CONTINUOUS IMAGES OF N* WHICH ARE HOMEOMORPHIC TO N*

K. J. Mawhinney

Department of Mathematical Sciences, Appalachian State University, 121 Bodenheimer Road, Boone, NC 28608. USA

M. C. Vipera

Dipartimento di Matematica e Informatica, Università di Perugia, Via Vanvitelli 1, 06123 Perugia, Italy

Received: September 2005

MSC 2000: 54 D 40; 54 D 30, 54 D 80, 54 G 05

Keywords: F-space, G-int space, N*, Parovičenko space.

Abstract: In this paper we characterize the closed subsets T of a Parovičenko space X such that the space we obtain from X collapsing T to one point is also a Parovičenko space.

1. Introduction

All spaces will be Tychonoff.

We recall that a space X is said to be an F-space if two disjoint cozero sets of X are completely separated. Other characterizations of F-spaces can be found in [3].

For the sake of brevity we will say a space X to be a G-int space if every nonempty G_{δ} of X has nonempty interior.

As usual, we denote by N a countably infinite discrete space. It is well known that the space $N^* = \beta N \setminus N$

(a) is a compact space of weight c;

 $[\]hbox{\it E-mail addresses:} \ mawhinneykj@appstate.edu, vipera@dipmat.unipg.it$

- (b) is 0-dimensional;
- (c) is a G-int space;
- (d) is an F-space;

(e) has no isolated points.

Parovičenko proved that, under CH, all spaces having the above properties are homeomorphic to \mathbf{N}^* and every compact space whose weight is less than or equal to c is a quotient of \mathbf{N}^* , hence a remainder of a compactification of \mathbf{N} ([6]).

A space with properties (a)-(e) is said to be a Parovičenko space. One could conjecture that a continuous image of a Parovičenko space under a very simple map, for instance, a map which collapses two points to one point, is still a Parovičenko space. But it was proved that this is not generally true. In fact the property of F-space is not preserved, in general, by this kind of map. The sets of two points of a compact F-space such that, collapsing them to one point, we obtain an F-space were characterized in [2] Th. 1.1.

In Sec. 2 of this paper we will extend that result to all (Tychonoff) spaces. Furthermore we obtain a characterization of the closed subsets T of a normal F-space X such the space X/T obtained by collapsing T to one point is still an F-space.

In Sec. 3 we give some results about continuous images of G-int spaces. Finally, in Sec. 4, we use the results of the previous sections to give a characterization of the closed subsets T of a Parovičenko space X such that X/T is a Parovičenko space. Under CH this is equivalent to characterize the closed subsets T of \mathbb{N}^* such that \mathbb{N}^*/T is homeomorphic to \mathbb{N}^* .

2. Images of F-spaces under quotient maps

We recall that a point x of the space X is said to be a P-point if every G_{δ} subset G of X, such that $x \in G$, is a neighborhood of x. It was proved in [5] that, under CH, \mathbb{N}^* has $2^{\mathfrak{c}}$ P-points. Every point in $\overline{M} \setminus M$, where M is a countable subset of \mathbb{N}^* , is not a P-point.

It is clear that x is a non-P-point if and only if $x \in \overline{F} \setminus F$, where F is an F_{σ} . Moreover, one has

Lemma 2.1. Let X be a space and $x \in X$. Then x is a non-P-point if and only if there is a cozero set $C \subseteq X$ such that $x \in \overline{C} \setminus C$.

Proof. Let x be a non-P-point and let G a G_{δ} such that $x \in G \setminus \operatorname{Int}(G)$. One has $G = \bigcap_{n \in \mathbb{N}} V_n$, where V_n is open for every n. Put

 $B_n = X \setminus V_n$. Then $x \in \overline{\bigcup_{n \in \mathbb{N}} B_n} \setminus (\bigcup_{n \in \mathbb{N}} B_n)$. Since X is Tychonoff, for every n there is a cozero set C_n such that $x \notin C_n$ and $B_n \subseteq C_n$. Then $C = \bigcup_{n \in \mathbb{N}} C_n$ is a cozero set such that $x \in \overline{C} \setminus C$. The converse is obvious. \Diamond

For a map $f: X \to Y$, a fiber is a set of the form $f^{-1}(y)$, where $y \in f(X)$. We say that a fiber is nontrivial if its cardinality is greater than 1.

Lemma 2.2. Let $g: X \to \mathbb{R}$ be a continuous map, $C = \operatorname{Coz}(g)$ be a cozero set of X and let $f: X \to Y$ be a quotient map such that C is disjoint from every nontrivial fiber of f. Then f(C) is a cozero set of Y.

