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Abstract: In this note we study various types of centralizers in nearring mod-
ules of a nearring R. We then go on to apply this to the isomorphism problem
for nearrings which deals with the problem of finding canonical R-ideals so
that faithful R-modules are isomorphic modulo these canonical R-ideals ob-
taining two results. One of these generalizes a recent result of Stuart Scott
and the other generalizes a result of the author.

1. Introduction

In [6], this author began referring to the following problem as the
isomorphism problem for nearrings:
Given two isomorphic nearrings R and S and two faithful modules G
and H of R and S, respectively, are there canonical normal subgroups
N of G and M of H so that G/N and H/M are isomorphic?
Actually, a formulation of this problem more appropriate for the
- nearring setting would be to replace normal subgroups by R- and S-
ideals so that it reads as follows: ‘
Given an isomorphism @ from a nearring R to a nearring S and two
faithful modules G and H of R and S, respectively, are there respective
canonical R- and S-ideals of N of G and M of H so that there is a
group isomorphism B from G/N to H/M such that
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((g+N)r)B = (g+ N)B(rep)
forallge G and allT € R?

Calling an endomorphism nearring of a group generated by auto-
morphisms an automorphism nearring, an affirmative answer was ob-
tained to the original problem in [6] when G and H are finite perfect
groups and R and S are compatible automorphism nearrings of G and
H, respectively, by using the centers of G and H as the canonical nor-
mal subgroups. A generalization of this automorphism nearring result
will appear in [3]. ‘In a series of papers, Stuart Scott has obtained a
succession of results culminating in [11] with an affirmative answer to
the second formulation of the problem for compatible nearrings using
a type of ideal similar to the Fitting subgroup of a group when the
module modulo this Fitting type ideal has no factors that are central
in a certain sense.

A precise statement of Scott’s result will be given in Sec. 3 .of
this paper where we will prove a more general result for compatible
endomorphism nearrings replacing the assumption of having none of
these central type factors by a weaker assumption requiring the factor
of the module by its Fitting type ideal to be perfect. In Sec. 4 of this
paper we will generalize the result of [6], the most significant part of
which is that the perfect assumption on the groups may be replaced
by the weaker assumption of having the groups modulo their centers
perfect. Further, we also will see that our isomorphism is not only a
group isomorphism, but is actually an isomorphism of the form in the
second statement of the isomorphism problem.

When considering the second statement of the isomorphism prob-
lem, we can simplify both its statement and our notation by identifying
the nearrings R and S in which case it takes on the form: ‘
Given two faithful modules G and H of a nearring R, are there canonical
R-ideals N of G and M of H so that G/N and H/J\/I are isomorphic
R-modules?

In fact, this last formulation of the isomorphism problem is the one
studied in Scott’s work and is the one we will consider in this paper..

Throughout this paper R will always denote a left, O-symmetric
nearring with identity. We also will use [4] as our basic reference on
nearrings and will follow notational conventions and terminology used
in it with one exception: tame conditions will refer to those used in
Scott’s work. Thus, when we say an R-module G is tame, we mean
that each R-subgroup of G is an R-ideal of G, which is equivalent to:
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for each ¢ € G and r € R, given an element z; € G there exists an
element 0 € R such that

(9+z1)r — gr = z:0.
When we say an R-module G is 2-tame, we mean: for each g € G and
r € R, given two elements z1,z, € G there exists an element 8 €R
such that ;
(9+z1)r — gr = 216 and (g + z2)r — gr = z2.
When we say an R-module G is 3-tame, we mean: for each g € G

and r € R, given three elements z1, z5, 73 € G there exists an element
B € R such that ‘

(9+zi)r —gr =218, (9+z2)r — gr = 2283, and (g + z3)r — gr = z30.
The final tame condition we will encounter is for an R-module G to be
compatible, by which we mean: for each g € G and r € R there exists
an element B € R such that

