu,v]” to indicate that we apply « to u and 8 to
the pair (u,v). “c(u)” is a linear mapping which depends on u. For each
B € B(U,V, W) there are associated mappings 8% € L(U, L(V, W)), g% €
€ L(V, L(U, W)), with B[u, v] = 8¢ (u) - v=8%(v) - u. Subscripts indicate
coefficients of vectors with respect to previously defined bases: o €
€ L(U,W) and g € B(U,V,W) have the coordinate representations
o ulr = >, aru; and Blu,v], = 2” Briju;v;, respectively. The
coordinate matriz of a contains the coefficients a-;. It is elementary that
the coordinate matrices of the linear mappings 3% (u) and 8% (v) consist

of [B%(w)]rj = Y, uiBrij and [BY (V)] = >_; ViBrij, respectively.
2.2. Taylor expansion of the constraints

Derivatives of the function F' of (1) with respect to z and y at
(u,v) are the linear mappings Fy(u,v) € L(U, W), Fy(u,v) € L(V, W)
(U =R™V =W = R™), whose coefficients are given by the partial
derivatives OF)/0z; and OF./Jy;, respectively. Second derivatives of F
are the bilinear mappings Fy,; € B(U, U, W), Fyy, € B(U,V.W), E,y €
€ B(V,V,W) (U=R", V=W =R"™), whose coefficients are the second
partial derivatives 9%F./8z;0z;, 0%F,/0z;0y;, and 0*F,/0y;0y; (in
that order). Taylor’s theorem says that for any (u,v), (h, k) € R xR™
there is 6 € [0, 1] with F([¥]+ [Z‘]) =F([“D+ (D -r+E 0D &+
+ 1B ([%) + 12D, B + By (%1 + 012 DR, Bl + 5 Eyy (131 + 0L DIE, £].
Here we employed column vector notation “[7]” for (u,v) € R™ x R™.

2.3. Computing norms of linear and bilinear mappings

We assume that o € L(U, W), § € B(U,V,W), and that the lin-
ear spaces U, V, W are equipped with norms. We are going to use the
IP norms in p = 1,2,00: ||z|lp := (32 |z:P)YP for 1 < p < oo and
|zl = max;|z;|. In any case, ||a|low,w) = SuPyys<1 e - ullw,




266 Q. Yang and J. Wallner

1BllBw.v.w) = SUP|u|u.lollv<1 |8[u, v]||w. For computing norms in
L(U,W), see e.g. [1]. In general, if the unit sphere Sy in U is a con-
vex polyhedron with vertices z;, then for any normed space X and

linear mapping « : U — X, we have lellowx) = max; |l -z x.
This applies to the 1-norm and the oc-norm in U. As to bilinear map-
pings, it is not difficult to show that 8l B, v,w) = 18 v, Lovwyy =

= |18%||L(v,Lv,w))- This means that in case either Sy or Sy is a poly-
hedron, we are able to compute ||8||zw.v,w). We write I8llp,q,r in order
to indicate that the spaces U, V, W use the p-, ¢-, and r-norms, resp. A
case not handled by the polyhedral approach is || Bl2,2,00, Which equals

the maximum singular value of the dim W matrices (ﬁmj)zzllgffﬁ g .

Further, there is the inequality |[|8ll2,2,2 < Vdim W|B|l2,2,00- For more
details, see also [8].
2.4. Norms of derivatives

The three vector spaces U, V, W involved in the definition of F'in
(1) and its second derivatives are assumed to be equipped with norms.
V = W as a linear space, but V and W may be different as normed
linear spaces. We are going to consider only solutions of the constraint
%)rﬁ)blems where there are upper bounds of the following form

2

I Foe ()l < 0 [ Fy( )l < B, 1By} S7 (@ 46747 >0).

Upper bounds as required by (2) are particularly simple to give if F' is
a quadratic function, because then Fyz, Fiy, and F,, depend neither on
x nor on y. Later we need the following function:

(3) : A(s,t) = (as® + 28 st +~vt2)/2.

3. Tolerance zones and implicit equations

This section sums up results of [8]. We first discuss local solutions
of an implicit equations and later apply a linearized local solution to
tolerance zones. Th. 1 below yields an upper bound for the error we
malke in this process, provided tolerance zones are small enough. The

range of validity of Th. 1 is the subject of Sec. 5 below.
3.1. Local solutions

Cleometric tolerance analysis means that we are dealing with im-
precisely defined geometric objects p1,pa, - . ., each of which 1s contained
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in its tolerance zone P, P,,.... Geometric objects ¢1,¢2,... depend
on the p;’s, and we want to find tolerance zones Q1,Qs,... for the
g1,92,... such that whenever p; € P; for all 7, we can be sure that

q; € @y for all j. We treat this problem by introducing coordinates
for all geometric entities involved, such that each p; is represented by
a group of fixed variables, and each ¢; is given by a group of moving

'Zr §1ables

=(Z1, . Trys Tyt ls s Trybrar -3 Zn)s ¥ = (Ul e v oy Usyre v v Ym )
~ v s ~~ - \"_—'\/_/
P1 g1

(&)

If p, € P; for all ¢, then the vector z, which actually constitutes co-
ordinates for pi,pa,..., is contained in the set P x Py x ... € R™x
xR"™ x .... Suppose F'(u,v) = 0 as above, such that z = u,y = v rep-
resents a particular solution of the constraint problem, then the local
solution y = G(z) leads to a tolerance zone G(P; x Py x ...) for the
vector y. We define the functions GU) as those coordinates of G, which
belong to the geometric object g¢;:

(5) G(z) = (Gi(z),..., G5 (2), Gsy41(2)y - -+, Goysa (T)s - - o, G (T)).

