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Abstract: The present paper is devoted to the study of flags in Euclidean
three-space. Coordinates of flags are defined and a point model in a projective
space is discussed. We study special subsets of the manifold of flags and show
the close relations to Euclidean kinematics and Non-Euclidean geometries.

1. Introduction

A flag F in a three-dimensional space is a triplet (P, G, E), where
P is a point, G is a line, and F is a plane with P € G C E. A possible
way to introduce coordinates in the set of flags is the following: Consider
the three-dimensional space to be a projective one. Then points in P3
can be identified with the one-dimensional subspaces of a vector space
K*, where K is any commutative field (if the space is assumed to be
Pappian). The planes of P? can be identified with the linear forms
of K* or equivalently with the one-dimensional subspaces of the dual
vector space K%*. The lines G C P3, represented by homogeneous
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Pliicker coordinates correspond to certain one-dimensional subspaces
of K* A K4

In this setting exactly those one-dimensional subspaces of the ten-
sor product V := K* ® (K* A K*) ® K** correspond to flags in P? =
= P3(K*) that represent triplets comprising points P, lines G, planes
E,suchthat P G C E. '

In [9] this model was used in order to study the flag variety of a
projective three-space. There the flag variety appears as the intersec-
tion of the Segre variety Sz 5.3 C P?° (see [7] for the exact definition)
with a 63-dimensional subspace of P%. Automorphisms of the flag
variety and automorphisms of P3 turn out to determine each other mu-
tually. Unfortunately, V" has a very high dimension which is not useful
in practical computations.

The flag variety associated with n-dimensional projective spaces
is treated in [3], [4]. The close relation to representations of the group
PGL(n + 1,C) is discussed in [5], [6].

The contributions of the present paper are the following: We con-
sider the above mentioned three-dimensional space to be a Euclidean
one and introduce coordinates in the set of flags in Sec. 2. Afterwards we
present a point model of the set of flags in Sec. 3. The equiform trans-
formations of Euclidean R?® induce linear automorphisms (collineations)
of a certain six-dimensional cone in the model space. Sec. 3 also deals
with pencils of flags and other submanifolds of the flag manifold. As
an application of coordinates of flags as defined in Sec. 2 we show how
to characterize pairs of flags in Sec. 4. In this section we distinguish
between flags only with respect to incidence relations of components.
Sec. 5 is given in order to show that the manifold of flags in Euclidean
space R® admits an embedding as hyperquadric in a seven-dimensional
projective space. Finally we conclude and discuss the results in Sec. 6.

2. Coordinates of flags

2.1. Points, lines, and planes ; ,

Consider Euclidean three-space R®. A point P can be represented
by Cartesian coordinates p = (p1, p2, ps)T. Oriented planes E are given
by plane coordinates (eg, e1, €2, e3)” = (eo, e”) with |le|| = 1. An equa-
tion of F is then given by ey + (e,z) = 0, where (-,-) is the standard
scalar product and = = (z1, 22, z3)7.
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A line G in Euclidean three-space can be described by normalized
Pliicker coordinates (g,g), where g is a unit vector parallel to G. The
vector g is called momentum vector and is defined by § := z x g,if X is
any point on G. The momentum vector is independent of the choice of
X on G. Obviously, the thus defined Pliicker coordinates of G satisfy

1) (9,9) =0.

A line G in Euclidean space carries two oriented ones. The coordinate
vectors (g,g) and (—g, —7) represent the different oriented lines in the
same geometric object, i.e. the line G without orientations.

The coordinates (g,7) of a non-oriented line G are homogeneous:
the vector (Ag, Ag) with A € R\ {0} is a coordinate vector of the same
line G. Thus the six coordinates of G can be considered as coordinates
of & point in a five-dimensional projective space P5. ‘

The mapping v : G — (g,9)R € P® is not onto. Only the
points whose coordinates satisfy Eq. (1) appear as images of lines. The
quadratic hypersurface im v = My is called Klein quadric or Pliicker
quadric.