(g+z)r—gr=28

for all € G. A nearring R is called tame (2-tame, 3-tame, compatible)
if it possesses a faithful tame (2-tame, 3-tame, compatible) module G.
Note that if G is a faithful compatible R-module, then the group of
inner automorphisms of G, Inn(@), is contained in R. (Use r = 1.)
Moreover, if R is an endomorphism nearring of G, then R is compatible
if and only if Inn(G) € R [5, Prop. 1.2]. In the terminology of [4], a tame
endomorphism nearring is the same as our compatible endomorphism
nearring. R

Centralizers of subsets of R-modules of a nearring R play an im-
portant role in the study of the isomorphism problem. Unfortunately,
several types of centralizers, often indicated by the same name and de-
noted by the same notation, have been used in the literature over the
years causing readers to have to pay careful attention to which one is
being used. In an effort to rectify this situation, we are going to be-
gin with a careful development of centralizers using different terms and
notation for the various types of centralizers.

2. Centralizers

When we apply a group theoretic term in this paper to a module
G of a nearring R, its meaning and notation for it will be the usual
group theoretic ones. As a first illustration of this, suppose that X is
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a subset of G. When we speak of the centralizer of X in G, denoted
Ca(X), we will mean the usual group centralizer of X in G:

Co(X)={g9eGlg+z=z+gforalze X},
But there are other types of centralizers that play more important roles
when studying nearring modules. Omne, which first appeared in [9], is
what this author has taken to calling the module centralizer of X in G
denoting it by MCq(X) in [7]:
MCe(X)={9e€Glgr+z=z+grforallz € X and for all 7 € R}.

In the next proposition we record some elementary properties of the
module centralizer.

Proposition 2.1. (i) MCg(X) is an R-subset of G contained in
Ca(X).

(ii) If R 1s distributively generated by a multzplzcatwe sernigroup S
and G is an (R, S)-module, then MCg(X) is an R-subgroup of G and
15 an R-ideal of G if X is an R-ideal of G.

. (iit) If G is a tame R-module, then M Cg(X) is an R-ideal of G.
Proof. (i) easily follows from the definition of MCg(X).
(ii) Observe that

MCg(X)={geGlga+z=z+gaforallz € X and for all o« € S}

when R is distributively generated by S. Now if g,h € MCg(X),a € S
and z € X, it is easily checked that (g — h)a+z =z + (¢ — h)« giving
us that M Cg(X) is an R-subgroup of G. If in addition X is an R-ideal
of G, then for any g € MCge(X),h€e G, a€ S,and z € X, ‘

(Ma+z=—ha+ga+ha+z=—ha+ga+z "+ ha=
= —ha+z7 "+ ga4 ha =1+ (")

giving us that M Cg(X) is an R-ideal of G.

(iii) This is a generalization of [9, Prop. 9.1] where X is taken
to be an R-ideal of G with the same proof: If g € MCg(X), we have
gR C Cg(X). Thus the sum of the R-ideals gR, g € MCg(X), is an
R-ideal contained in Cg(G). It now follows that this sum is the same
as MCq(X) giving us MCg(X) is an R-ideal of G. ¢

Another type of centralizer introduced by Stuart Scott that has
played an important role in his work actually involves a distributivity
condition from which a commutativity condition follows. To define it,

let us first introduce the following terminology: we will say that an
R-subgroup H of G is R-distributive with a subset X of G if
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(h+z)yr=hr+azrforalhc H z e X,andr€ R.

We then define the distributor of X, denoted Dg (X), to be the union
of all R-subgroups H that are R-distributive with X. Scott denotes
Dg(X) by Co(X) in [11] and calls it the centralizer of X in G, but
we will not do so to avoid confusion with the usual group central-
izer Cg(X). In the next proposition, we list some basic properties
of DG (X ) ‘

Proposition 2.2. (i) Dg(X) is an R-subset of G contained in MCg(X).

(ii) If R is distributively generated by a multiplicative semigroup
S, G 1s an (R, S)-module, and X is an R-subgroup of G, then Da(X) =
= MCq(X).