N i

-~

q1=G(1) (m) QQZG(?‘) (Z)

Thus a tolerance zone of the geometric entity g; is given by GO (P, x
X Py x ...). It is customary to consider only such tolerance zones P,
which have the topology of a ball. For computations one usually chooses
simple shapes, such as convex ones.

01 C Gin(P1 x By)
+C”B7~

Fig. 1. (a) Exact and (b) linearized tolerance zones.

(c) Upper bound of linearization error.

As an example, we consider the case n =4, m = 2, and Fy(z,y) =
= (21 - y1)® + (za — y2)? — 2900, Fa(z,y) = (z3 — y1)° + (24 —
—y2)? — 4100). A particular solution is (u, v) = (0, 0, 60, 0, 20, 50).




268 Q. Yang and J. Wallner

This constraint problem has the following interpretation: The points
p1 = (z1, T2), P2 = (T2, T1), @1 = (y1, y2) are constrained by the con-
ditions ||p1 — ¢1 > = 2900 and ||p2 — q1||> = 4100. Fig. 1 (a) illustrates
tolerance zones P, P», and the tolerance zone Q, = GU(P x P),
where y = G(z) is a local solution of the equation F(z,y) =0in a
neighbourhood of z = u,y = v.

3.2. Linearizing constraints

We linearize the local solution y = G(z) in a neighbourhood of a
particular solution u,v with F (u,v) = 0:

Glm(u + h) = G('LL) + GI (U,) . h,

) where Gz(u) = —Fy(u,v) T Ep(u,v) € LU, V).

The matrix G can be partitioned into column groups which correspond
to the variables contribute to a particular geometric entity ps, and into
row groups which contribute to a particular entity ¢;. Thus we get the
following block matrix decomposition with numbers r; and s; from (4),
and a first order approximation for tolerance zones Qj:

G”g}l’l) C{;&;Q’l) . }51
Ge=|oen o o =

T1 T2 Q]%ng)(PlXPZX)
= (i.9)
=4gq; + Z.,; ,zl’“ : (Pz _pi)'

This Minkowski sum of affinely transformed tolerance zones P; is par-
ticularly simple to compute if s; <2 in (4). We continue the example
above, which is illustrated by Fig. 1: Here Gz = [Gél’l) \ G,'Q(uz’l)} =

1 |1 25 20 -—25 : : . :
= =5 The resulting linearized tolerance zone 1S
8 20 -8 10

shown in Fig. 1 (b). Both Gg,-l’l) and G,’.gz’l) are singular, and Gfg’l)-
-(P; — p;) is a straight line segment. It follows that we approximate the
tolerance zone @, by a parallelogram.
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3.3. Estimating the linearization error

The linearization error is the difference between an exact local so-
lution G and the linearized one, Gyy,. Following [8], we use function A
defined in (3).

If I is linear, then the norms || Fyz||,... are zero and linearization

is exact. For our purposes it is essential that A(s,¢) is non-zero if
s,t > 0. Therefore we require that o + 8% ++2 > 0.
Theorem 1. Consider a solution (u,v) of the constraint problem
F(z,y) = 0, and assume that A(s,t) is defined according to (3). Fur-
ther assume that there is a local solution G with v = G(u) and the
corresponding linearized solution Gy,. Choose C,C’, Cyax such that

|G (w)]]
1By (uw, v) 7 - AL 2[ G (W)

Cmax -

3 C < Cmax; C’/ - “G5C<u)” C"
A perturbation in u causes v to move with G(u + h) = v+ k. The

linearization of this equation is Gun(u+h) = v+kyn. The linearization
error obeys the following inequalities:

Bl < C = k|| <2C", k= k| < B (u,v) |- A(C, 2C") < C".
7y

[8] gives examples which use Th. 1 in order to give an upper bound
for the linearization error. Fig. 1 illustrates an offset of the linearized
tolerance zone, where the exact tolerance zone ()7 is known to be con-
tained in.

Th. 1 gives an answer to the question of maximal size of the tol-
erance zone of the moving variables such that a tolerance zone of the
corresponding moving variables can be computed with linear analysis
plus an estimate for the linearization error. Conversely, assume that
the tolerance zone of the moving variables is prescribed as a ball of
radius C* with C* < C*pnax = ||Gz||Cimax (in the notation of Th. 1).
Then the choice of

1
AR ARG

x (VI Gaw)2 +4C7 - 1B AL 20Gal) — G

ensures that ||A]] < C implies ||k]| < C™.

(10)
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3.4. Balancing the constraint equations

Obviously the local solutions do not change if we multiply some
constraints by factors, but the computation of Chmax is affected by it. A
rule of thumb might be that all variables should have values of the same
order of magnitude. The same holds true for the choice of coordinate
system, especially the choice of unit length. Some of the coordinates
may reflect length, or length squared, or might have no dimension.
The coordinate vector of a plane, for instance, contains a unit vector
together with a coordinate whose geometric meaning is length. By
choosing the unit length appropriately it is easy to achieve any mag-
nitude of that single coefficient. A general answer to the balancing
question appear to be difficult.