Remark. Here and in the following, the superscript and the subscript
denote the dimension and the algebraic degree, respectively. ¢
Remark. We dropped the norming condition ||g|| = 1 and thus we
allowed g = 0. Without saying it we performed the projective closure
of Euclidean three-space. The mapping v is thus defined for lines at
infinity as well. They are characterized by g = 0 and their v-images
constitute a plane in M$. ¢

'M% is a point model for the set of lines in projective three—space
The point model for the set of lines in Euclidean three-space is M3
without the plane g = 0, see [18], [19], [20]. In order to describe the set
of lines in an elliptic three-space one has to add appropriate norming
Condltlons for Pliicker coordinates to (1), see [1], [13], [15], [17].

2.2. Line elements

A flag F in Euclidean three-space R® consists of a line element
(P,G) and a plane E containing (P, G). In order to define coordinates
for flags in R3 we use coordinates for line elements in R3 as defined in
14).

Let (g,79) be normalized Pliicker coordinates of the line G. Let
further P be the point on G. Then the normalized Pliicker coordinates
of the line element (P, G) is the vector (g,,7) € R”, where v := (g,p).
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Figure 1. Coordinates for line elements

The real value ~ has a geometric meaning (see Fig. 1): It is the
signed distance of P € G to the pedal point of G takmg into account
the orientation of G. ,

A line element in Euclidean space R3 carries two oriented ones.

The vectors (g,7,~) and (—g, —g, —) coordinatize the two oriented line
elements on G pointing in opposite directions, but both are coordinates
of the non-oriented line element (P,G).
Remark. The concept of Pliicker coordinates of lines can be extended
to lines at infinity. This is not the case for coordinates of line elements.
Though line elements (G0, G) With proper lines G and their ideal point
Goo can be described by (g,7, 00), we cannot assign coordinates to line
elements located in the ideal plane in this way. ¢

Again we can drop the norming condition. It is obvious that
(Mg, Ag, Av) describes the same line element in Euclidean space R3, if
XA € R\ {0} and g # 0. Obviously the thus defined coordinates of hne
elements are homogeneous. They allow an interpretation as coordinates
of points in a six-dimensional projective space IPS.

Eq. (1) represents a quadratic cone M3 in P® which at least in-
cludes the set of points representing the coordinate vectors of line ele-
ments in Euclidean R3.

Remark. The point model for the set of line elements-in Euchdean
three-space is a subset of the quadratic cone Mj. The three-dimensional
projective subspace spanned by V = (0,0,0;0,0,0; 1)R and g; = g2 =
= g3 = 0 does not belong to the point model. V is the vertex of M3. ¢

In [14] this point model for the set of line elements was introduced

in order to point out the close relation between equiform kinematics and
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the geometry of line elements. The geometry of line elements turned
out to be useful for the recognition and reconstruction of surfaces that
are invariant under one-parameter subgroups of the group of equiform
motions, see [10].

2.3. Flags

In order to describe a flag F C P? we recall that a flag consists of
a line element (P, G) and a plane E containing (P, G). The plane E is
fixed by a unit normal vector g (see Fig. 2). We define:
Definition 2.1. The vector (9,7,9,7) € R with g # 0, § # 0
is the coordinate vector of a flag F = (P,G,E) in Euclidean space
R?, where (g,7,7) are the normalized Pliicker coordinates of the line
element (P, G) in R® and § is a unit vector with (g,g) = 0.

Figure 2. Coordinates of flags

Remark. We exclude g = 0, as this does not define a line in Eu-
clidean space. Lines with Pliicker coordinates (0,7) are lines in the
ideal plane of the projective closure of R3. The plane component would
not be defined if §=0. Therefore there is the four-dimensional subspace
W:g1i =92 =93 =97 = gs = go = 0 of R® whose points do not
correspond to flags in R3. ¢

‘We observe the following phenomena concerning orientations: Both
the line element (P,G) C F and the plane E € F can be oriented in
two different ways. The orientations of G and F do not depend on each
other. Thus the flag F = (P, G, E) carries four different oriented flags
all of them being in the same orbit with respect to SOs.
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So the coordinate vectors ‘(g: g: §a h/): (g,‘ﬁ, _‘57 7)7 (_g’ "_?_7 /g\a' _7)7
and (—g, —g, —g, —7) describe the four different oriented flags belonging
to only one geometric object: the flag F' without any orientation.