(iii) If G is a 3-tame R-module, then Dg(X) is an R-ideal of G.
Proof. (i) It is immediate from its definition that Dg(X) is an R-
subset of G. For its containment in MCg(z), first note that by using
r = —1 in the distributivity condition (k + z)r = hr + zr gives us
Da(X) € Cg(X). Now since Dg(X) is an R-subset of G, it follows
that hr € Cg(X) for all h € H and r € R, which in turn gives us that
De(X) € MCa(X).

(ii) To show the required opposite containment in this setting, let
ze€X,g9€ MCg(X), and r € R. Express 7 in the form

T =E101 + -+ Epay
where ¢; = 1 and «a; € S. We then obtain
(9+z)r = (g+z)(e101 + -+ +enan)
= e1(gon +zon) + - - + en(gon + zay).

Now using the fact that X is an R-subgroup of G, we can rewrite this as
(9+z)r =e1900 + - + engan + 120 + - - + EnTan = gr + T

Thus MCg(X) C Dg(X).

(iii) This is [11, Th. 31.1]. ¢

Whether MCg(X) or Dg(X) is used typically depends on the
context in which one is working. If one is not working in a distributively
generated setting, then Dg(X) may be the more suitable centralizer to
use (although notice by Prop. 2.2(iii) that me must pay the price of
having G being 3-tame before we are assured that Dg(X) is even an
R-subgroup of G). In the case where R is distributively generated
by a multiplicative semigroup S and G is an (R, S)-module—let us
henceforth call this the d. g. setting— MCg(X) is often the preferred
centralizer since it is always an R-subgroup by Prop. 2.1(ii). Moreover,
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Dg(X) agrees with M Cg(X) if X is an R-subgroup of G (a case where
centralizers are frequently used) in the d. g. setting by Prop. 2.2(ii).

As is done in group theory for Cg(X), the definitions of M Cg(X)
and Dg(X ) can be modified to case where G is replaced by an R-
subgroup H of G or X is replaced by a subset X/K of G/K where K
is an R-ideal of G. For e*cample

MCg(X)={h€ Hlhr+z =2z +hrVz € X and Vr € R}
and . . , ; o
MCg(X/K)={9€Glgr+z+K =x+gr+ K Vz € X and Vr € R}.
The reader can easily supply the definitions of Dg(X) and Dg(X/K).

Two important facts concerning centralizers of isomorphic factors
are the following:

Proposition 2.3. Suppose that K < Land M < N are R-ideals of an
R-module G such that L/K and N/M are isomorphic R-modules.

(i) [2, Prop. 1] If G is a compatible R-module, then MCg(L/K)
= MCg(N/M).

(i) [11, Th. 31.2] IfG is a 8-tame R- module then Dg(L/K) =
= Dg(N/M)

Following the convention stated at the begmmng of this section,
when we say an R-module G is nilpotent (solvable) in this paper, we
will mean that G is a nilpotent (solvable) group. In [11], Scott uses
stronger versions of nilpotency and solvability, called R-nilpotency and
R-solvability, which can be defined as follows: An R-module G is R-
nilpotent (R-solvable) if G has a series of R-ideals

(1) 0=Gyp<G 1 <Ge<...<Gp,=G

such that Dg(Git1/Gi) = G (Gig1 < Dg(Gi11/Gi)) for each 1. In
fact, Scott defines G to be R-solvable if for each i, R/Anng(Giy1/G:)
is a ring and Gi41/G; is a ring module of R/Anng(G;+1/G:) (indicated
by saying G;+1/G; is a ring module in [11}), but this is equivalent to
our definition by the following elementary result whose proof involves -

a routine argument that will be left to the reader.
Proposition 2.4. Suppose that G is a faithful R-module. Theﬂ R s a

ring and G is a ring module of R if and only if Da(G) = ;
It is easy to see an R-nilpotent (R-solvable) module is a nilpotentk

(solvable) group. Conversely, in the d. g. setting, if an R-module G
is a nilpotent (solvable) group, it is easy to see that G is R-mlpotenty
(R-solvable) by using the lower central series (derived series) of G for
the series in (1).
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Continuing to follow usual group theory conventions, the Fitting
subgroup of (an additive) group G, denoted

is the sum of the normal nilpotent subgroups of G. If @ is an R-module,
by the Fitting ideal of G, denoted

| MF(G),
we shall mean the sum of the R-ideals of G that are nilpotent groups.