Proof. Since g is constant (in fact equal to 0) on the nontrivial fibers of f, we can define a real-valued function h on Y such that $h \circ f = g$. Then h is continuous, because f is a quotient map. Clearly Coz(h) = f(C). \diamondsuit **Proposition 2.3.** Let X be an F-space and let $f: X \to Y$ be a quotient map with only one nontrivial fiber $f^{-1}(y) = \{x_1, x_2\}$. Then Y is an F-space if and only if x_1 or x_2 is a P-point.

Proof. Suppose that both x_1 and x_2 are non-P-points. Let A_1 , A_2 be disjoint cozero sets in X such that $x_i \in A_i$ i = 1, 2. By Lemma 2.1, $x_i \in \overline{C_i} \setminus C_i$, where C_i is a cozero set, i = 1, 2. For each i, put $D_i = A_i \cap C_i$. Then $x_i \in \overline{D_i} \setminus D_i$. D_1 and D_2 are disjoint cozero sets which do not meet the only nontrivial fiber of f. Therefore, by Lemma 2.2, $f(D_1)$ and $f(D_2)$ are disjoint cozero sets of Y. But clearly g is in the intersection of their closures, and this implies that they are not completely separated.

Conversely, we can suppose that x_1 is a P-point. Let C_1 , C_2 be disjoint cozero sets of Y. Then their inverse images $F_i = f^{-1}(C_i)$, i = 1, 2, are disjoint cozero sets in X and so they are completely separated. Let g be a continuous real-valued map such that $g(F_1) = 0$, $g(F_2) = 1$. First suppose $g(x_1) = g(x_2)$. This happens, in particular, if $g \in C_1$ or $g \in C_2$. Since g is constant on the only nontrivial fiber of f, there exists a continuous real-valued map f defined on f such that $f \circ f = g$. One has $f(C_1) = 0$, $f(C_2) = 1$, then $f(C_1) = 0$ are completely separated.

Now suppose $g(x_1) \neq g(x_2)$. Then $x_1 \notin F_i$ and so $x_1 \notin \overline{F_i}$, because x_1 is a P-point (i = 1, 2). Since x_1 is not in the closed set $\overline{F_1} \cup \overline{F_2} \cup \{x_2\}$, we can find a continuous real-valued map s such that $s(x_1) = g(x_2) - g(x_1)$ and $s(\overline{F_1} \cup \overline{F_2} \cup \{x_2\}) = 0$. Put t = g + s. Then one has:

$$t(x_1) = g(x_1) + g(x_2) - g(x_1) + g(x_2) = g(x_2) + s(x_2) = t(x_2),$$

 $t(F_1) = 0, t(F_2) = 1.$

Since t is constant on the only nontrivial fiber of f, we can prove, as before, that C_1 and C_2 are completely separated. \Diamond

The result of the above proposition was already known for compact F-spaces (see Th. 1.1 in [2]).

Proposition 2.4. Let X be an F-space and let $f: X \to Y$ be a quotient map such that the union B of the nontrivial fibers is finite. Then Y is an F-space if and only if in every fiber of f there is at most one non-P-point.

Proof. Suppose that $x_1, x_2 \in X$ are non-P-points and belong to the same fiber. We can find disjoint cozero sets A_1 , A_2 which do not meet the closed set $B \setminus \{x_1, x_2\}$ and such that $x_i \in A_i$, i = 1, 2. As in Prop. 2.3, we can prove that Y is not an F-space.

Conversely, we can use the following easy fact: if a quotient map collapses only two points x_1 , x_2 to one point y, then y is a P-point if and only if both x_1 and x_2 are P-points. Therefore the proof can be done inductively, using Prop. 2.3. \Diamond

A subset T of a space X is said to be a P-set if, for every G_{δ} subset G of X such that $T \subseteq G$, one has $T \subseteq \operatorname{Int}(G)$. Finite sets of P-points are closed P-sets.

If the space X is normal, Prop. 2.4 can be generalized.

Theorem 2.5. Let X be a normal F-space and let $f: X \to Y$ be a quotient map with only one nontrivial fiber $T = f^{-1}(y)$. Then Y is an F-space if and only if either T is a P-set or there is $z \in T$ such that $T \setminus \{z\}$ is a P-set.

Proof. Suppose Y is an F-space and T is a not a P-set. This means that there is a G_{δ} subset G of X such that $T \subseteq G$ and $T \not\subseteq \operatorname{Int}(G)$. Suppose $z \in T \setminus \operatorname{Int}(G)$ and put $F = X \setminus G$. Then $z \in \overline{F} \setminus F$. Let $F = \bigcup_{n \in \mathbb{N}} B_n$, where B_n is closed for every n. Since X is normal, for each n there is a cozero set C_n such that $T \cap C_n = \emptyset$ and $B_n \subseteq C_n$. Then $C = \bigcup_{n \in \mathbb{N}} C_n$ is a cozero set, disjoint from T, such that $z \in \overline{C}$.

