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Abstract: The concept of a primary ideal has been extended in several ways
to noncommutative ring theory. Generically these are called generalized pri-
mary conditions (right and left). This paper continues the authors’ investiga-
tion of generalized primary ideals and rings. Conditions are given for the in-
tersection of generalized primary ideals to be generalized primary. Ascending
chain conditions on ideals are useful in this context. The Kuratowski-Moore
minimal principle is used to establish the existence of minimal generalized pri-
mary ideals. Consequences of having semicentral idempotents are developed.
Various set inclusion relations and permutation identities are used to estab-
lish conditions for one-sided generalized primary conditions to be two-sided.
Examples are given to illustrate and delimit the theory developed.

1. Introduction

The concept of primary ideal in the context of abstract commuta-
tive rings with unity was introduced by Emmy Noether in her seminar
paper of 1921, [11]. There she used this idea to obtain a decomposi-
tion of ideals in terms of finite intersections of primary ideals. (See [13,
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Ch. 4].) Various authors have extended these ideas to a noncommuta-
tive ring setting, e.g., see [1], [6], [8]. In [9] we began the examination
of several such generalizations of the primary ideal concept from the
viewpoint of the structure theory of rings. This paper continues that
investigation. Here R will always denote a nonzero ring (associative,
not necessarily being commutative or having unity).

An ideal I of R is said to be a generalized right primary (g.r.p.)
ideal if whenever A and B are ideals of R such that AB C I, then
either A C I or B™ C I, for some n. This concept was introduced by
Chatters and Hajarnavis [6], who used the terminology “right primary
ideal.” We say R is a g.7.p. ring if the zero ideal is a g.r.p. ideal.

Similarly, I is a principal generalized right primary (p.g.7.p.) ideal
if whenever A and B are principal ideals of R such that AB C I, then
either A C I or B™ C I, for some n. If the zero ideal is p.g.r.p.,
then we say R is a p.g.r.p. ring. Analogously define generalized left
primary (g.l.p.) ideals and rings, and principal generalized left primary
(p.g.l.p.) ideals and rings. Generally we refer to these four properties as
generalized primary conditions, when taken individually or in batches.

It is immediate that g.r.p. (g.l.p.) implies p.g.r.p. (p.g.l.p.). Ex-
amples are given showing the converse is not true — even for commu-
tative rings. Examples are also given to illustrate that the conditions
indeed are one-sided. In Sec. 4 various set inclusion relations or permu-
tation identities are discussed which yield various one-sided generalized
primary conditions imply other sided conditions of the same type. In
Sec. 3 we continue the development of properties of generalized primary
ideals began in [9]. Exemplary of the results in that section are those
concerning the intersection of generalized primary ideals and those on
semicentral idempotents. Examples are given throughout the paper to
illustrate and delimit the theory. =

2. Basic results

We use the following notation. (Here X is a nonempty subset of R.)

(i) (X)y is the ideal of R generated by X, and ({b})y = (b)z; if
no ambiguity will arise, use ( ) in place of { ) p;

@) r(X)={reR: Xr=0}and (X)) ={re R:rX =0},

(iii) I < R is used for “I is an ideal of R”;

(v )T, I <R, then (T:I), ={re R:Tr CI}and (T:1I), =
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={reR:rT C1I} -

(v) Z(R) is the set of all ideals in R and (Z(R), -) is the associated
multiplicative semigroup; '

(vi) N and Z are the set of natural numbers and the set of ratlonal
integers, respectively.

Note that if (Z(R), -) has a left or right identity, then R itself
must be that element. However, in such a situation R need not be a
two-sided identity for (Z(R), -), as the following example illustrates.
2.1. Example. Let S be the two element semigroup with each element
a left identity and let T' be the semigroup ring Zs[S]. Then T is a left
identity for (Z(T'), -), but not a right identity. A routine calculation
shows that that T is g.l.p. but neither g.r.p. nor p.g.r.p.

For our purposes the condition of (Z(R), -} having a-left or right
identity can often be used in place of stronger hypothesis of the ring R
having a left or right unity. ,

In [9] we gave a lengthy list of conditions which are equivalent
to an ideal being g.r.p. (respectively: g.lp., p.g.r.p., p.gl.p.). The
following such conditions will be useful in the sequel.