It is an aim of this paper to investigate several geometric con-
structions in Euclidean R? in order to gain insight in the behaviour of
Cax and the norms of derivatives needed when changing the coordinate
system.

4. Coordinates and relations

This section sums up elementary properties of points, lines and
planes in Euclidean space.

4.1. Coordinates for geometric objects

A point (z1, 2, T3) € R3 naturally is given the coordinates z1, 2, 3.
The plane with equation (u,z) + ug = 0 such that u = (u1,ua,us) has
given the coordinates (ug, U1, Ua, us). We normalize the equation such
that u2 +u2 +u? = (u,u) = 1. Actually such coordinates represent an
oriented plane, i.e., a plane together with a side of the plane where the
normal vector u points to. A line parallel to the vector I = (l1,12,13)
with (2 + 13 4+ 13 = 1 is uniquely characterized by the moment vector
I =z x 1, if zis a point on the line, and the line is reconstructed as
the solution set of the three equations z x | = [, if vectors [ and [ with
(1,1) = 0 are given [5]. Thus we coordinatize the set of straight lines
in R3 by the six coordinates (I, D) = (1, .,ls) with the side conditions
{1,1) =1 and (I, I) = 0. Actually any such coordinate vector means an
oriented line, and (I, —1I) means the same line, but equipped with the
reverse orientation.
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4.2. Relations between geometric objects

We summarize relations between geometric objects in Table 1 and
Table 2. We use the symbols p, ¢ for points, L = (I, D, G= (9.9), H=
= (h, h) for lines, and U = (ug,u), ¥V = (vg,v) for planes. First comes
a relation which involves points only: the distance constraint. Next
are relations between a point and a line. The incidence relation p € L
either uses only two out of the three equations { = px [, or the condition
that (I,I) = 0 has to be dropped. This is indicated by the canceling
stroke in the right hand column. We further consider the case that @ is
the pedal point of P on L, which means that @) € L and the line PV Q
is orthogonal to L. For the pedal point we give two formulas: One in
Table 1 (see Sec. 6), and another one in Table 2, which introduces as a
new variable the distance of P’s pedal point @ from the origin’s pedal
point | x [. The oriented distance of points on a line, denoted by the
symbol (E% (P, @), is negative, if the vector 1—5@ does not point in the
same direction as [. Next come relations between points and planes,
which are straightforward. Relations between lines include parallelity,
distance of parallel lines, and distance of skew lines G, H. The latter
constraint can be made quadratic by introducing both sine and cosine
of the angle <(G, H) as new variables. Relations between a line-and a
plane are orthogonality (two cases), parallelity and incidence (L C U).
A relations between planes given here is parallelity. As the line given as
intersection of two planes has coordinates proportional to (u X v, ugv —
— vpu), also this results in a quadratic relation. It it easy to add more
relations to this table.

4.3. Changing the coordinate system

It is an aim of this paper to study the influence of translation, rota-
tion, and scaling of the underlying coordinate system on the local toler-
ance analysis via Th. 1. The choice of a different unit length (i.e., a scal-
ing of the coordinate system with a factor s > 0), translation by t € R3,
and rotation by a matrix 4 € SO3 transform coordinates according to

(11) » —ssp, (I,1) — (I, sl), (ug, u) — (sup,u).
(12) p—p+t,(1,1) — (I, T+t x1), (uo,u) — (uo— {u,t),u).
(13) z — Az, (I,1) — (Al Al (ug,u) — (uo, Au).

The value Chax as computed by Th. 1 or the formulas following
it means the maximum size of tolerance zone of the fixed variables “z”
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around a local solution ¢ = u, y = v of the constraint problem F(z,y) =
— 0. When changing the unit length so that coordinates of points get
multiplies by a factor s > 0, Cax Will usually change.

If the fixed variables consist only of points, then an optimal method
for local tolerance analysis would result in Cmax gets multiplied by s.
If the different parts of = as described by (4) have also other meanings,
such a simple statement is no longer possible. For lines and planes, for
instance, not all of its coordinates are scaled. While it would be nice if
Cmaxe would get bigger if all coordinates are multiplied by s, we cannot
expect this to be the case.

As all three type of geometric entities considered in detail in this
paper contain at least one coordinate which is scaled with s, we do
the following: We scale with s according to (11), and have a look at
Cmax/S, which in the case of points means the size of tolerance zone
with respect to the coordinate system before scaling.

5. Examples

In this section, we collect the most useful constraints in geomet-
ric constraint solving problems and show the influence of translation,
rotation, and scaling on the value of Cpax computed via Th. 1. In the
remain content, we use 1-norm in the fixed variable space and 2-norm in
the moving variable space, and other norms are only illustrated in the
data of the tables. When investigating the influence of translations and
rotations we randomly select the translation vectors as t(r) = (r,7,7)
and the rotation about the z axis for demonstration.