We shall call the sum of the R-nilpotent R-ideals of G the distributive
Fitting ideal of G' and denote it by
DF(G).
It G is 3-tame, DF'(G) the same as L(V) in [11]. Observe that
DF(G) < MF(G) < F(G)

with DF(G) = MF(G) in the d. g. setting and MF(G) = F(G) if R
is the endomorphism nearring of G generated by Inn(G), I(G). If G is
a finite group, it is well-known (see [8], for example) that F(G) is the
maximal nilpotent normal subgroup of G and equals the intersection
of the group centralizers of the principal factors of G. In [10] and [11],
Scott takes his Fitting submodule of a 3-tame R-module G to be the
intersection of the distributors Dg(H/K) over all type 2 factors H/K
of G. The next theorem, which is a restatement of Th. 6.4 of 10 using
our notation, shows that his Fitting submodule is the same as DF(QG)
when G is 3-tame and R satisfies the descending chain condition on right
ideals (dccr) thereby giving us a result similar to the one in the finite
group case.
Theorem 2.5. If G is a 9-tame R-module and R satisfies dcer, then:

(i) DF(G) = ND¢(H/K) where the intersection runs over all type
2 factors H/K of G.

(ii) DF(G)is the mazimal R-nilpotent R-ideal of G.

As an immediate consequence of Prop. 2.2(ii) and Th. 2.5, we have
the following important special case.
Corollary 2.6. If R is a compatible endomorphism nearring of a group
G and R satisfies dccr, then:

(i) MF(G) = NMCg(H/K) where the intersection runs over all
type 2 factors H/K of G.

(i) MF(G) is the mazimal nilpotent R-ideal of G.

Recall that a group G is perfect if G equals its commutator sub-
group, G', or equivalently if G contains no normal subgroup N such
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that G/N is abelian. In the same spirit as we defined R-nilpotency and
R-solvability, if G is an R-module that contains no R-ideal I such that
Dg(G/I) = G, we will say that G is an R-perfect module. It is easy to
see in the d. g. setting that G is perfect if and only if G is R-perfect. In
[11], Scott calls an R-module G perfect if G contains no R-ideal I such
that G/I is a ring module. By Prop. 2.4, Scott’s definition of perfect is
equivalent to our definition of R-perfect.

The next result tells us that perfect modules are monogenic in
many important instances.

Proposition 2.7. Suppose G is an R-module and R satisfies decr.

(i) [6, Lemma 4] If R is a compatible endomorphism nearring of
G, then G is a monogenic R-module if and only if G/G' is a monogenic.
In particular, if G is perfect, then G is monogenic.

(ii) [11, Prop. 10.5] If G is a tame R-module and G is R-perfect,
then G is monogenic.

Sec. 3 of [3] contains versions of the first part of Prop. 2.7 with
alternative assumptions to our dccr assumption.

A large part of [11] is devoted to proving the following remarkable
result appearing as Th. 32.3. '

Theorem 2.8. Suppose that G and H are faithful 3-tame R modules

and R satisfies dccr. Further, suppose that G and H are both R-perfect.

If K < L are R-ideals of G and M < N are R-ideals of H such that

L/K and N/M are isomorphic type 2 R-modules, then
G/Dg(L/K) ~ H/Dg(N/M)

as R-modules.

Two problems arising from Th. 2.8 deserving further investigation
are whether shorter proofs of this theorem can be found and whether
the assumptions of assuming G and H are R-perfect modules can be
weakened.

We conclude this section with a consequence of Ths. 2.5(i) and
2.8 we shall need in the next section.