2.2. Lemma. Let I < R. ,

(i) I is a p.g.r.p. ideal of R if and only if when A,B < R, B
finitely generated, and AB C I, then A C I or B™ C I, for some n.

(i) I is a p.g.Lp. ideal of R if and only if when A,B < R, A
finitely generated, and AB C I, then B C I or A™ C I, for some n.
Proof. (i) Let I be a p.g.r.p. ideal. Consider A,B < R such that
ABCTIand B=(b1)+---+(bs). Soifa € A, a # 0, then (a) (b;) C I
and hence some power of (b;) is contained in I. So some power of B is
contained in I. The required converse is immediate.

(i) Proceed similarly as in (i). ¢

Observe that in each of (i) and (ii) of Lemma 2.2 one obtains an
equivalent condition if A is restricted to being finitely generated.

Note that if R is either nilpotent or prime, then R is both g.r.p.
and g.l.p. Also, if R is semiprime and either g.r.p. or g.l.p., then R
is prime. A commutative nil ring is always both p.g.r.p. and p.g.l.p.
However, a commutative nil ring need not be g.r.p. (nor g.l.p.), as the
next example illustrates. ,
2.3. Example. Let p be a prime in a unique factorization domain D.
Use P = p+(p™) in D/ (p™) and let W, be the ideal of D/ (p™) generated
by 5. Then W, is nilpotent of index exactly n. Let W = 3_2° @W,,
A=W, and B = Y .°®W,. Since AB = BA = 0 and B is not
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nilpotent, the ring W is neither g.r.p. nor gl.p. Since W is nil and
commutative it is p.g.l.p. and p.g.r.p. ,

2.4. Example. Nil rings are not necessarily p.g.r.p. or p.g.l.p. Let A
and B be nil simple rings that are not nilpotent. (Examples of such
rings were given by Smoktunowicz, [14].) Then § = A® B is a nil ring
which is neither p.g.r.p. nor p.g.l.p., since {(a) (b) = 0 for any nonzero
a€ A beB.

3. Ideals

In this section some further properties of generalized primary

ideals and of ideals in a generalized primary ring are developed. Many
of these results are motivated by analogous results for primary ideals
in the setting of commutative rings with unity, as found in [13, Ch. 4].
3.1. Proposition. Let I < R. If R is a g.r.p. (9.l.p.) ring, then I is
a g.r.p. (9.1.p.) Ting.
Proof. Consider A, B ideals of the ring I such that AB = 0 and
A # 0. Let X = (B)p. By the Andrunakievic Lemma [7, p. 107],
X® C B. Thus AX?® = 0. Now consider (A), IX® = (A+ AR+ RA+
+ RAR)IX3 C AX3® + AX3 + RAX® + RAX3 = 0. Since R is g.r.p.
we have (A) 5 I = 0 or X? is nilpotent and thus B C X is nilpotent. So
consider the case where (A) I = 0. Since A # 0, (4)z I = 0 implies
B C I is nilpotent. Thus I is g.r.p. ¢

Recall that a subring S of a ring R is a subideal of R if there is a
sequence S = Iy < I; < --- < I, = R. The smallest such n is called
the level of the subideal. A subideal of level one is an ideal of R.

3.2. Corollary. Let I be a subideal of R. If R is a g.r.p. (g.1.p.) Ting,
then I is a g.r.p. (g.1.p.) ring.

Proof. This can be established by a routine induction argument on
the level of the subideal.

3.3. Corollary. If T is an ideal of R and I is a g.1.p. (g.1.p.) ideal of
R, then INT is a g.r.p. (g.l.p.) ideal of the ring T.

Proof. Since (T'+ I)/I is an ideal of the g.r.p. ring R/I, by Prop. 3. 1
we have (T'+1)/I is a g.r.p. ring, and hence so is T/(TNI). Thus TNI
is a g.r.p. ideal in the ring T ¢ '

Observe that the following are equivalent for a ring R:

(i) the sum of any set of nilpotent ideals is nilpotent;

(ii) the sum of any set of nilpotent principal ideals is nilpotent.
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Under either of these conditions a p.g.r.p. (p.g.l.p.) ring is g.r.p. (g.1.p.).

A routine calculation establishes that if R has a.c.c. on nilpotent
ideals, then the sum of any set of nilpotent ideals of R is nilpotent. We
will make use of this in the following arguments.