5.1. Pedal points

Consider the geometric relation ¢ = pedal; (p1), where p1 =
= (z1,T2,23) is a fixed point, ;1 = (y1,72,¥3) 1s a moving point,
L = (z4,. .. ,Zg) is a line. According to Table 2, we add a variable
A = y.. We get the following constraint problem F(z,y) = 0, where

T4x1+T3Ta+Tela—Y4

T5T9—T6T3TY4TL—Y1
(14) F(z.y) =

TLT—TLTITY4T5 —Y2

T4y —T5TTHY4Te— Y3
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Formally, we let L = ps. As a particular solution, we consider p; =
= (100,100, 100), L = (-1,1,1,0,-100,100)/v/3, g1 = (100, 200, 200)/
/3, and A = y; = 100+/6/3. Experimental data are shown in Table 3.

When scaling with a factor s > 0, F, does not depend on 5. So
the bilinear mappings B := Ey_lEmm and By = Ey_lEmy are constant.
Fyy is zero. G expands to

—T] —TuTs —TuTs (—TaT1~Ys)s (—TaZa—29)s (—zuzztzs)s 0 x5 —ms
—TaT5 —mg —z5%s (—T3T1+Te)s (—ZsTa—ys)s (—TsT3—T7)s —x5 O —z4
—~T4T5 —T5T6 —mg (—zszi—x3)s (—zezo+z7)s (—zeT3—y4)s =5 —xy O

—T4 —xs5 —Igs —T15 ~Ia§ —T35 0 0 0

It is obvious that both My = lim,_.o G, and lim, .. (G/s) depend
only on z. Thus we get the following expressions for Cpax: Cmax =
a;)llell/(llBlll + 4[| B2|||Gz 1), and

1 G = 21| Moll/ (B2 | + 4| Mol Ba ), lim Cuns = 1/(2]|Bal)).

It follows that the graph of 7 = In(Cnax/s) over £ = In s has asymptotes
of the form 7 = —{+1In C for both s — 0 and s — oo, where InC' is the
logarithm of either of the two values in (15). Experimental data for the
change of Chax when changing the coordinate system is also shown in
Fig. 2.

The pedal point in a plane is much easier to analyze, because in
that case Iz = 0 and Iy = 0, 50 80, Crmax(u,v) = (2| F  Eyyll) ™t and
in view of (11) does not depend on the choice of unit length.

A Cinax A Conax [lx m(cmu / § )
|
|

Ins

>¢ >T >

(a) (b) © |

Fig. 2. (a) Diagram of the change of Cmax over the rotation angle ¢ in the constraint
problem of Sec. 5.1 while rotating the coordinate system. (b) the same for trans-
lating the coordinate system. (c) Logarithmic diagram of Cmax/s over a scaling
factor s.

5.2. The line spanned by two poiats

We consider two points p1 = (21, Z2, z3), p2 = (z4, T3, Tg) as

fixed variables, and the coordinates of the line L = (I, [) = (y1,. .., vs)
spanned by them as moving variables. Table 1 contains two different
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ways of expressing the condition that py € L. Because the four equa-
tions I = p; x [ plus (I,I) = 0 are not independent, each incidence
condition can use only three of them. For reasons of symmetry, it is
preferable that we drop (I, I) =0, but we can do that only once — for
the other incidence constraint, one of the three equations of l=p; x1
has to go also. Thus we get the following six equations for y1,...,¥%s:
2 y2+ys—1=ysTa— Y2z — Y4 = Y123 —Y3T1 —Ys = YaZ1 — Y1da —
— Yo = Y3Ts — Y2T6 — Y1 = Y1T6 — YaTs — Us = 0.

The particular solution for which we wsplay experimental data
in Table 4 and Fig 3, a—c is p1 = (40, 30, 70), p» = (30, 40, —70),
L =+/22(-1/2, 1/2, =7, —245, 245, 35)/33.

A Cinax A Cinax A m(cmu/ § )
——— AU
9 G A\ Ins_
(a) )] ©
A Cinax A Crax 4\ h'1(Cmax / s )
e N, N e N “
_ ) T paN In S>
@ (e 9] \

Fig. 3. (a)-(c) analogous to Fig. 2, but for the constraint problem of Sec. 5.2 (first
variant). (d)—(f): second variant.

It is elementary to compute the following derivatives:

T 2y: 2ys  2yz O 0 0]
0 — I3 z2 —1 0 0
T 0 — 0 -1 0
Fy — 3 1 7
! —I2 I 0 0 0 -1
0 —Tg T5 —1 0 0
L Tg 0 —Ty o] —1 0
r o 0 0 0 0 0 T
Y3 —Y2 0 0 0
—Yy3 0 Y1 0 0 0
B, =
' y2 -~y 0 0 0
0 0 0 0 ys  —Y2
L 0 0 0 —Y3 0 Y1
Further, Fyppy = 0, Fizy = 0, Fryy = 0 for r = 2,...,6, Fray =
K Ds, . Dax Oa
= [ ro Dt =234, Frgy = | 8%3 | for r = 5,6, and
l'03x3 O3x3 K._3 0Osxs
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Lo
-3
o