Corollary 2.9. Suppose that G and H are faithful 3-tame R-modules
and R satisfies dccr. Further, suppose that G and H are R-perfect.
Then

Anng(G/DF(G)) = Anng(H/DF(H)).

Proof. By Th. 2.5(i), it follows that
Anng(G/DF(G)) = NAnng(G/De(L/K))
and
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Amng(H/DF(H)) = NAnng(H/Dg(N/M))
where the intersections run over the type 2 factors L/K of G and
N/M of H. By Th. 3.13 of [1] we know that the type 2 factors of
G and H represent the all the isomorphism classes of type 2 R-modules
(otherwise the annihilators of the socle series of G and H would prop-
erly contain J3(R)) and hence our corollary now follows by Th. 2.8. ¢

3. Isomorphism modulo the Fitting ideal

Sec. 39 of [11] gives various types of similar isomorphism results.
Of these, Cor. 39.4 is the one stated in the third form of the isomorphism
problem given in the introduction of this paper and we shall state it
as our next theorem. In this statement, an R-module G is called Z-
constrained if G contains no Rrideals K < L such that Dg(L/K) = G.
Theorem 3.1. Suppose that G and H are faithful compatible R-
modules and R satisfies dcer. If G/DF(G) is Z-constrained, then
G/DF(G) and H/DF(H) are isomorphic R-modules. ‘

A Z-constrained R-module is easily seen to be R-perfect. The
purpose of this section is to extend Th. 3.1 to the case where R is an en-
domorphism nearring of both G and H and G/MF(G) and
H/MPF(H) (which are the same as G/DF(G) and H/DF(H)) are per-
fect (which is the same as R-perfect). We first do the special case when
G and H are perfect.

Lemma 3.2. Suppose R is a compatible endomorphism nearring of
two groups G and H and R satisfies dcer. If G and H are both perfect
groups, then G/MF(G) and H/MF(H) are isomorphic R-modules.

Proof. As noted in the proof of Cor. 2.9, by Th. 3.13 of [1] there exist
factors of R-ideals L1 /K, ... L, /K, of G representing the isomorphism
classes of type 2 R-modules. Likewise, there exist factors of R-ideals
Ni/Mi,...N,/M, of H representing the isomorphism classes of type
2 R-modules, where we may assume our labeling is such that L;/K; ~
~ N;/M; for each i. By Prop. 2.3 and Cor. 2.6 it follows that '

MF(G) = :MCq(Li/K;) and MF(H) = n:MCy (N:/M;)
and hence G/MF(G) and H/MF(H) are subdirect sums of

@Y G/MCeo(Li/K;) and ® »  H/MCy(N;/ M),

respectively. By Th. 2.8, we may identify G/MCqg(L;/K;) and
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H/MCg(N;/M;). Let us do so and set ;

A= G/MCG(L /K;) = H/MCy (N; /JV[) ;
to simplify our notation. Also, let us denote @ A; by A and denote
the images of G/M F(G) and H/MF(H) in Aby B and C, respectively.
We are going to complete this proof by showing that B =C.- ;

To begin to accomplish this, let 7, denote the inner automorphism
an element b € B induces on B. Since B is a compatible R-module,
there exists an element r, € R such that

TTy = ITy
for all z € B. In fact, we claim the action of r, on A is the same
as conjugation by b. To verify our claim, let 7; denote the projection
from A=@®> A; onto A; and let b = Zb where b; € A;. For any
a =) a; in A where a; € A;, there exist z; € B such that Ty = a4
since B is a subdirect sum of the A;. Usmg the fact that each m; is an
R-homomorphism, . 2

‘—Z( b+az+b)~——a :

and our claim is verified. Likewise we also have that for each c € C’
there exists r. € R such that the action of r, on 4 is conjugatlon by c.
Because of this, for any commutator [b,c], b € B,ceC,.

b,c]=—b+b°=—b+br.€ B
and :
b,c] = (—c)’ +c= (- )rb+cEO

Hence the subgroup [B, C] of A generated by the commutators [b, c] b €
€ B,c € C, which is an R-subgroup of A, will then be an R-ideal of
each of the compatible modules B and C.