For I any ideal of a ring R, we will use \/— I for the sum of all 1dea1s
T of R such that T™ C I, for some m € N. Equivalently, v/T is the
inverse image, under the natural homomorphism 7 : R — R/I, of the
sum of all the nilpotent ideals in R/I. Observe that under condition
(i) above, (v/I)™ C I, for some n € N.
3.4. Proposition. Let I be a p.g.r.p. (p.g.L.p.) ideal of R. If R/I has
a.c.c. on nilpotent ideals, then VI is a prime ideals of R, and it is the
mintmal semiprime ideal containing I.
Proof. Let A, B < R such that AB C /T and A ¢ +/I. The latter
implies A™ ¢ I, for each n € N. However, there exists m € N such that
(AB)™ C I, as a consequence of the chain condition given. Without
loss of generality, take m to be minimal such. If m = 1, then AB C
C I and B* C I, for some k; so B C v/I. So take m > 1. Then
[(AB)™~1A]B C I and hence either some power of B is contained in I,
or (AB)™ 1A C 1. So(AB)™! C I, a contradiction to the minimality
of m. Thus v/T is a prime ideal. If S is any semiprime ideal of R with
I C S, then (v/T)* C 8, for some n € N, and hence VI C S. ¢
3.5. Corollary. Let R have a.c.c. on ideals. For any p.g.r.p. (p.g.l.p.)
ideal I of R, V/T is a prime ideal of R.
3.6. Proposition. Let I,...,I, be g.r.p. (g. lp) zdeals ofR If R
has a.c.c. on ideals and \/T =+Ii,j =2,...,n, then Nieili is a
g.r.p. (g.l.p.) ideal of R.
Proof. Let n=2and let A, B < Rwith AB C I NI, and A ¢ LN,
Consider the case where A Q I,. Since AB C I, we have B™ C I,
for some m € N. Thus B C +/I; and hence B C +/I3. Using this and
that R/I5 has a.c.c. on ideals we obtain B* C I, for some k € N. Thus
some power of B is contained in I; N I5. Proceed similarly for A € I.

A routine induction argument establishes the desired result for
general n. ¢

Note that the hypothesis that R has a.c.c. on ideals could be
replaced by: R/I; has a.c.c. on nilpotent ideals for each j =1,... ,n

Also observe that the equality of the \/E terms cannot be elimi-
nated from the hypothesis of Prop. 3.6. For example, in the ring Z we
have (2) and (3) are g.r.p. ideals, but (2) N (3) = (6) is not.
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3.7. Lemma. IfI < R and b € V1, then there ezist n € N such that
(o cr.

Proof. There exist ideals I;,...,I, of R such that b € (I3 + ...+
+ Ir,). The image of each I; is nilpotent in R = R/I, so the image of
I + ...+ I, in R is nilpotent. Consequently there exists n € N such
that (I + ...+ I,)™ C I. Hence ({t))" C I. ¢

3.8. Proposition. Let (Z(R),-) have a right (left) identity. If I is an
ideal of R such that /T is a mazimal ideal of R, then I is a p.g.T.p.
(p.g.l.p.) ideal of R.

Proof. Let a,b € R such that (a) (b) C I W1th a) € I. Since I C I
and since +/T is also a prime ideal of R, we have ( ) C VT or (b) CVI.
If (b) C VI, then by Lemma 3.7, ((b))™ C I, for some n. Assume (b) &
¢ /1. Then (a) C +/T and hence ((a))™ C I, for some m. Without loss
of generality take m to be minimal. Note that m > 1. Since v is a
maximal ideal, we have (b) ++/T = R; so (a) (b) + (a) VT = (a) R = (a).
Then (a) C I+({a) VT and hence ({(a))™! C ((a))™ I+ ({a))™VI C I,
a contradiction to the minimality of m. ¢

Recall that for any proper ideal I of a ring R there is a unique

smallest prime ideal containing . Attempting to establish an analogous
result for g.r.p. ideals runs into the difficulty of possibly having an un-
bounded increasing sequence of exponents arise for the ideals involved.
This can be avoided by invoking an additional condition.
3.9. Definition. If there exists n € N such that for each g.r.p. ideal I
of R we have (v/T)® C I, then R is said to be uniformly g.r.p. bounded.
The smallest such n for which this holds is called the uniform g.r.p.
bound for R.