2E3 Osxs ..
Fiyy = {o o , where we have used the abbreviations
3x3 3x3

0 0 0 0 0 -1 0 1 0

e - -~
K5 o 1{, Ksg=1|0o 0o o}, EKs=1]-1 0 o
0 -1 0 1 0 0 0 0

When scaling the coordinates with a factor s, we get we get Go(s) =

=M. :
{ N 3X6J , with certain matrices Msyxg and Nixg. The second
3x86

derivatives have the following behaviour: [Fy, ! Fpy (s)]- equals 1/s times
a constant for r = 1,2,3, and is scale invariant for r = 4,5,6. So is
[Fy Eyy(s)] for = 1,2,3. [F; 1 Fyy(s)]- equals a constant times s for
r=4,5,6.
We consider the limits
(16) 7
Bo=1lim(sGz(s)), Co=lm(sE; " Euy(s)), Do=lim(F, " Fyy(s)),

S—

Boo :slin;o(qz(s))a Coo :sli{&(Ey_ley(S)% Doo= hm ( ley( )/8)-
The formula of Th. 1 now shows that and get

m Cmax(s) - 1
an — g _‘-z<uco! + [ BolllDoll)’
steot T T OB T Daoll

The graph of 7 = In(Cpax/3) over £ = In s then has the similar asymp-
totes to that of Sec. 5.3.

By introducing the oriented distance d = c_li_s}:L(pl, pa) of the
points p1; and po, we get a set of equations different from the previ-
ous one: ||[[|2 = 1,1 = p; x[ and py = p; + dl. Experimental data
are shown in Table 5 and Fig. 3, d—-f. The limit case of scaling in the
constraint is similar to that of Sec. 5.5 and we don’t want to study it
in detail. We notice the following facts: Introduction of an auxiliary
variable did not diminish the size of Cyay Overmuch, and it did improve
the behaviour with respect to translations. However, it is apparently
more important to choose the right scaling factor s than it was with
the first variant.
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5.3. The plane spanned by three points

Consider the three points p; = (z1, T2, T3), P2 = (x4, T5, T6),
p3 = (z7, T3, To) 2as fixed variables and the coordinates of the plane
U = (ug,u) = (y1,..-,Y4) as moving variables. The condition that
p1,p2,ps € U is expressed by the three constraints (p;,u) +ug = 0
together with the normalization |lu||> = 1. Experimental data for the
particular solution py = (100, 0, 0), p2 = (0, 100, 0), ps = (0, 0, 100).
and U = (—100,1,1, 1)/+/3 are shown in Table 6 and Fig. 4.

@u\/\/\/ o (Gl

T N\ In s>
[ (a) (b) (c) \t

Fig. 4. (a)-(c) analogous to Fig. 2, but for the constraint problem of Sec. 5.3.

Q‘ (&0,770) Mn(cmnx/s)

Fig. 5. Detail of Fig. 4 (c) (asymptotes).

We demonstrate the influence of the choice of unit length via
the following detailed computations. Obviously, Fex = 0,50 Crpax =
= 1/[2(| Ey* Euyll + |Gl | By  Eyy )] We have

ya+ys+yi—l

| yityezitysTatyaTs
Fz,y)= :
y1+yY2Ta+YsTs+YaTo
Y1+y2T7+Y3 T3 +Y4To
0 2ya 2yz 24 Oi1x3 Oixa Uixs
1 e ZTa T3 M O1xs 01,
Ey _ ; Em — < 1x3 ’
1 g 5 Ts Oixs M O1xs
1 =z Ts Tg O1xa Oixs M

where M = [y2,3,74]. As to the inverse of Fy, we let m = det(Fy)
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Q]
~1
=1

and define coefficients n;; by Ey‘l = (%), j=1,...,1. We further use the
abbreviation N = [03x1 Ej3).

When scaling with a factor s > 0. we get the following depen-

dencies on s: Coordinates (z1,...,2g) change to (szi,...,szg) and
(¥1, .- -, y4) becomes (sy1,y2,y3, y4), according to (11). We have F ., =
= 0 for all s. With exponents a; = 0,3 = -+ = a4y = 1 we can write

the dependence of G, and the component matrices of F - 1E;y(s) and
FE 1 Fyy(s) in the form

snialM  snisM  snig M
Gia(s) 1 | nesM  nasM  nosM
sm nga M ngg M Taa M
ngs M nag M nyy M

)

1 1 Npra N
[Ey—- Ea:y(s)]r = SO Nz NV
nr4N

2sn
—1 _ 71 4.
[Ey Fyy(8)]r = Sarmdlag((), 1,1,1).

With the limits from (16), we can compute the limit behaviour of
Crax(s)/s with (17). The graph of n = In(Chax/s) over £ = Ins has
exactly the same behaviour as the respective graph in Sec. 5.2 (first
variant), as is also illustrated by Fig. 4.

