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Abstract: In this paper we characterize the closed subsets T' of a Parovicenko
space X such that the space we obtain from X collapsing T to one peint is
also a Parovidenko space.

1. Introduction

All spaces will be Tychonoff.

We recall that a space X is said to be an F-space if two disjoint
cozero sets of X are completely saparated. Other characterizations of
F-spaces can be found in [3].

For the sake of brevity we will say a space X to be a G-int space
if every nonempty G5 of X has nonempty interior.

As usual, we denote by N a countably infinite discrete space. It
is well known that the space N* = SN\ N

(a) is a compact space of weight ¢;
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(b) is 0-dimensional;

(c) is a G-int space;

(d) is an F-space;

(e) has no isclated points.

Parovicenko proved that, under CH, all spaces having the above
properties are homeomorphic to N* and every compact space whose
weight is less than or equal to ¢ is a quotient of N*, hence a remainder
of a compactification of N ([6]).

A space with properties (a)—(e) is said to be a Parovitenko space.
Ome could conjecture that a continuous image of a Parovi¢enko space
under a very simple map, for instance, a map which collapses two points
to one point, is still a Parovidenko space. But it was proved that this
is not generally true. In fact the property of F-space is not preserved,
in general, by this kind of map. The sets of two points of a compact
F-space such that, collapsing them to one point, we obtain an F-space
were characterized in [2] Th. 1.1.

In Sec. 2 of this paper we will extend that result to all (Tychonoff)
spaces. Furthermore we obtain a characterization of the closed subsets
T of a normal F-space X such the space X/T obtained by collapsing
T to one point is still an F-space.

In Sec. 3 we give some results about continuous images of G-int
spaces. Finally, in Sec. 4, we use the results of the previous sections
to give a characterization of the closed subsets T of a Parovicenko
space X such that X/T is a Parovicenko space. Under CH this is
equivalent to characterize the closed subsets T’ of N* such that N*/T
is homeomorphic to N™.

2. Images of f-spaces under gquotient maps

We recall that a point z of the space X is said to be a P-point if
every G subset G of X, such that z € G, s a neighborhood of z. It
was proved in [5] that, under CH, N* has 2°¢ P-points. Every point in
I\T\ M, where M is a countable subset of MN™, is not a P-point.

It is clear that = is a non-P-point if and only if x € F'\ F', where
Fis an F,. Moreover, one has
Temma 2.1. Let X be a space and T € X. Then z is a non-P-point
if and only if there 1s a COZETO set C C X such that ¢ € C\C.

Proof. Let z be a non-P-point and let G a Gs such that z € G\
\ Int(G). One has &G = Npen Va, Where Vp is open for every n. Put
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Bn=X\V,. Then z € [J,yy Bn \ (Upen Br). Since X is Tychonoff,
for every n there is a cozero set C, such that =z ¢ C, and B, C (.
Then C' = | J,oy Cn is & cozero set such that < _C_'\
is obvious. O

Foramap f: X — Y, a fiber is a set of the form f~*(y), where

', The converse

y € f(X). We say that a ﬁber is nontrivial if its cardinality is greater
than 1.

Lemma 2.2. Let g : X — R be a continuous map, C' = Coz(g) be
a cozero set of X and let f : X — Y be a quotient map such that C

is disjoint from every nontrivial fiber of f. Then f(C') is a cozero set
of Y.
Proof. Since g is constant (in fact equal to 0) on the nontrivial fibers of
f, we can define a real-valued function h on ¥ such that ho f = g. Then
h is continuous, because f is a quotient map. Clearly Coz(h) = f(C). §
Proposition 2.3. Let X be an F'-space and let f : X — Y be a quotient
map with only one nontrivial fiber f~*(y) = {z1,22}. Then Y is an
F-space if and only if x1 or x5 is a P-point.
Proof. Suppose that both z; and zo are non-P-points. Let Ay, A, be
disjoint cozero sets in X such that z; € A4; i = 1,2. By Lemma 2.1,
z; € C; \ Cy, where C; is a cozero set, i = 1,2. For each 4, put D; =
= A, NC;. Then z; € D; \ D;. D; and D, are disjoint cozero sets
which do not meet the only nontrivial fiber of f. Therefore, by Lem-
ma 2.2, f(Dy) and f(D,) are disjoint cozero sets of Y. But clearly v is
in the intersection of their closures, and this implies that they are not
completely separated.
Conversely, we can suppose that x, is a P-point. Let Cl, Cs be

disjoint cozero sets of Y. Then their inverse images F; = a(on”