The coordinates (g,9,d,~) of a flag F' as defined in Def. 2.1 deter-
mine F uniquely. The point, the line, and the plane can be extracted
from (9,9,9,7): |
Lemma 2.1. Fach vector (g,7,7,v) € R*® with ||g|| = ||gll = 1 and
(9,9) = (9,9) = 0 is the coordinate vector of a flag F = (P,G,E) in
FEuclidean three-space R3.

The point P, the line G, and the plane E can be found according

to

(2) P=gxg+ns,

(3) G=1(9,9),

(4) E = ('—,det(g’§7 §)7§)

Proof. Given the vector (g,7,d,v) € R1° with the required properties
it is obvious that the line component of F has coordinates (g,g). By
the definition of line element coordinates, especially by the definition
of v, we find the coordinates of the point component P € F as p =
= g X g+ vg. The unit normal vector g together with the point P € FE
and G C E leads to the equation —det(g,7,9) + (g,z) = 0 of E. By
assumption (g,g) = 0 and so the line G is contained in the plane E. ¢
Remark. Note that the four differently oriented flags attached to
F mentioned in Lemma 2.1 can be obtained by choosing appropriate
orientations of g, g, g, and the appropriate sign of v. ¢

3. A point model for the set of flags

The coordinates (g,7,d,) of a flag F are homogeneous, which
means that the vector (Ag, Ag, Ag, \y) with A € R\ {0} also is a coor-
dinate vector of the flag . This can easily be seen using Egs. (2), (3),
and (4) from Lemma 2.1. They lead to the same point, line, and plane
that define the flag.

In the previous section we required that the vectors g and § are
unit vectors. In the following when we deal with homogeneous flag
coordinates we always assume that g and g are of equal length, i.e.
(9:9) = (3,9)-

Now we can interpret the homogeneous coordinates (g,9,9,7v) =
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=(g1,.-- ,910) of aflag F as coordinates of points in a nine-dimensional
projective space P? with base points Bjy,...,Byo. In the analytical
model R'?, B; are the one-dimensional subspaces spanned by the canon-
ical basis vectors.
Remark. We observe a strange kind of homogeneity of coordinates of a
flag. If 7 = (P, G, E) is represented by (g,7,d,7) then the line element
(P, G) with coordinates (g,7,) remains unchanged, if we multiply its
coordinate vector by A € R\ {0}. The normal vector § defines the
plane E even it is not a unit vector. So the vector (\g, A7, 447, Ay) with
p € R\ {0} is the coordinate vector of the same flag F. ¢

Now we can state:
Theorem 3.1. The point model of the set of flags in Fuclidean three-
space is contained in the siz-dimensional algebraic variety M® C P°
given by the equations

(5) (9:9) = (0,9) =0=g} + g5 + 95 — g2 — g2 — g2,
(6) (9,9) = 0= 9194 + 9295 + gags,
(7) ‘ (9,9) = 0= g197 + 9298 + 939o.

Remark. Before starting the proof we note that the points in the
subspace V' : g = g = 0 do not correspond to flags in R%. V is a
four-dimensional subspace of R'° and defines a three-dimensional pro-
jective subspace of the model space P°. Points in this subspace do not
correspond to flags in R3. ¢ ‘
Proof. Given a vector (9,7,7,7) = (g1, .. ,910) € R whose entries
satisfy (5), (6), (7) we can apply Lemma 2.1 in order to find the point,
the line, and the plane defining the flag F.

According to Def. 2.1 we can assign coordinates to a flag such that
they satisfy (5),(6), and (7). ¢

We are able to give even a rational parametrization of the manifold
M?®. This enables us to give a very low upper bound for the algebraic
degree of M® considered as an algebraic variety:
Theorem 3.2. The manifold M® defined by Egs. (5), (6), and (7)
admits a rational parametrization and is at most of algebraic degree 5.
MS is a cone with 0-dimensional vertez Big.
Proof. In order to give a parametrization we let P = (uy,us,ug)?
be the point of a flag. We let further G be parallel to g = (2u1, 2us,
1 —u}—u3)T/M, where M = 1+ u? +u3. Obviously ||g| = 1 and
g=pxg.
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Since g is an isotherm parametrization of the Euclidean unit sphere
S?, we have ||g.1]| = ||lg,2|l and {g,9,1,9,2} form an orthogonal frame.
Here ; denotes the partial derivative with respect to u;.