5.4. Intersection of two planes

We consider the intersection line L = (I,{) = (y1,..., ys) of two
planes U = (up,u) = (z1,..., z4) and V = (v,v) = (zs,..., Ts),
where the planes are fixed and the line is moving. The constraints
F(z,y) = 0 are defined by the relation L = UNV according to Table 2.
By introducing the auxiliary variable A = y7, we get

-

vi+ua+ys—1
I3T3—T4T7—Y1YT
T4Te—T2T8 —Y2Y7
F(a:,y) = | ZaT7—T3T6—Y3Yr | =
T1Ts—T2T5—Y4 Y7

T1L7—ZT3T5—YsYv

LT1T3—TLL5—YsY7
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C—yiyr 2(1-yi)  —2yive
—yayr  —2y1Y2 2(1-y3)
_q1 | Tysyr —2y1Ya —2y2y3
Ft= 5= | v Pnve 2w
Y7 . :
—-ysyr  —2U1Ys —2Y2Ys
—ysYr  —2Y1Yse —2yays
L v; 2y1y7 2y2y7
o Riya zg+Rey1r —z7+Rayr 0
0 —zg+Riya  Raye _Rzys 0
‘0 z7+Riys —wst+Reys  Rays 0
Gp=|ze —zs+Riys  Rous Rays  —x2
zz Riys —z3+Reys  Rays  —Ts3
zgs  Riys Rays —x5+Rays —Ts
LO —-Riyr —Rayr —Rayr 0

—2y1¥3
—2yays
2(1-y3)
—2yays
—2y3ys
—2y3Ys

2yayr

Rayn
Ta+FRaye

—z3+Rays

z1+Raya
Raiys
Rays
—Rayr

o O o

(5]

o OO o

o O

—z4+Rsy1

Rsy»
z2+HRsy3
Rsya
T1+Hsys
Rsys
—Rsy7

V]

z3+Rey1 |
—za+Reya
iReys
Rsya
Reys
z1+Reys
—Rgy7 4

where Ry = Tgys — T7ys, Ro = Teys — Tey1, Ra = Try1 — Teya, fla =
= I3Y3z — T4l2, R5 = T4¥Y1 — IT2Y3, Rﬁ = ZalYa —IT3Y1. Second derivatives

have the form [Fy ' Fpz)r = L
3 ) T
i 0 0 0
0 —yiYs  Y1yz
Sl = 2
0 Y1Ys 0 1-y3y
L0 —yiy2  wi-l 0
] 0 0 0
0 0 1-y3  Y1Y2¥s
S3 = .
0 yz—1 6 —Y1Y3
L0 —yiy2ys Yi1¥3 0
0 0 1 0
0 0 —Yays Y2lYs
Ss= ;
-1 EVE 0 —Y1¥s
0 —Yy2ys Y1Ys 0
0
o 0
7T = YT
0

Oaxa -5
* ") forr=1,...,7, where
Sr D4X4
o 0 0 0
0 0 —1 yi(yi—1
 §y= yaya  yi(ya—1)
0 Yay3 0 —yiy2
0 wni(l-¥2) vy 0
0 1 0 0
-1 0 —YyaYs Y24
; S*L = y
0 YaYa 0 —y1y4J
0 —YnY4 Y14 0
r 0 0 1
0 —Y3Y6 Yays
:SG -
0 Y3ys 0 —Yy1Ys
-1  —y29s yiye G
0 0 0
0 ys  —Y2
—Ys3 0 Yo
Yn —Y1 0 _l
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Fyy is zero. F1F,, has the form

N7
—1 _ diag(yryT,yryT,’yryT,D,O,O') Ny /
forr=1....,6 and
diag(—y7,~y7,—y7,0,0,0) N-
Fip. ). = "
{ Y wlr = NT o |’
where the column vectors IV; are defined by
1-y7  —y1y2  —vi¥s —y1ys —Y1Ys ~VYi1¥s Y1
[/V IVT] | TYiy2 1—%:“; ~Yays  —Y2Ys  —Y2lYs —YaYs Yo
A 1 sy —_— "
’ —Yiys —Y2¥3  1-y3 —ysYs ~¥Y3ys —YaUs Y3
O3xsa Eaxa Osx1

When scaling with a factor s, (21,25, y4,ys, ys) are replaced by
s(z1,Zs5,Y4,Ys5,Ys). The other variables are scale-independent. We con-
sider the limit cases s — 0 and s — co. In a way analogous to previous
constraint problems, we consider the limits

By = lims 0 Gz(s), Cp =lim,_.q Er LEa(s),
Do = lim,_q F, My (s),
Boo = im0 (Gz(5)/3), Coo = limsﬁ.oo(Ey"lEM(s)/s),

Do = hms—-OO( yy( )/8)-
The formula for Ch . from Th. 1 shows that

: 21| Bol|
lim Chax(s) = ,
o128 Cmedle) = TR Al Bo T Dol
. 1
li Cnn\ = s =
Jr2, (" Conss3)) = 25 7D]
Thus the graph of n = In(Cpay/s) over € = lns ha& the asymptotes

n=—¢+n(2]|Bg|]) - 111([|C'o[| + 4)| Bol]?| Do|) as &€ — —co, ‘and and
n = —3‘f — In(2||Bool| HDOO][) as £ — co. They 1ntelsect at £ = Insg,
where 55 = (||Coll + 41 Bo|l* | Doll)/ (41| Boll | Beoll Il Dsol)- Ekperimen—
tal data for the particular solution U = (100, —1, —1, ~-1)/V/3,V =

= (100, -1, -1, 1)/v/3, L = (=1, 1,0, 0, 0, 100)/v/2, and A = 2¢/2/3
are shown in Table 7 and Fig. 6.
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A Cinax [\J Crnax £ In(Cux/5)
I x :
] & \ - N Ins
f =" — \\ 4 .
| . ; PR
| (2) ) i {c) \
Fig. 6. (a)—(c) analogous to Fig. 2, but for the constraint problem of Sec. 3.4.