= 1,2, are disjoint cozero sets in X and so they are completely sep-
arated. Let g be a continuous real-valued map such that g(F1) = 0,

g(Fs) = 1. First suppose g(z1) = ¢(z2). This happens, in particular,
if y e Cy ory € Cy. Since g is constant on the only nontrivial fiber
of f, there exists a continuous real-valued map h defined on ¥ such
that ho f = g. One has h(Cy) = 0, h(C3) = 1, then C; and Gy are
completely separated. o

Now suppose g(z1) # g(za). Then z; ¢ F; and so 1 & F;,

because z; is a P-point (1 = 1,2). Since z; is not in the closed set
FUFU {z2}, we can find a continuous real-valued map s such that
s(z1) = g(za) — g(z1) and s(Fy U Fa U {z2}) = 0. Put t = g + 5. Then
one has:
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Ha) = glzn) + glza) — g(z2)+ = gles) = g(w2) + s(x2) = t(z2).
) Hm) = 1.

Since ¢ is constant on the only nontrivial fiber of f, we can prove, as
before, that Cy and Cs are completely separated. ¢

The result of the above proposition was already known for com-
pact F-spaces (see Th. 1.1 in [2]).

Proposition 2.4. Let X be an F'-space and let f: X — Y be a quotient
map such that the union B of the nontrivial fibers is finite. Then Y
is an F-space if and only if in every fiber of f there is at most one
non-P-point.

Proof. Suppose that z1,z3 € X are non-P-points and belong to the
same fiber. We can find disjoint cozero sets Ay, As which do not meet
the closed set B\ {z1,z2} and such that z; € A i =1,2. Asin
Prop. 2.3, we can prove that Y is not an F-space.

Conversely, we can use the following easy fact: if a quotient map
collapses only two points Z1, Tz t0 one point ¥, then y is a P-point if
and only if both zy and s are P-points. Therefore the proof can be
done inductively, using Prop. 2.3.

A subset T of a space X is said to be a P-set if, for every Gs
subset G of X such that T C G, one has T C Int(G). Finite sets of
P-points are closed P-sets.

If the space X is normal, Prop. 2.4 can be generalized.

Theorem 2.5. Let X be a normal F-space and let f: X —=Y bea
quotient map with only one nontrivial fiver T = f~*(y). Then Y is an
F-space if and only if either T is a P-set or there is z € T such that
T\ {z} is a P-set.
Proof. Suppose Y is an F-space and T is a not a P-set. This means
that there is a G subset G of X such that T C G and T & Int(G).
Suppose z € T\ Int(G) and put F' = X\ &. Then z € F\ F. Let
F= UneN B,,, where B, is closed for every n. Since X is normal, for
each m there is a cozero set Cp such that T'N C, =0 and B,, C ().
Then C' = J,en Cn is a cOZeTO set, disjoint from T, such that z € C.

Suppose T\ {z} is not a P-set. Then thereis a (s subset Gy of X
such that T\ {z} C G1 and (T\{z})\Int(G1) contains at least one point
7. Let U, W be disjoint open neighborhood of z and = respectively.
Then Go = Gi1UU is a Gs which contains T. Furthermore z € Ga \
\ Int(Gs). In fact, if z € V C G, where V' is open, then x € V
AW C G4, since W is disjoint from U, and this is a contradiction. As
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before, we can find a cozero set C’, disjoint from 7', such that z = C".

Let F, £’ be disjoint cozero neighborhoods of z and z respectively.
Then D = C'NE and D' = C" N E’ are disjoint cozero sets which do
not meet T and such that z € D, z € D’. By Lemma 2 2, the images of
D and D' are disjoint cozero sets in Y. But y is in the 111telsectlon of
their closures, hence they are not completely separated. Contradiction.