The normal vector g of the plane component FE has to satisfy
(9:9)=(9,9)—(3,9)=0. So welet g=cos ¢ g llg1[| " +sin¢ g2llg2[ ="
Substituting cos ¢ = (1 — u2)/N, sin¢ = 2uz/N, where N = 1 + u2,
and using the abbreviation Z = 1 — u? — uZ, we obtain the rational
parametrization

MNF(uq,us, us, Ud, Us, Ug) =
= [2u1N, 2uaN, NZ; N(usZ — 2uqug), N(2uius — usZ),
(8) 2N (ugug — u1us);
(1 — ud)(M — 2u?) — dujugus, 2us(M — 2u2) — 2(1 — u2)uyus,
— 2uy (1 — u3) — dugus; N(2uyug + 2ugus + usZ)]T.

Since M, N, and Z are quadratic polynomials in the parameters u;, the
degree of the denominator M N of all coordinate functions equals four.
The numerators of the fourth, fifth, and tenth coordinate function in
(8) are polynomials of degree five. g

Since z1¢ does show up in any of the equations defining M?® it can
be chosen independently and so M® is a cone with generators passing
through Big. ¢
Remark. The manifold M® is the intersection of three quadratic hy-
persurfaces in P. According to the theorem by Bézout one could expect
that the algebraic degree of M5 equals eight.

On the other hand, there are four different vectors (g,79,d,7),
(_ga -3, ,ga “7)7 (_ga -9, '"/g\v _7)7 and (g: g, _/g\a '7) corresponding to the
four different orientations of a flag 7. So we could expect that the
degree of M® is four. ¢
Remark. Egs. (6) and (7) are the equations of two quadratic cones
I'y and T's, respectively. The vertices of I'; and I'; are the three-
dimensional projective subspaces Vi = [By,Bs, Bg, Bip] and V, =
= [By, Bs, Bs, B1o), respectively. Here and in the following [ X1, ... , X,]
denotes the projective subspace spanned by points X1,...,X,. With
(6) and (7) we see that V; CI'; and V, C I'y.

The five-dimensional projective subspaces W1 : T =0, z10 =0
(zr =z =29 —z10=0)and Wy : T=0, 110 =0 (z1 =73 = 25 =
= 210 = 0) contain four-dimensional base-quadrics @; :=I';y N W; and
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Q2 :=I'; NW; both being projectively equivalent to the Klein quadric.

Since the Klein quadric carries two three-parameter families of
planes, the cones I'; carry two three-parameter families of six-dimen-
sional projective subspaces comprising the set of generators.

The intersection of I'; and 'y splits into three-space I = [By, Bs,
Bs, Byg| of multiplicity two and a remaining quadratic surface. This
can easily be verified by intersecting I'y N 'y with an arbitrary line,
which neither is a part of I'; nor of T';.

Eq. (5) is the equation of quadratic cone A that is projectively
equivalent to both I'; and I's. It shares the vertex V5 with I'y. A base
quadric of A is given by (5) together with equations z4 = z5 = z5 =
= Zig0 = 0. <> .

3.1. The group of equiform motions in R3

In the following we want to describe the automorphism of the
variety M® induced by the equiform motions in R3.

An equiform motion p : R3 — R? transforms points z in Eu-
clidean space according to

(9) : ' = aAz + a,

where o € R\ {0}, A € SO3 and a € R®.

Lemma 3.1. The seven parameter group of linear automorphisms
(automorphic collineations) of M® induced by an equiform motion
p: R® = R3 given by (9) transforms homogeneous flag coordmates

(9,9,9,7) according to

g A 0 0 07Ty

7| |44 A4 o0 of|7
(10) 7% o o 4 ofl|g]’

~ at4A 0T o « ~

where A% is the skew-symmetric matriz of the linear mapping T—a X .
Remark. Egq. (10) is nothing but a different representation of the
group of equiform motions in Euclidean space R2. ¢ _

Proof. Applying an equiform motion to a flag F' = (P, G, E), the
coordinates (g,d,d,y) change according to ¢’ = aAg, § = aAg, ¥ =
=(p',¢') = (¢A(g xG+79) +a,0Ag) = aa” Ag+ 0y, and §' = aAg+
+ aA* Ag. Using block matrix notation we find (10). ¢

Remark. The group of Euclidean motions is a subgroup of the group
of equiform motions. Inserting o = 1 into (10) we obtain the subgroup
of automorphic collineations of M® induced by Euclidean motions. ¢
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3.2. Flags sharing two components: pencils of flags

Now we are going to study certain submanifolds of the set of flags
in R3 and ask for the corresponding pomt sets in the manifold MS.
According to [9] we define:
Definition 3.1. A pencil of flags is the set of flags sharmg exactly two
components.