5.5. Two points determine a unit vector

This is a constraint problem not contained in the tables above.
We have the fixed variables p1 = (z1. T2, T3), P2 = (x4, T5, T5) and
the moving variables ¢1 = (y1,%2,¥3) € R3, y. € R with the constraints
llg||® = 1, p1 — p2 = yaq: (yu is the distance of ;1 from D2).

The particular solution p; = (40, 30, 70), p2 = (30, 40, —70),
g1 = (p2 — p1)/ Y1, ¥4 = [[p2 — p1| is illustr ated in Table 8 and Fig. 7.

A Cinax A L max A 1n(vm¢ /

AN
| 5 : Pa Ins

el = \! i

]
1
l (a) ) !
g. 2. but for the constraint problem of Sec. 53.5.

Fig. 7. {(a)—(c) analogous to Fi
We have Fpp =0 and Fpy = 0, so we get

C’max(s) has 1/(2HG1( HH—y 1‘FJJ('S H .
An elementary computation shows that

. 1 [G(s
a = |92

(18)

sys | g(s)
where G(s) = [ syayy Sysya SYsls — SYiy1 — Sysla — SUays),
, 1-yi vy e vi-1 weun wivs
GKS) = | —yay1 1-yz  —Ysyz  Y2ln ya—1 Yay2
| —viys  —ysyz l-¥3  Viys  Ysyz U3 a-1
U1 [2is)
We define M( Uy, Ve, Vs, Us) = v vs | and get FM R, (s) =
(251 Vi Y (R
Ua v3 Uy
= 57 Bs. where B; < B(R*, R*, R*) has the following coordinates:

[Bs]y = M(sysy, 1 —v5,
[Bs)2 = M (syaya, —yav1,

—Yal1, —Y1Y3),
1-— y%, —y3y2)7
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[Bala = M(sysys, —y1ys, —ysya, 1 — v3),
[Bsly = Ifg(f—s“yi'ysf 5YiY1.: SYaYa, SYLys ).

Limits for 5 — 0 and 5 — o¢ are the follc owing:

1T s
Ly = lim 5Gy(s) = — {G@)J |

Osxs }
Yi Y2 ¥Ys — Y1 —UYz2 —Us

(19)

Lo = lim Gy(s) = [

Further, lim;_.g s Er lF Ty(s) = y%BD, where By has the following coor-
dinates:

[Boly=M(0,1 - 3, —yav1, —133), [Bolo=M (0. —ya1, 1 -2, —ysya),

[Bols =20, ~y1y3, —y3y2, 1—%3), [Bola=0uxs.

The limit lims_. o %Ey_l%y(s) is _denoted by B and expands to
(Boolr = Oyxa for r =1,2,3:; [Beo)s = diag(—v., —y4, —ya, 0).

Thus

1 1 ) 1
= ll C’mw\ __—____‘_'; lil -.C1ma:\— . = -— .
(20)  lim (55 Comes()) = DT i T T V=]

The graph of = In(Chpax(s)/s) over € =1ns
n =&~ 1n(2||Lo| | Boll) (€— f‘O),
n= -2 (2| Lo Booll) (¢

They intersect in the point

0= L (1n L2201

has the asymptotes

1ol B~ BULol Bl E ol Bocl) .

We have £y = In sg, where s? = || Lo|[| Boll/ (| Looll || Bso||). This is illus-
trated in Fig. 8.

(21\’ (g 0570/ -3
[

A{S:Da WO) fln(cm:u//f:)

A

\ :
i = lns

Fig. 8. Detail of Fig. 7 (c) (asymptotes).
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Tables
geometric relation | number and nature of number and nature of
constraints involving more constraints involving only
than one geometric entity one geometric entity
dist(p,q) =d 1 |lp—ql*=4d 0
PelL 2| twoof [=px! 2| fP=t, (L, 1y=0
Pel 31 [=pxI 1] P=1,4 7
0 = pedal (P) dlgxli=0L{p—q)=0 |1 nznl—l,w
dist(P,U) = d 1| ug+ (u,p) = L] JulP=
PelU 1w+ (u,p) = U ulP=
<(G,H)=19 1| {g,h) =cosb 4| |lgll>=1, |A*=
(8:8)=0,(g,n)=0
Gl H, 3| g==h, 31 lglP=1,lsl=T
(° 2)=0, (g,)=0
GNH # {} U| (g.B) +(8,k) =0 4| llglP=1, |n)P=1
~ (§,8)=0 <g)h‘>:O
Lcu 3 uxl=ugl 3 Hltl]z:{llnz———l,(l, 1y=0
ULL 3 u==l 2| lulP=1,43=T, {{,[)=0
Ujv 3lu=2Hv 1] |ef)P=11pfpP=T
Table 1. Relations between points p,q, lines L = (1), G = (g,9),
H = (h, k), and planes U = (ug,u), V = (vo,v) (cf. Sec. 4.2).
geometric relation | number and nature of number and nature of
constraints involving more constraints involving only
than one geometric entity one geometric enﬁty
Q :PedalL(P) 4 (lap> =2, 2 H[”:: 7<[7l->:0
A=, p)] 1><Z+M—q
Q = pedaly (P) 4 ug+(g,u) = 1 lull*=
[/l disty PO)J p—q=4Au,
Gild, alg=ZhfzFAlP =4 | 3] lelP=1Le=T
dist(G,H)=d (2,8)=0, (h,h)=0
dist(G,H) =d 2 (g, ) = A, 51 lgP=NAlP=A +A7=1
[}Lg:cos<(G,H)] (g,h) +{g,h) =dM (,8)=0,{g.1)=0
L=UnvV 6 | A(LD) = (uxvugy—rvou) | 1 HIH M
Table 2. Relations becoming quadratic with new variables (cf. Sec. - 4.2).
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T
i
j.)
o
{0
-2
=
=
C
39}
<
3
O
o
P
@
o]
(73]
[N