We will prove the converse in the case T\ {z} is a P-set. The
other case is similar and easier. Suppose Ci, Cs are disjoint cozero sets
of Y. We can start defining F;, i = 1,2 and g as in Prop. 2.3. The
cases y € C1 and y € C are proved exactly in the same way, since g
is constant on T'. If y ¢ Cj, i = 1,2, then T\ {z} is disjoint from %,
i = 1,2 and so it is also disjoint from F;, because it is a P-set. Since
I and T are disjoint, we can suppose, without loss of generality, that
z ¢ Fy. Then T is disjoint from Fy and we can find a continuous real-
valued function ¢, defined on X, such that ¢(F1) = 0 and t(TUF,) = 1.
Since ¢ is constant on T', we can prove, as in Prop. 2.3, that C4 and Cs
are completely separated. ¢
Proposition 2.6. Let X be a normal F-space and let f : X — Y be
a quotient map. Suppose that M = {y € Y | |/~ (y)| > 1} is a closed
discrete subset of Y. Then Y is an F-space if and only if, for every
y € M, either f~'(y) is a P-set or there is z, such that f~(y) \ {z,}
15 a P-set.
Proof. For every y € M, put Ty, = f~(y). If Y is an F-space, we can
prove that every T}, satisfies the required properties in the same way as
in the above theorem, taking F and E’ disjoint from the union of the
other nontrivial fibers.

Conversely, suppose C1, Cs are disjoint cozero sets of Y and let
Fy = f71(C;), t = 1,2. Then F}, F, are disjoint. Let y be a point
in M. As in the ploof of the above theorem, T} cannot meet both F}
and F) Put M; = 11] e M i T ﬂFl 7“é ‘Z)} My = ]\_[\l\f . Let

H =FU ( g T.y>, i=1,2
yeM;

1, and H; are disjoint saturated closed subsets of X. Then there exists
a continuous real-valued map t on X, constant on the fibers of f. such
that t(F1) = 0, ¢(F3) = 1. This implies that C; and C are completely
separated. ¢

Note that, for the “only if” part of the last four results, the hy-
pothesis that X is an F-space is not necessary.
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3. Images of G-int spaces under guotient maps

We give a result about continuous images of (-int spaces under
closed irreducible maps.
Theorem 3.1. If X is a G-int space and f: X — Y 15 is a closed
irreducible (surjective) map, then ¥ is also a G-int space.
Proof. Let G C Y be a nonempty Gs. Then f~HG) is also a Gj,
hence it contains a nonempty open set U. Since f is onto, f(U) C
C F(f~1G) =G and ¥ \ f(U) € f(X\U). By hypothesis, f(X\U)
is a proper closed subset of ¥ One has

Y\GCY\f(U) < FXN\D)

and so Y \ f(X \ U) is a nonempty open set which is contained in G. &

Let X be a G-int space and T a closed subset of X. Obviously,
if T is a non-open Gs, X/T is not a G-int space. We prove that the
converse is also true.
Theorem 3.2. Let X be a G-int space and let f: X —Y beaquotient
map with one nontrivial fiber T = F=Yy). ThenY is a G-int space if
and only if either T' is open or it is not a Gs.
Proof. We have only to prove that, if 7" s not a Gs, then Y is a
G-int space. Let G be a G5 subset of Y. The only nontrivial case is
when y € G. In this case, G1 = F7YG) is a G5 of X which properly
contains T. Therefore G1 N (X \T) is a nonempty G5, hence it contains
a nonempty open subset U. Since U is saturated with respect to f,
f(U) is a nonempty open subset of G. ¢
Corollary 3.3. Let X be a G-int space and let f: X — Y be a quotient
map with one nontrivial fiber T’ = FY(y). Suppose T satisfies one of
the following conditions:

(i) T is a P-set;

(ii) T s nowhere dense;

(i) T = A, where A is an open Iy (in particular, a cozero set).
Then Y is a G-int space.
Proof. (i) and (ii) are obvious.

(iii) In a G-int space the closure of an open non-closed Fy is never
a Gy (in particular, the closure of a non-closed cozero set is never a
zero set). In fact, if A is an open non-closed F,, and G is a closed G
containing A, then G\ A = GN(X\ A) is a nonempty (5. so it contains
a nonempty open set (disjoint from A). O

The statement (i) was essentially known (see Lemma 1.4.2 in 7).

Tt could be also deduced by Th. 3.1. In fact, it is easy to see - that a
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quotient map with one nontrivial fiber T is always closed and it is
irreducible if and only if T is nowhere dense.

Corollary 3.4. Let X be a G-int space with no isolated points and let
f: X — Y be a quotient map with one nontrivial fiber T = f7(y).
Then Y is a G-int space with no isolated points if and only if T it is
not a Gj.

Proposition 3.5. Let X be GG-int space with no isolated points and let
f:X —Y be a quotient map. Suppose M ={y €Y || ()] > 1} is
a closed discrete subset of Y. Then Y is a G-int space with no isolated
points if and only if, for every y € M, f~1(y) is not a Gj.