Obviously there are three different types of pencﬂs the flags of
a pencil differ in the point, line, or plane component. The respective
pencils of flags will be denoted by F¢,m, FpE, or Fpa, where the
subscripts point to the fixed elements (see Fig. 3).

Figure 3. Pencils of flags: F¢ g, Fp,g, Fr,c -

From Th. 3.2 we know that M?® is a cone and thus it contains at
least one-dimensional subspaces (lines) of P?. The following result is
elementary to verify:

Theorem 3.3. The pencils of flags correspond to lines in MS.

Proof. It means no restriction to show Th. 3.3 for special pencils of
flags. A Euclidean motion can be used to map the special pencil to any
pencil of the same type.

We can assume that Fg g is given by G = (1,0,0;0,0,0) and

= (0,0,1). Since P € G we have P = (t1/t0,0,0) and Fop =
= (to,O 0;0,0,0;0,0,t0;t1)R, which is a parametrization of a line in
M6 dependmg on the homogeneous parameter t; : o # 0 : 0. Note
that it is an affine line, i.e. the point Fg £(0: 1) = Bjg is missing, since
it does not correspond to a flag in R3. :

Let now Fp g be given by P = (0,0,0) and E = (0,0,0,1). Then
g = (to/t1,1,0) and we find Fp g = (to,%1,0;0,0,0;0,0,%9;£1)R, which
is ‘a line parametrized by a the homogeneous parameter t; : tl #
# 0 : 0. Like in the previous case a point is missing. F (0:1) =

=(0,1,0;0,0,0;0,0,0; 1)R does not define a flag in R3. '
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Finally we let Fp ¢ contain P = (0,0,0) and G = (1,0,0;0,0,0).
With g = (0,¢0/t1,1) we arrive at Fra = (t,0,0;0,0,0;0, t1,10; O)R.
As in the two above mentioned cases, this is an affine line in MS. Like
in the previously mentioned cases the point F. p,c(0: 1) = Bg does not
correspond to a flag in R3. ¢

3.3. Flags sharing one component: bundles of flags

Fixing exactly one component of a flag F we find three different
sets of flags, not all of them corresponding to projective subspaces in
MS. With Fp, Fg, and F £ we denote the set of flags sharing the point
P, the line G, and the plane E, respectively (see Fig. 4). As in the
previous cases the subscripts indicate the shared component.

Figure 4. Flags sharing only one component: Fp, Fg, Fa

3.3.1. Flags through a fixed point ‘

Without loss of generality we can assume that the fixed point
P coincides with the origin of the coordinate system. Thus we can
parametrize Fp by (g,0,7,0). Obviously this manifold of flags is three-
dimensional and we have the following result:
Theorem 3.4. There is a one-to-one correspondence between the set
of oriented flags in Buclidean three-space sharing a fized point and the
group SO3. The set of oriented flags through a fized point forms a
three-dimensional elliptic space. ‘
Proof. It means no restriction to assume that the fixed point is the
origih P = (0,0,0)T of the underlying Cartesian coordinate system.
Assume that g = (—c48p, —545p, cp) T and § = (—CaCbSc—5qCer —SaChSct
+ cqce, —sbsc)T, respectively, where s, = sinz and ¢, = cosz. Note
that this orients the flag. We attach a Cartesian coordinate system
with each flag Fp through P: We let g and g be the third and second
basis vector, respectively. In order to form a right handed basis the
first vector equals § x g. '
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Therefore the matrix A = [(§ x g)T,3%,g7] € SO3 describes the
uniquely determined rotation about the origin that moves the oriented
flag % = (0,0,1;0,0,0;0,1,0;0) to the oriented flag Fp. The values
a, b, c thus can be interpreted as the Euler angles of this rotation, see
2, [11], [12). ot s

It is well known (see e.g. [1], [8], [13]) that the set of Euclidean
rotations about a fixed point forms a three-dimensional elliptic space. ¢