In the proof of the next theorem we make use of a set theoretic
result which is equlvalent to the Axiom of Choice in Zermelo—Fraenkel
set theory.

3.10. Kuratowski~Moore minimal principle ([10, p. 223]). Let S
be a nonempty family of sets. If for each chain C in (S, D), the set NC
15 in S, then (S, D) has a minimal term.

In establishing the next corollary it is useful to note that if I <1 R,
then R/I is a p.g.r.p. (p.g.l.p.) ring if and only if I is a p.g.r.p. (p.g.l.p.)
ideal of R.

3.11. Proposition. Let I be a proper ideal of R and let ) be the set
of all g.r.p. ideals which contain I. If R has uniform g.r.p. bound n,
then (Q, D) contains a minimal term. In particular, the set of all g.r.p.
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ideals of R contains a minimal term.

Proof. Let C be a chain in (£2,2) and let V = NC. So V is an ideal
of R which contains I. To show V is a g.r.p. ideal, let 4, B < R with
AB CVand AZ V. So AB C X, for each X € C, and there exists
Y € Csothat A € X, foreachXEwanhXCY Then B™ C X, for
each such X, and hence B® C V. So V € . By the Kuratowskl—Moore
Minimal Prmc1ple (€2, D) has a minimal term. Using I = 0 we get the
desired minimal g.r.p. ideal of R. {

Similarly one can introduce the concept of uniform g. l p. bound
and get a g.l.p. version of Prop. 3.11.

We next consider the consequences of having a sermcentral idem-
potent in a generalized primary ring. Recall that an idempotent e € R
is left (right) semicentral if exe = ze, (respectively, eze = ex), for each
z € R, [2]. Note that e is left (right) semicentral if and only if eRe = Re,
(respectively, eRe = eR). We make use of the following result. ~
3.12. Lemma. ([5, Lemma 1.1].) Let R be a ring with unity and let e
be a left semicentral idempotent of R. Then eR, R(1—e), and eR(1—¢)
are ideals of R, and 1 — e is a right semicentral idempotent in R.

An analogous result holds for right semicentral idempotents. i
3.13. Proposition. Let R be a ring with unity and let e be either
a left or right semicentral idempotent in R. If R is p.g.r.p. (p.g.l.p.),
then e is either 0 or 1.

Proof. Take e to be left semlcentral Assume e # 0. From eR(1 —¢) -
-eR =0 and R p.g.r.p. we have eR(1 — e) = 0, and hence ex = eze, for

each z € R. Hence e is central and consequently eR- (1 —e)R =0 =

=(1—e)R-eR, which with R g.r.p. gives the desired result. Proceed

similarly if e is right semicentral. ¢

3.14. Corollary. Let R be a ring with unity and let I be a p.g.7.p.
(p.g.l.p.) ideal of R. If R = R/I has a left or right semicentral idem-

potent € = e + I, then either (i) e € I and hence eR + Re C 1, or
(ii) r(e) + l(e) ClI.

Proof. Ife=0, thenee I and hence eR+ Re C I. If € is the unity

element in R, then er =T = T¢, for each T = z + I, and hence ez — x
and ze — z are in I, yielding r(e) +le)CI. ¢

3.15. Corollary. Let R be a ming with unity. If every mazimal ideal of

R is generated by either o left or a right semicentral idempotent, then
every proper p.g.r.p. (p.g.l.p.) ideal of R is a mazimal ideal.

Proof. Let I be a proper p.g.r.p. ideal of R. Then I is contained

in a maximal ideal M = (e), where e is a left or a right semicentral
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idempotent. If e € I, then I = M. Otherwise R/I contains a nonzero
left or right semcentral idempotent, e + I, and hence R =r(e) +eR C
C M, a contradiction. ¢ :

4. Set inclusion relations and permutation identities

In this section we introduce various set inclusion relations and
permutation identities. By imposing these conditions the assumption
of various one-sided generalized primary conditions on rings or ideals
will imply the other sided condition of the same holds, e. g g.r.p. implies
g.l.p. :

4.1. Set inclusion relations

In each of the following if R does not have unity then assume the
arithmetic is carried out in a suitable extension ring which has unity.
This takes care of the situation that arises for zero exponents. ,
4.1.1. If X,Y < R, then there exist 4, j, k,1 > 0 such that XR'Y R’ C
CYRFXR!.