Suppose $T \setminus \{z\}$ is not a P-set. Then there is a G_{δ} subset G_1 of X such that $T \setminus \{z\} \subseteq G_1$ and $(T \setminus \{z\}) \setminus \operatorname{Int}(G_1)$ contains at least one point x. Let U, W be disjoint open neighborhood of z and x respectively. Then $G_2 = G_1 \cup U$ is a G_{δ} which contains T. Furthermore $x \in G_2 \setminus \operatorname{Int}(G_2)$. In fact, if $x \in V \subseteq G_2$, where V is open, then $x \in V \cap V \subseteq G_1$, since V is disjoint from V, and this is a contradiction. As

before, we can find a cozero set C', disjoint from T, such that $x \in \overline{C'}$.

Let E, E' be disjoint cozero neighborhoods of z and x respectively. Then $D = C \cap E$ and $D' = C' \cap E'$ are disjoint cozero sets which do not meet T and such that $z \in \overline{D}$, $x \in \overline{D'}$. By Lemma 2.2, the images of D and D' are disjoint cozero sets in Y. But y is in the intersection of their closures, hence they are not completely separated. Contradiction.

We will prove the converse in the case $T\setminus\{z\}$ is a P-set. The other case is similar and easier. Suppose C_1 , C_2 are disjoint cozero sets of Y. We can start defining F_i , i=1,2 and g as in Prop. 2.3. The cases $y\in C_1$ and $y\in C_2$ are proved exactly in the same way, since g is constant on T. If $y\notin C_i$, i=1,2, then $T\setminus\{z\}$ is disjoint from F_i , i=1,2 and so it is also disjoint from $\overline{F_i}$, because it is a P-set. Since $\overline{F_1}$ and $\overline{F_2}$ are disjoint, we can suppose, without loss of generality, that $z\notin \overline{F_1}$. Then T is disjoint from $\overline{F_1}$ and we can find a continuous real-valued function t, defined on X, such that $t(\overline{F_1})=0$ and $t(T\cup \overline{F_2})=1$. Since t is constant on T, we can prove, as in Prop. 2.3, that C_1 and C_2 are completely separated. \Diamond

Proposition 2.6. Let X be a normal F-space and let $f: X \to Y$ be a quotient map. Suppose that $M = \{y \in Y \mid |f^{-1}(y)| > 1\}$ is a closed discrete subset of Y. Then Y is an F-space if and only if, for every $y \in M$, either $f^{-1}(y)$ is a P-set or there is z_y such that $f^{-1}(y) \setminus \{z_y\}$ is a P-set.

Proof. For every $y \in M$, put $T_y = f^{-1}(y)$. If Y is an F-space, we can prove that every T_y satisfies the required properties in the same way as in the above theorem, taking E and E' disjoint from the union of the other nontrivial fibers.

Conversely, suppose C_1 , C_2 are disjoint cozero sets of Y and let $F_i=f^{-1}(C_i),\ i=1,2$. Then $\overline{F_1},\ \overline{F_2}$ are disjoint. Let y be a point in M. As in the proof of the above theorem, T_y cannot meet both $\overline{F_1}$ and $\overline{F_2}$. Put $M_1=\{y\in M\mid T_y\cap\overline{F_1}\neq\emptyset\},\ M_2=M\setminus M_1$. Let

$$H_i = \overline{F_i} \cup \left(\bigcup_{y \in M_i} T_y\right), \quad i = 1, 2.$$

 H_1 and H_2 are disjoint saturated closed subsets of X. Then there exists a continuous real-valued map t on X, constant on the fibers of f, such that $t(F_1) = 0$, $t(F_2) = 1$. This implies that C_1 and C_2 are completely separated. \Diamond

Note that, for the "only if" part of the last four results, the hypothesis that X is an F-space is not necessary.

3. Images of G-int spaces under quotient maps

We give a result about continuous images of G-int spaces under closed irreducible maps.

Theorem 3.1. If X is a G-int space and $f: X \to Y$ is is a closed irreducible (surjective) map, then Y is also a G-int space.