~ We next show that [B,C] = B. This will in effect complete our
proof since by symmetry we will also have [B,C] = C. To see this,
suppose [B,C] < B. Let R = R/Anng(B), in which case B is a faithful
R-module. By Cor. 2 .9, C is also a faithful R-module. ‘Since the socle
series of B/[B,C] has ﬁmte length and since socle series factors are
direct sums of type 2 R-modules, there is a maximal R-ideal M of B
with [B,C] < M. Since B/M is a type 2 R-module, C contains a factor
P/Q of R-ideals P and Q isomorphic to B/M. As r. = 1. acts as the
identity on B/M for each ¢ € C, the same result holds for P/Q. But
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then P/Q is abelian forcing B/M to be abelian which is impossible since
B is perfect. Thus we do have [B,C] = B and our proof is complete. ¢

To prove the isomorphism result in the more general case where
G/MF(G) and H/MF(H) are perfect, we shall reduce to the perfect
case using minimal covers as was done in the proof of Th. 39.2 in [11].
For the reader not familiar with covers, let us sketch the details from
[11]. Given a set S of isomorphism classes of type 2 R-modules and a
faithful 2-tame R-module G, let G(S) denote the set of all factors L/K
of G whose isomorphism class lies in §. An R-ideal N of G covers G(S)
if N+ K/K > L/K for all L/K € G(S). If R satisfies dccr and the
elements of S are the isomorphism classes on nonring type 2 R-modules,
then G(S) has a unique minimal cover W in G by [11, Th. 14.6] and W
is R-perfect by [11, Cor. 15.2]. Moreover, if H is another faithful 2-tame
R-module and U is the minimal cover of H(S), then by [11, Th. 17.3],

(2) Anng(W) = Anng(U).

Theorem 3.3. Suppose R is a compatible endomorphism nearring of
two groups G and H and R satisfies dccr. If G/MF(G) and H/MF(H)
are both perfect groups, then G/MF(G) and H/MF(H) are isomorphic
R-modules. '

Proof. We use the notation in the paragraph preceding this theorem.
Observe that we must have

W+ MF(G) =G, :
for if W+ MF(G) < G then G/(W + M F(QG)) contains a nonring type
2 factor since G/ M F(QG) is perfect. But then W would not cover G(S).
Thus

G/]VIF(G’) =W+ MF(Q))/MF(G) ~W/Wn MF(G)
Since W N M F(G) is easily seen to be the maximal nilpotent R-ideal
of W, we must have MF (W) =W N MF(G) by Cor. 2.6(ii). Thus
G/MF(G) ~ W/MF(W)

as R-modules. Likewise,

‘ , H/MF(H)~U/MF(U)

as R-modules. Let
R = R/Anng(W).

By equation (2), we also have
R= R/AnnR(U). ,

As W and U are both perfect, Lemma. 3.2 now gives us that
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W/MF(W) ~U/MF(U) ’
as R-modules. Since this is an R-isomorphism as well, we then have
the desired R-isomorphism G/MF(G) ~ H/MF(H). ¢

4. Automorphism nearrings

Recall from the introduction that an automorphism nearring of a

group G is a nearring generated by a group of automorphisms of G.
In [6] the following theorem was proved where Z(G) denotes the center
of G. :
‘Theorem 4.1. Suppose that G and H are perfect finite groups and
that R and S are compatible automorphism nearrings of G and H,
respectively. If R and S are isomorphic, then G/Z(G) and H/Z(H)
are isomorphic groups.

In this section we shall strengthen this to the next result following
the identification of R and S convention mentioned in the introduction.
Theorem 4.2. Suppose R is a compatible automorphism nearring of
two groups G and H and R satisfies dcer. If G/Z(G) and H/Z(H)
are both perfect groups, then G/Z(G) and H/Z(H) are isomorphic R-
modules.