4.1.2. If X,Y < R, then there exist 1, j,k,! > 0 such that R7XR'Y C
CRYRFX.

4.1.3. If X,Y < R, then there exist i,7,k,I,m,n > 0 such that

R'XRIYRF C RlYRmXR”

4.1.4. If X and Y are finitely generated ideals of R, then there exist
m,n > 0 such that XR™Y CYR"X.

4.1.5. If X and Y are ﬁmtely generated ideals of R, then there emst
i,J,k,1 > 0 such that R*XR'Y C RFYR'X. L

4 1.6. If X and Y are finitely generated ideals of R then there exist
i,4,k,1 > 0 such that XR'YR/ CYRFXR.

Note that in each of the above relations the exponents may depend
on the choice of X and Y. ‘

Observe that 4.1.1 implies 4.1.3 and 4.1.6, while 4.1.2 1mphes 4.1, 3.
and 4.1.5. Furthermore, 4.1.4 implies both 4.1.5 and 4.1.6. Also note
that if R has unity then each of the six set inclusion relations above
vields XY C Y X. Since X and Y are arbitrary this then yields XY =
=YX.

Of course all commutative rings satisfy each of the above set in-
clusion relations. However, there are many noncommutative rings that
satisfy one or more of these. Some such rings arise from permutation
identities, which we discuss next. ;
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4.2. Definition. A semigroup S is said to satisfy a permutation
identity if there exists a permutation m on 1,...,n, n > 1, such that
81" 8n = Sx(1) " Sx(n) foreach sy,... ,;s, € S. A ring R is said to be a
permutation identity ring if the multiplicative semigroup (R, -) satisfies
a permutation identity. For background on permutation identity rings
see [4] and on semigroups satisfying a permutation identity see [12].

Observe that if (R,-) satisfies a permutation identity m, then
(Z(R),-) also satisfies the same identity. However it is possible for
(Z(R), ) to satisfy a permutation identity and (R, -) not satisfy any per-
mutation identity. For example, if R is a noncommutative simple ring
with unity, then (R, -) satisfies no permutation identity, but (Z(R),-),
being commutative, satisfies the identity XY =Y X. 3
4.3. Example. Let 7 be a permutation on1,... ,n, with n > 2 and
(1) # 1. If (Z(R),-) satisfies the permutation identity given by ,
then R will satisfy 4.1.1. In particular this occurs if (Z(R),-) is left
permutable, i.e., zyz = yzz, for each z,y, z € Z(R). So left permutable
rings satisfy 4.1.1. Similarly, if 7 is a permutation with 7(n) # n,
and (Z(R),-) satisfies the permutation identity given by m, then R will
satisfy 4.1.2. In particular this occurs if (Z(R),-) is right permutable,
ie., zyz = zzy, for each z,y,z € Z(R). Examples of such rings and
methods of constructing further examples can be found in [3], [4].

4.4. Example. Let S be the two element semigroup with both el-
ements being right identities. Then the semigroup ring 7' = Zs[S ]
right permutable, hence satisfies 4.1.1. But it does not satisfy 4.1.2
This ring is g.r.p., but not g.l.p. nor p.g.l.p.

4.5. Example. Putcha and Yaqub have shown that if S is a semigroup
satisfying a permutation identity, then there exist m € N such that
zaby = zbay, for each a,b € S,z,y € S™, [12]. Thus every ring R for
Wthh (Z(R),-) satisfies a permutation identity must satisfy 4.1.3 with
7 =m = 0. In particular, every permutation identity ring satisfies 4.1.3
With j=m=0. '