As outlined earlier in this paper a flag in Euclidean space carries
four differently oriented ones. Thus there are four different rotations
about P transforming a certain oriented proto-flag 7% to a non-oriented
flag Fp. These rotations differ in 180°-rotations of the flags about their
line component or the plane’s normal. Therefore the geometric object
flag, i.e. the non-oriented flag, belongs to four different points in elliptic
three-space. We can say the set of non-oriented flags in Euclidean three
space with fixed point covers elliptic three-space four times.
Remark. The set Fp of flags through a fixed point P is invariant
under the three—parametrlc group of rotations leaving P fixed. 0O
Remark. As a consequence of Th. 3.4 the set Fp can be parametrized
by unit quaternions. Obviously one can define a multiplication in the
set of flags sharing P and Fp becomes a group. ¢

3.3.2. Flags with a common plane
The dual counter part (at least from the projective geometric point

of view) of the set of flags Fp through a given point P is the set of flags
Fg with a fixed plane E. It is easily shown that the following theorem
holds:
Theorem 3.5. There is a one-to -one correspondence between the set
of oriented flags with a fized plane E and the set of Buclidean motions
in the plane E. The set of oriented flags with fized plane component is
a three-dimensional quasi-elliptic space. '
Proof. Without loss of generality we can assume E to be the plane

= 0 C R3. The flags with common plane E only differ in their line
elements and can thus be identified with them. So there exists a one-to-
one correspondence between oriented line elements in E and oriented

flags sharing E.

Let Fo = (0, X, E) with O bemg the orlgm and X being the
first axis of the Cartesian coordinate system. Let Fp = (P, G, E) be
the flag with line element (P, G). Then there exists a unique Euclidean
motion p: E — E with Fo — Fp. It is well known, see [8], that the
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set of Euclidean motions of E forms a three-dimensional quasi-elliptic
space. ¢

The set of non-oriented flags with a common plane covers the
quasi-elliptic three-space twice, since both the line elements and the
plane allow two different orientations without changing the geometric
objects.
Remark. The set of flags with common plane is invariant under the
three-parametric group of Euclidean motions in E. ¢

3.3.3. Flags with a common line

Finally we pay attention to the self-dual configuration (at least
from the projective geometric point of view) of flags F sharing a line G.
Obviously F¢ is a two-dimensional manifold of flags and we have:
Theorem 3.6. The set Fg of flags in Fuclidean three-space sharing a
line G corresponds to a plane in MS.
Proof. Without loss of generality we can assume G = (1,0,0;0,0,0).
We let P = (1,%1/%,0,0) and E = (0,0,1,%3/ty). So the homogeneous
coordinate vector of all flags in F¢ is given by P? = (¢0,0,0;0,0,0;
0,to,t1;t3)R, which obviously is a plane in M8.

We can not allow £y = 0 otherwise we loose the line component in
Fc. Thus a line P! in the image plane P? of F¢ is missing. Since the
vector § is prohibited to vanish, the point ¢y : t; = 0 : 0 on P! is also
not part of the image of F5. Consequently the image Fg is a plane
minus a line element. ¢

4. Characterization of pairs of flags

In this section we show how to characterize pairs (Fi, F3) of flags
Fi = (P,G,E) and F; = (Q, H, F) can be characterized by means of
their coordinates. The coordinatization of flags presented in [9] does
not benefit this.

We discuss pairs of flags with respect to the incidence of points,
lines, and plane components. We do not deal with orthogonality and
parallelity of components in order to avoid lengthy discussions.

Again we use normalized coordinate vectors, i.e. ||g|| = ||g]] =
= [|all = lIa]l = 1.

We do not allow point components to coincide with the origin of
the coordinate system, and we also do not allow lines and planes to
pass through the origin. Otherwise the number of subcases would grow
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rapidly while the number of different pairs of flags would not. This can
be avoided by choosing appropriate coordinate systems.

; Q ; ;
. y IQ: . G
¢ a P G r |

Figure 5. Cases 1-4: 1. 71 # F2,2. PE€ F,3. PEF, Q€ E, 4 GNH#

Case 1. The flags F; and F; differ in each component and there is no
remarkable incidence relation except the trivial ones P € G C F and
@ € H C F. There is nothing to characterize. R R
Case 2. P € F is obviously characterlzed by — det(h, h, h)+(p, h) = 0.
Since p = g X g + g, we have

(11) (9xG—hxh+vg,h) =0.