” ) “U ” ’ HV HF\:_[FL\” ”F.j'—l}:;w“ ”F\_an“ ”G\” CmﬂX/S CI/’S
o 23 7.46 1.00 0.00 3173 472 1498
>0 | 24.39 3.00 0.00  76.86 .62 1248
o 2 12.63 .73 0.00 43.82 277 1213
l o 1.00 1.00 0.00 13.94 4.91 68.3
I i 2.73 1.00 0.00 2971 4.89 14352
1 2 141 - 1.00 0.00 18.10 4.90 38.3
2 oo 115 1.00 0.00 17.45 4.92 35.8
2 i 4.62 2.00 0.00  43.87 247 1082
2 2 2.31 2.00 0.00  23.07 2.47 62.0

Table 3. Experimental values for various norms and the values e

and C’ according for the constraint problem of Sec. 5.1, where s = 0.1.

-ty -l | 57 Bl BT Bl IET Bl NGl Crax/s C'/s
. o 0.00 28.57 298 1522 676 1023
o 1 0.00 3143 21 3351 694 2326
- 2 0.00 2474 245 2045 649 1393
1 - 0.00 7.14 298 707 1770 1252
I 1 0.00 $.47 121 839 2684 2251
| 2 0.00 7.16 244 71 2042 1452
2 . 0.00 1425 298 1003 1132 1135
2 I 0.00 18.35 121 1894 1201 2293
2 > 0.00 24.62 245 10.06 1017 1024

Table 4. Experimental values for various norms and the values Clnasx
and C' according for the constraint problem of Sec. 5.2 (first variant),
where s = 0.001. ‘

I-lo Wl | IE Eall W& Esll IET Bl 1G] Crax/s  C'/s
- » 0.00 2.00 443 298 545 1923
- 1 0.00 2.00 234 925 414 3332
. 2 0.00 173 377 466 508 2365
! o 0.00 1.00 443139 1374 1904

| ! 0.00 1.00 234 234 1501 3540
1 2 0.00 1,00 377 150 1473 2208
2 . 0.00 141 443 197 9.69 1905
2 1 0.00 265 234 433 767 3320
2 2 0.00 263 377 203 951 1932

Table 5. Experimental values for various norms and the values Ciax
and C” according for the constraint problem of Sec. 5.2 (second variant),
where s = 0.0051.
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Tl 1l [ IE Bl BT Eoll IE Fll 1G] Cmax/s  C'/s
e ca 0.00 4.00 1.73 2351 6.25 1443
o 1 0.00 3.00 231 5.20 333 17.32
o 2 0.00 2.839 1.15 2.89 3.04 23.20
1 ) 0.00 0.67 1.73 0.38 3730 1443
1 i 0.00 1.67 251 0.96 12.86 12.37
1 2 0.00 0.89 1.15 0.51 34.02  17.32
2 o0 0.00 1.73 1.73 1.00 1444 1443
2 1 0.00 1.81 2.31 1.31 835 1511
2 2 0.00 1.63 1.15 1.00 17.94  17.94

Table 6. Experimental values for various norms and
and C' according for the constraint problem of Sec. 5.3

the values Chax

, where s = 0.01.

o W lv TIE Bl IE Eall N5 Byl 1G] Cmax/s  C'/s
w = 5.66 0.00 566 321 264 864
- 1 20.01 0.00 243 753 264 1987
o 2 8.53 0.00 417 370 312 LI5S

i o 1.06 0.00 566 082 1011 826
1 ! 1.82 0.00 243 184 1062 1951
1 2 1.06 0.00 417 106 1069 1134
2 o 1.06 0.00 566 141 6l.1  86.4
2 i 7.44 0.00 243 321 397 1917
2 2 231 0.00 417 L4 781 1105 |

Table 7. Experimental values for various norms and
and ¢’ according for the constraint problem of Sec.
= (.001.

the values Chax
5.4, where s

(e Wl |15 Bl 15 Enll DA Enll Gl Crox/s O
r s o \ 0.00 0.00 443 298 742 2215
- ! 0.00 0.00 185  8.04 658 352.86
\ . 1 0.00 0.00 285 433 758  34.38
1 s \ 0.00 0.00 443 1.39 1597 2215
i 1 0.00 0.00 135 156 3382 35286
| 2 0.00 0.00 235 130 2470 3438
2 w 0.00 0.00 443 197 1127 2215
2 i 0.00 0.00 1.85 3.64 14.33 32.86
\ 2 2 0.00 0.00 285 197 1744 3438

Table 8. Experimental values for various norms and

and O according for the constraint problem of Sec. 5.

the values Cmax
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