Proof. Let Y be a G-int space. Suppose that there is y € M such that
T = f~(y) is a G5. Then we can write T = [, oy Va, Where each V,
is open and disjoint from {J_cpp 1) f ~1(%), which is a closed subset of
X. Since every V, is saturated with respect to f, the singleton {y} is
a nonempty Gs with empty interior, contradiction.

Conversely, by hypothesis, no point of M is a G, and this implies
that M is not a Gy. Otherwise, for any y € M, {y} = M NW,, where
W, is an open neighborhood of y disjoint from M \ {y}, hence {y}
would be a Gs. Therefore, if G C Y is a nonempty Gs, then G\ M
must be nonempty. Then f~H(G\ M) = fH{G)N(X\ f~H(M))isa
nonempty G in X and so it contains a nonempty open set U. Since U
is saturated with respect to f, f(U) is a nonempty open subset of G. §

4. Continuous images of Parovic¢enko spaces

Let X be a Parovi¢enko space and let T be a closed subset of X.
We want to find conditions ensuring that X/T is also a Parovitenko
space.

The following two propositions are essentially known.
Proposition 4.1. Let X be a Parovidenko space and let f : X — Y be
a continuous surjective map with one nontrivial fiber T'. If T is a not
open P-set, then Y is a Parovicenko space.

Proof. Y is an F-space by Lemma 1.4.1 in {7]. The other properties
can be easily proved. &

Proposition 4.2. Suppose X is a Parcvidenko space and let f: X —
— Y be a continuous surjective map with one nontrivial fiber T. If T
is o finite set, then Y is a Parovi¢enko space if and only if at most one
point of T i3 a non-P-point.
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Proof. It follows from from Th. 1.1 and Lemma 1.2 in [2]) and from
Lemma 1.4.2 in [7] (or from Prop. 2.4).

Remark 4.3. Tt is compatible that N* does not contain any P-points.
Under this hypothesis, no space obtained by collapsing finitely many
points of N to one point can be a Parovitenko space.

We want to generalize Prop. 4.2. We need two lemmas.

Temma 4.4. Let X be a compact O-dimensional F-space and let A be
an open non-closed Fy in X. Then A\ A] > 2¢. Equivalently, if G is
a closed non-open G in X, then |G\ Int(G)| > 2°.

Proof. It is easy to prove that one has A = [ J,, ey Cn, where the Cp's
are nonempty, clopen and pairwise disjoint. If we choose z, € Chp, for
every n, then M = {z, | n € N} is discrete. Since X is an F-space and
M is countable, M is C*-embedded in X, hence M\ M| = |[N*| = 2°.
One has M\ M C A\ A, because every point of A belongs to a Cy,
which contains only one element of M. ¢

Temma 4.5. Let X be a Parovidenko space and let T' be a closed not
open subset of X. SupposeT = SU {z}, where S is a P-set and z ¢ S.
Then T is not a Gs.

Proof. First suppose that S is closed. If T were a G, then {z} =T'N
N(X\ S) would be a G5 and this is impossible, since X is a G-int space
with no isolated points.

If S is not closed, then one has I" = S. Suppose T is a (5. Since S
is a P-set, there is an open set U such that S C U C T. By hypothesis,
T is not open, then it must be S = U. This implies |[T"\ Int(T)| = 1,
which is impossible by Lemma 4.4. Therefore T" is not a Gs. O

Finally we can prove:

Theorem 4.6. Let X be a Parovidenko space and let f: X — Y be a
continuous surjective map with one nontrivial fiber T = f~Y(y), where
T is not open. Then Y 1is a Parovicenko space if and only of T is a
P-set or there is z € T such that S =T\ {z} is a P-set.

Proof. The “only if” part follows from Th. 2.5. Conversely, the case
when T is a P-set has been already considered in Prop. 4.1. In the
other case, Y is a G-int space with no isolated points by Lemma 4.5
and Cor. 3.4. Moreover Y is an F-space again by Th. 2.5. The other
properties are easy to prove. ¢

The proof of the following corollary is easy. It can be also deduced
from Props 2.6 and 3.5 and from Lemma 4.5.

Corollary 4.7. Let X be a Parovicenko space and let f: X — Y be
o continuous surjective map with finitely many nontrivial fibers Ty =




=Ff"Yy) i=1,...n Then?Y
4
A
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15 o Parovidenko space if and only if.

for every i, either T} is a P-set or there is z; € T} such that T} \ {z;} is
o ,
a F-set,
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