Proof. Let $G \subseteq Y$ be a nonempty G_{δ} . Then $f^{-1}(G)$ is also a G_{δ} , hence it contains a nonempty open set U. Since f is onto, $f(U) \subseteq G$ and G(G) = G an

$$Y \setminus G \subseteq Y \setminus f(U) \subseteq f(X \setminus U)$$

and so $Y \setminus f(X \setminus U)$ is a nonempty open set which is contained in G. \Diamond Let X be a G-int space and T a closed subset of X. Obviously, if T is a non-open G_{δ} , X/T is not a G-int space. We prove that the converse is also true.

Theorem 3.2. Let X be a G-int space and let $f: X \to Y$ be a quotient map with one nontrivial fiber $T = f^{-1}(y)$. Then Y is a G-int space if and only if either T is open or it is not a G_{δ} .

Proof. We have only to prove that, if T is not a G_{δ} , then Y is a G-int space. Let G be a G_{δ} subset of Y. The only nontrivial case is when $y \in G$. In this case, $G_1 = f^{-1}(G)$ is a G_{δ} of X which properly contains T. Therefore $G_1 \cap (X \setminus T)$ is a nonempty G_{δ} , hence it contains a nonempty open subset U. Since U is saturated with respect to f, f(U) is a nonempty open subset of G. \Diamond

Corollary 3.3. Let X be a G-int space and let $f: X \to Y$ be a quotient map with one nontrivial fiber $T = f^{-1}(y)$. Suppose T satisfies one of the following conditions:

- (i) T is a P-set;
- (ii) T is nowhere dense;
- (iii) $T=\overline{A}$, where A is an open F_{σ} (in particular, a cozero set). Then Y is a G-int space.

Proof. (i) and (ii) are obvious.

(iii) In a G-int space the closure of an open non-closed F_{σ} is never a G_{δ} (in particular, the closure of a non-closed cozero set is never a zero set). In fact, if A is an open non-closed F_{σ} and G is a closed G_{δ} containing A, then $G \setminus A = G \cap (X \setminus A)$ is a nonempty G_{δ} , so it contains a nonempty open set (disjoint from A). \Diamond

The statement (ii) was essentially known (see Lemma 1.4.2 in [7]). It could be also deduced by Th. 3.1. In fact, it is easy to see that a

quotient map with one nontrivial fiber T is always closed and it is irreducible if and only if T is nowhere dense.

Corollary 3.4. Let X be a G-int space with no isolated points and let $f: X \to Y$ be a quotient map with one nontrivial fiber $T = f^{-1}(y)$. Then Y is a G-int space with no isolated points if and only if T it is not a G_{δ} .

Proposition 3.5. Let X be G-int space with no isolated points and let $f: X \to Y$ be a quotient map. Suppose $M = \{y \in Y \mid |f^{-1}(y)| > 1\}$ is a closed discrete subset of Y. Then Y is a G-int space with no isolated points if and only if, for every $y \in M$, $f^{-1}(y)$ is not a G_{δ} .

Proof. Let Y be a G-int space. Suppose that there is $y \in M$ such that $T = f^{-1}(y)$ is a G_{δ} . Then we can write $T = \bigcap_{n \in \mathbb{N}} V_n$, where each V_n is open and disjoint from $\bigcup_{z \in M \setminus \{y\}} f^{-1}(z)$, which is a closed subset of X. Since every V_n is saturated with respect to f, the singleton $\{y\}$ is a nonempty G_{δ} with empty interior, contradiction.

Conversely, by hypothesis, no point of M is a G_{δ} , and this implies that M is not a G_{δ} . Otherwise, for any $y \in M$, $\{y\} = M \cap W_y$, where W_y is an open neighborhood of y disjoint from $M \setminus \{y\}$, hence $\{y\}$ would be a G_{δ} . Therefore, if $G \subseteq Y$ is a nonempty G_{δ} , then $G \setminus M$ must be nonempty. Then $f^{-1}(G \setminus M) = f^{-1}(G) \cap (X \setminus f^{-1}(M))$ is a nonempty G_{δ} in X and so it contains a nonempty open set U. Since U is saturated with respect to f, f(U) is a nonempty open subset of G. \Diamond

4. Continuous images of Parovičenko spaces

Let X be a Parovičenko space and let T be a closed subset of X. We want to find conditions ensuring that X/T is also a Parovičenko space.

The following two propositions are essentially known.

Proposition 4.1. Let X be a Parovičenko space and let $f: X \to Y$ be a continuous surjective map with one nontrivial fiber T. If T is a not open P-set, then Y is a Parovičenko space.

Proof. Y is an F-space by Lemma 1.4.1 in [7]. The other properties can be easily proved. \Diamond

Proposition 4.2. Suppose X is a Parovičenko space and let $f: X \to Y$ be a continuous surjective map with one nontrivial fiber T. If T is a finite set, then Y is a Parovičenko space if and only if at most one point of T is a non-P-point.