The change of the finiteness condition from finite groups to dccr
and the change from simply isomorphic as groups to R-isomorphic are
actually minor changes. The most significant change is from perfect to
center by perfect and, of course, is similar to the change from Lemma 3.2
to Th. 3.3. Here, however, we will not use the first result to prove the
second as we did in the last section. Instead we will modify the proof
of Th. 4.1 to obtain the proof of Th. 4.2. We first prove a lemma
generalizing Lemma 3 of [6]. In the statement of this lemma, M Z(G),
called the module center of G, is '

MZ(G) = MCq(G). ,

Observe that MZ(G) = Z(G) if R is an automorphism nearring of G.
Lemma 4.3. Suppose that R is an endomorphism nearring of a group G.
If G/MZ(G) is a monogenic R-module, then every distributive element
of R is an endomorphism of G.
Proof. Suppose that

G/MZ(G) = (g + MZ(G)R
where g € G. Let 2,y € G and «a be a distributive element of R.
Writing o
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T =gr+z and y = gs+ zp where r,s € R and 21,2, € MZ(Q),
we have
(Z+y)a=(gr+z+gs+zn)a=(g(r+s)+ 2z + z)a
Now since MZ(G) = Dg(G) by Prop. 2.2(ii) and (r + s)a = ra + sa,
we obtain , ' '
(z+y)a=g(r+s)a+zia+ 20 =gra+zia+ gsa + 20 =

= (gr + z1)a+ (98 + z2)a = za + ya

and hence « is an endomorphism of G. ¢ , ,

We now prove Th. 4.2. Let A = Aut(G)NR and B = Aut(H)NR
where Aut(G) and Aut(H) denote the automorphism groups of G and
H, respectively. Since G/M Z(G) is monogenic by Prop. 2.8 and since
the elements of B are distributive invertible elements of R, Lemma, 4.3
gives us that B < A. Likewise we have A < B, and hence A = B.

Keeping in mind that both Inn(G) and Inn(H) are contained in
R, let

K; =Inn(G), K; =Inn(H), and N = K; N K.
As we have done previously in this paper, let us denote the inner au-
tomorphism g € G induces on G by 7,. Let L be the inverse image of
N under the homomorphism g — 7,, which is anormal subgroup of G.
In fact, L is an R-ideal of G. To verify this it suffices to show that for
any | € L, lo € L for all o € A since A additively generates R. This
follows since
: Tlg = T la eN .

as N is a normal subgroup of A. , ‘

We next claim that the automorphisms in Ky act trivially on G/L.
For any g € G and o € K5, we have .

[rg,0] =7, o g0 € KiNKy = N.

Thus |1y, 0] = 7; for some [ € L and

JE S ¢ = —
Tgo =Ty = Tg[Tg, 0] = Ty = Tyt

This gives us go = g + 1+ z for some z € Z(G). As Z(G) < I,
go + L = g+ L and hence K acts trivially on G/L as claimed.

We now proceed in a manner similar to the last paragraph of the
proof of Lemma 3.2. The trivial action of K3 on G/L forces L = G, for
suppose we had L < G. Let M a maximal R-ideal of G with L < M.
Since R is a compatible endomorphism nearring of H, there is a factor
P/Q of R-ideals of H that is R-isomorphic to G/M. As Ky = Inn(H)
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acts trivially G/M it acts trivially on P/Q. Hence the factor P/Q
is abelian. But then G/M is abelian violating our assumption that
G/Z(G) is perfect.

Now that we have L = G, we have Inn(G) = K; = N < Ks.
Interchanging the roles of G and H, we have K, = Inn(H) < K; and
hence Inn(G) = Inn(H). Thus for each g € G, there exists an h € H
such that 7y = 73,. The composite

9+Z(G) = 1y=1 — h+ Z(H)
is easily checked to be a group isomorphism from G/Z(G) onto
H/Z(H). Further, it is an R-isomorphism since for any o € A,

(9+2Z(G))o =go+ Z(G) = 190 =7¢

=1F =Thy — ho + Z(H) = (h+ Z(G))o

and our proof is complete. {
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