Case 3. In case of P € F and @ € F Eq. (11) is fulﬁlled Accordmg
to Case 2 we have the additional relation

(12) ' (hxh—gxg+nh,g =0.

Case 4. The pair of flags with G N H # 0 is easily characterized by
characterizing intersecting lines G and H, respectively. This is done
with the well-known formula (see [15], [17])

(13) {g,h) + (g, h) = 0.

Figure 6. Cases 5-8: 5. P€e H,6. P=Q, 7. Pe F, GNH #90,
8. ENF=G,Pec H

Case 5. Consider the case where G and H intersect in P. From the
previous case we have the first condition (13) for the coordinates of
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F1 and F3, respectively. Since P € H we have p = g X g+ vg = gx
xh/(h,g). Here we used a formula for the intersection point of inter-
secting lines G and H. This formula can be found in [15]. (It is only
valid in those cases where G' does not pass through the origin of the
coordinate system.) Multiplying the latter equation by g we find the
remaining characterization as

(14) 7(h,G) = det(g,9, h).
Case 6. Now we consider the case GNH = P = Q. Obviously (13) is

valid since the intersection point of G and H exists. With Case 5 we
have (14) and

(15) n(h,g) = det(h, k,7).

Case 7. Let now ENF = G. Consequently G N H # () and thus (13)
is fulfilled. Since G is contained in F' we have

(16) (9,h) =0 and det(h, B, R)g +h xg =0,

because there is no unique intersection point of F' and G.

Case 8. Now we consider ENF = G and GNH = P. Since GNH # 0
(13) is valid. As indicated in Case 5 we additionally have (14). Since
G is contained in F, the point P is too. So (11) is valid.

The condition for G C F is given by (16) and the condition for
- H C F reads

(17) (h,g) =0 and det(g,7,5) + 5 x h = 0.

The Pliicker coordinate vector of ENF and the coordinate vector

(9,9) of G are a multiple of each other. This can easily be verified with
the above relations.

P=Q | P

Figure 7. Cases 9-12: 9. Q€ G=ENF,10. ENF =G, P = Q,
11.G=H,12.G=H,P=Q
Case 9. Now we consider ENF = G and GN H = Q. Obviously (13)

and (15) are valid. For G C F and H C E the respective conditions
(16) and (17) are fulfilled.




44 B. Odehnal

Case 10. Now we let ENF = G and P = Q. This case is characterized
by (13), (16), (14), and (15) since P = Q.

Case 11. The case G = H is easily characterized by (g,7) = (h, k).
Case 12. If G = H and P = @ we have

(18) (9,9,7) = (b, hym).

Figure 8. Cases 13-17:-13. E=F,14. GNH =P, 15. P=Q,
' 16. G=H, 17. F1 =7

Case 13. The case F = F of coinciding planes appears if and only if
(19) (— det(g,5,h),9) = (~det(h, B, ), ).
In this case the lines G and H have a common point or are at least
parallel. So (13) is also valid.
Case 14. If now GN H = P we have (14) besides the equations of the
previous case, i.e. (13) and (19). |
Case 15. If £ = F and P = () we have (19). As outlined in Case 13
the planes F and F have a common point or they are at least parallel,
equation (13) is valid. According to Case 5 we have (14) and (15)
characterizing this case.
Case 16. In case of E = F and G = H we have (18). The coordinate
vectors of F; and F5 differ only in the last entries.
Case 17. The simple case of F; = F; is detected immediately, because
we have
(9,9,9,7) = (h, hy h,m).

Figures 5, 6, 7, and 8 are given in order to help the reader. These
are only incidence tables.
Remark. The above discussion could easily be extended. Pairs of
flags can not only be characterized with respect to incidence relations.



Flags in Euclidean three-space 45

They could also be characterized by with respect to orthogonality and
parallelity of components. ¢
Remark. In a similar manner to the definitions in [9] we can call two
flags 71, and F, related, if they differ in exactly two components. We
call two flags adjacent, if they differ in exactly one component.