We now use set inclusion relations to establish connections be-

tween generalized primary conditions, one-sided yielding two-sided.
4.6. Proposition. If R satisfies 4.1.1 (4.1.2) and R is g.r.p. (9.l.p.),
then R is g.L.p. (g.7.p.).
Proof. Let R satisfy 4.1.1 and be g.r.p. Consider A, B < R such that
AB = 0, with A # 0, B # 0. Then there exist 4,7,%,{ > 0 such that
BRIAR? C AR*BR! C AB = 0. Since B # 0, we have R'AR’ is
nilpotent, and hence A is nilpotent. Thus R is g.1.p.
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Proceed similarly if R satisfies 4.1.2 and is g.1.p. ¢
4.7. Corollary. Let I be a g.r.p. (g9.l.p.) ideal of R such that R = R/I
satisfies 4.1.1 (4.1.2). Then I is a g.Lp. (9.7.p.) ideal of R.
4.8. Corollary. Let R satisfy 4.1.1 (4.1.2). Then every g.r.p. (g.1l.p.)
ideal of R is a g.l.p. (g.7.p.) ideal of R.
Proof. The set inclusion relations 4.1.1 and 4.1.2 are inherited by
homomorphic images. ¢
4.9. Proposition. Let R satisfy 4.1.3.

(i) Ifr(X) =0 and R is g.7.p., then R is g.lp.

(ii) IfI(R) = 0 and R is g.Lp., then R is g.r.p.
Proof. (i) Let A, B <I R such that AB = 0, with A = 0, B # 0. Then
there exist i,4,k,1,m,n > 0 such that REBRIAR* C RlARmBR”
C AB = 0. So either R'B = 0 or R7ARF is mlpotent The latter
yields A is nilpotent, and RZB = 0 cannot occur because r(R) = 0, and
B #0.

(ii) Proceed similarly as in (i). ¢
4.10. Corollary. Let R satisfy 4.1.3.

(i) If I is a g.r.p. ideal of R and (R: I), C I, thenI is a g.1.p.
ideal of R. ,

(ii) If I is a g.l.p. ideal of R and (R : I); C I, then I is a g.Lp.
ideal of R. o ,
Proof. (i) The condition (R : I), C I implies r(R/I) = 0. This and
the inheritance from R of 4.1.3 in R/I, yields the desired result using
Prop. 4.9(i).

(ii) Proceed similarly using Prop. 4.9(ii). 0
4.11. Proposition. Let R satisfy 4.1.4.

(i) If (R) =0 and R is p.g.r.p., then R is p.g.Lp.

(ii) Ifr(R) =0 and R is p.g.L.p., then R is p.g.r.p.
Proof. (i) Consider A, B < R such that AB = 0, A# 0, B # 0, and
B is finitely generated. Then there exist m,n > 0 such that BR™A C
C AR™B C AB = 0. So either A is nilpotent or BR™ = 0. The latter,
together with 1(R) = 0, implies B = 0, a contradiction.

(ii) Proceed similarly as in (i). ¢
4.12. Corollary. Let I < R such that R/I satisfies 4.1. 4

Q) If(R:I), C1I and I is a p.g.r.p. ideal, then I is a p.g.Lp.
ideal.

() f(R:I), C1I and I is a p.g.Lp. ideal, then I is a p.g.7.p.
ideal. : ‘ T ‘
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Observe that R/I may satisfy 4.1.4 without R itself satisfying
4.1.4 since an ideal X/I of R/I can be finitely generated, yet the ideal
X in R not be.

4.13. Proposition. Let 1(R) =0 = r(R).

(i) If R satisfies 4.1.5 and R is p.g.r.p., then R is p.g.lp.

(ii) If R satisfies 4.1.6 and R is p.g.L.p., then R is p.g.T.p.
Proof. (i) Let A, B be finitely generated ideals of R such that AB = 0,
A # 0, B # 0. Then there exist i,5,k,1 > 0 such that REBRIA C
C RFAR'B C AB = 0. Using that R is p.g.r.p. we have either A is
nilpotent or R*BR? = 0. The latter and 1(R) = 0 = r(R) yields B = 0,
a contradiction. ;

(ii) Proceed similarly as in (i). ¢ _

4.14. Corollary. Let I < R and assume that (R: I),U(R: 1), C 1.

(i) If R/I satisfies 4.1.5 and I is a p.g.r.p. ideal, then I is a p.g.Lp.
ideal.

(ii) If R/I satisfies 4.1.6 and I is a p.g.l.p. ideal, then I is a
p.g.7.p. ideal.

It is worth noting that the set inclusion relations given in 4.1
can also be considered as conditions imposed on the ordered semigroup
(Z(R),-, C). Furthur connections between this ordered semigroup and
the structure of the underlying ring R will be given in a subsequent
paper by the second author and R. Tucci.
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