Proof. It follows from from Th. 1.1 and Lemma 1.2 in [2]) and from Lemma 1.4.2 in [7] (or from Prop. 2.4).

Remark 4.3. It is compatible that N^* does not contain any P-points. Under this hypothesis, no space obtained by collapsing finitely many points of N^* to one point can be a Parovičenko space.

We want to generalize Prop. 4.2. We need two lemmas.

Lemma 4.4. Let X be a compact 0-dimensional F-space and let A be an open non-closed F_{σ} in X. Then $|\overline{A} \setminus A| \geq 2^{c}$. Equivalently, if G is a closed non-open G_{δ} in X, then $|G \setminus \operatorname{Int}(G)| \geq 2^{c}$.

Proof. It is easy to prove that one has $A = \bigcup_{n \in \mathbb{N}} C_n$, where the C_n 's are nonempty, clopen and pairwise disjoint. If we choose $x_n \in C_n$, for every n, then $M = \{x_n \mid n \in \mathbb{N}\}$ is discrete. Since X is an F-space and M is countable, M is C^* -embedded in X, hence $|\overline{M} \setminus M| = |\mathbf{N}^*| = 2^{\mathfrak{c}}$. One has $\overline{M} \setminus M \subseteq \overline{A} \setminus A$, because every point of A belongs to a C_n , which contains only one element of M. \Diamond

Lemma 4.5. Let X be a Parovičenko space and let T be a closed not open subset of X. Suppose $T = S \cup \{z\}$, where S is a P-set and $z \notin S$. Then T is not a G_{δ} .

Proof. First suppose that S is closed. If T were a G_{δ} , then $\{z\} = T \cap (X \setminus S)$ would be a G_{δ} and this is impossible, since X is a G-int space with no isolated points.

If S is not closed, then one has $T = \overline{S}$. Suppose T is a G_{δ} . Since S is a P-set, there is an open set U such that $S \subseteq U \subseteq T$. By hypothesis, T is not open, then it must be S = U. This implies $|T \setminus \text{Int}(T)| = 1$, which is impossible by Lemma 4.4. Therefore T is not a G_{δ} . \Diamond

Finally we can prove:

Theorem 4.6. Let X be a Parovičenko space and let $f: X \to Y$ be a continuous surjective map with one nontrivial fiber $T = f^{-1}(y)$, where T is not open. Then Y is a Parovičenko space if and only if T is a P-set or there is $z \in T$ such that $S = T \setminus \{z\}$ is a P-set.

Proof. The "only if" part follows from Th. 2.5. Conversely, the case when T is a P-set has been already considered in Prop. 4.1. In the other case, Y is a G-int space with no isolated points by Lemma 4.5 and Cor. 3.4. Moreover Y is an F-space again by Th. 2.5. The other properties are easy to prove. \Diamond

The proof of the following corollary is easy. It can be also deduced

from Props 2.6 and 3.5 and from Lemma 4.5.

Corollary 4.7. Let X be a Parovičenko space and let $f: X \to Y$ be a continuous surjective map with finitely many nontrivial fibers $T_i =$

 $= f^{-1}(y_i)$, i = 1, ..., n. Then Y is a Parovičenko space if and only if, for every i, either T_i is a P-set or there is $z_i \in T_i$ such that $T_i \setminus \{z_i\}$ is a P-set.

References

- [1] FAULKNER, G. D. and VIPERA, M. C.: Complexity of compactifications of N, Rend. Ist. Mat. Univ. Trieste 25 (1993), 195-209.
- [2] FRIEDLER, L. M. and KITOVER, A. K.: Almost homeomorphic mappings of compact spaces, *Top. Appl.* 81 (1997), 233–246.
- [3] GILLMAN, L. and JERISON, M.: Rings of continuous functions, Van Nostrand, 1960.
- [4] MAWHINNEY, K. J.: Chatacterisics of complexity within the lattice of compactifications, Doctoral thesis, 2003, http://www.lib.ncsu.edu/theses/available/etd-04032003-133822/.
- [5] RUDIN, W.: Homogeneity problems in the theory of Čech Compactifications, *Duke Math. J.* **23** (1956), 409–419.
- [6] PAROVIČENKO, I.: A universal bicompact of weight ℵ, Soviet Math. Dokl. 4 (1963), 592–595.
- [7] VAN MILL, J.: An introduction to $\beta\omega$, in: Handbook of Set-Theoretic Topology, 503–567, North Holland, 1984.
- [8] WALKER, R. C.: The Stone-Čech Compactification, Springer-Verlag, 1974.