With the discussions above we can give analytic characterizations
of related and adjacent flags. The related ones appear in Cases 6, 10,
11, 13, 14. Adjacent pairs of flags are described in Cases 12, 15, 16. ¢

5. Flags and the group of Euclidean motions

Consider a flag 7 = (P, G, E) in Euclidean three-space R3. The
coordinates (g,7,d, ) of F may be taken with respect to the coordinate
system g := {(0,0,0)T; e1, e3, e3} with e; being the canonical basis of
R3. In the following the vectors g and g may be unit vectors.

Now we attach a Cartesian coordinate system ¥ with F. We let
P be the origin of 3, the first axis points in the direction of G, and the
second axis shall coincide with the plane’s normal. Thus the third axis
is uniquely determined if we want ¥ to be right handed and F becomes
oriented.

Obviously F can be uniquely represented by the position of ¥

relatively to ¥o. It is well known (see e.g. [2], [11], [12]) that there
exists a uniquely determined Euclidean motion px : R3 — R3 that
transforms ¥ to X. Thus we can say:
Theorem 5.1. There is a one-to-one correspondence between the set
of oriented flags in Euclidean three-space R® and the set of Euclidean
motions in R3. The group of Buclidean motions considered as o differ-
entiable manifold is a point model for the set of flags in R3.

Again we recall that the geometric object flag carries four orienta-
tions which only differ by certain rotations. So there are four Euclidean
motions moving a certain proto-flag to a given non-oriented flag.
Remark. The matrix A, the vector a, and « from (9) determining the
equiform (indeed Euclidean) motion moving ¥ to ¥ can be expressed
in terms of the coordinates (g,3,9,y) of the flag F associated with 3:
a=1,A=[Gxg)7, 95,9 anda=gxg+7g. O

Furthermore it is well known that Euclidean motions can be rep-
resented by normed biquaternions (see e.g. [2], [11], [12]). The iden-
tification of Euclidean motions with normed biquaternions performs
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a mapping of Euclidean motions to points of the well known Study
quadric S§ [16], [17], which is a point model of the set of Euchdean
motions. With Th. 5.1 we have: ;

Theorem 5.2. There is a one-to-one correspondence between the 'Set
of oriented flags in Euclidean three-space and the points of the Study
quadric. The Study quadric S6 can serve as a point model of the set of
flags in Buclidean R3. : ;

- The four different orientations of a flag lead to four different Eu-
clidean motions and thus to four different points in the study quadric
all of them belonging to the same geometric object: the naked flag
without orientations.

Remark. By identification of flags with Euclidean motions we solve
the embedding problem of the set of flags in Euclidean three-space R3.
Obviously we find a hypersurface (quadric) ,5’2 C P7 being a point model
for the set of flags in R3. ¢ ‘ S
Remark. The coordinatization of the set of flags by means of biquater-
nions is not very useful in practical applications and computations.
Th. 5.2 only answers the question whether it is possible to embed the
flag manifold of Euclidean R3 into a low dimensional space or not, and
how low can this dimension be. ¢

6. Conclusion and future research

We defined coordinates of flags in Euclidean space R? by means
of Pliicker coordinates of lines and line elements. These coordinates
can be used to characterize pairs of flags and decide whether these are
related or adjacent. -The characterization can be extended to parallel
and even orthogonal elements. This extension seems to be not very
complicated but long winded and uninteresting to the author.

The homogeneity of coordinates of flags leads to the interpreta-
tion of coordinates for points in a projective space. The manifold M?®
is defined by the obvious constraints to the coordinates of a flag. This
model has some advantages. One is the very low dimension of the em-.
bedding space compared to the model used in [9]. The other advantage
is the possibility to characterize flags which (from the incidence geo-
metric point of view) seems to be useful. Even the group of equiform
transformation admits a 81mple descrlptmn in the presented model (cf.
Lemma 3.1).
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We will not keep in secret that the presented model has disadvan-
tages. The coordinates of flags defined in Def. 2.1 can not be extended
to flags containing points, lines, or planes at infinity. Thus the pro-
jective closure as performed for the Klein model of line space and the
resulting closure of the Klein quadric by adding a plane to it, does nor
work for M. The subspaces which are missing here can not be added to
M5 such that the points therein represent flags in projectively extended
Buclidean three-space.

Acknowledgements. The author is grateful to Hans Havlicek, Mar-
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fruitful discussions. :
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