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Abstract: This paper deals with the inequalities involving the Schwab-
Borchardt mean and other bivariate means including those introduced by
H.-J. Seiffert in [12], [13]. The main results of this paper are obtained using
a representation of the Schwab—Borchardt mean in terms of the R-hyper-
geometric functions of two variables. The Ky Fan type inequalities for the
particular means contained in the family of the Schwab—Borchardt means are
also included.

1. Intro duction

The Schwab—Borchardt mean of two numbers z > 0 and y > 0,
denoted by SB(z,y) = SB, is defined as
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( /yz — 2

arccos(z/y)

(1.1) SB(my) =4 g2

arccosh (z/y)
Lz, T=1y.

, 0Lz<y

, y<zx

The notation SB used for the mean under discussion has been intro-
duced in [7]. Other symbols employed to denote this mean are Cj4
(see [1, p. 257]) and L1y (see [4]). The Schwab—Borchardt mean is the
iterative mean, i.e.,

SB = lim z, = lim y,,
n—oo n—0o0

where
Lo =%, Yo=Y, ITpy1= (mn + ’.Un)/27 Yn+1 = /Tn+1Yn,
n=0,1,... (see [4, (2.3)], [1, p. 257, [2]). The invariance property

(1.2) SB(z,y) = 5B (mjy,\/mjyﬁ

will be frequently used in this paper. Other elementary properties of
the mean in question include monotonicity in its variables, i.e., SB(z,y)
increases with an increase in either 2 or y and the homogeneity of degree
one

(13) . SB(z,\y)=ASB(z,y) (A>0)

In what follows the unweighted power mean of order p € R of z
and y will be denoted by A,. Recall that :

Ap(z,y) = Ay = (zp—éﬁ)l/p, p#0

/TY, ' p=0.
For the sake of notation we will write G, A, and Q for the power means
of order 0, 1, and 2, respectively. The last of these three means is often

called the root-mean-square. Other means used in this paper include
two means introduced by H.-J. Seiffert

(1.4) Plz,y)=P = G

orcs (m_y>
2 arcsin
r+y

(see [12]),
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(1.5) T(z,y) =T = Ty
2 arctan (z y)
(see [13]), the logarithmic mean
z—y T—y

(1.6) L{z,y)=L = =

Inz -1 -

BETHY 9 arctanh (m y)

r+y

(see, e.g., [5]) and a mean introduced in [7]

(1.7) M(z,y)=M = =y
2 arcsinh <as y)
T+y
Inequalities involving Seiffert means are derived in [14], [10]-[11], and

in [8]. It has been pointed out in [7, (2.8)] that the means defined in
(1.4)—(1.7) are particular cases of the Schwab—Borchardt mean, i.e.,

(1.8) L=SB(A,G), P=SB(G,A), M=SB(Q, A), T=SB(A4, Q).
Also, they satisfy the inequalities
(1.9) GSLLPLSASM<LT<LQ

(see [7, (2.10)]). Equalities hold in (1.9) if z = y. It is worth mentioning
that these particular means satisfy the Ky Fan inequalities. Let 0 <
<z,y< i andletz'=1-—z and y' = 1 — y. Writing G’ for G(z',y),
L' for L(z',y"), etc., we have
G < L P
G - L'~ P
(see [7, Prop. 2.2]). ,
This paper is a continuation of our earlier work [7] and deals
mostly with inequalities for the Schwab—Borchardt mean and particular
means mentioned in this section. In Sec. 2 we give some results for the
R-hypergeometric functions of two variables. The main results of this
paper are contained in Sec. 3. Utilizing a relationship between the mean
under discussion and the R-hypergeometric function we prove several
new inequalities. Employing the so-called Ky Fan rules, which have
been obtained in [9], we derive the Ky Fan type inequalities for means
that satisfy the chain of inequalities (1.10).

M

(1.10) <o <
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I
h>|::>
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2. The R-hypergeometric functions of two variables

In this section we give the definition of the bivariate R-hypergeo-
metric functions. Some results for these functions are also included
here. :
In what follows the symbols R, and R will stand for the non-
negative semi-axis and the set of posmve numbers, respectively. Let
b= (b1,b2) eRZ. By Uy , Where

F(bl -+ b'))
'(b1)T'(b2)
we will denote the Dirichlet measure on the interval [0,1]. It is well-

known that up is the probabillity measure on its domain. This in turn
implies that

polt) = (1 gt

/01 pp(t)dt =1

(see, e.g., [5]). Also, let X = (z,y) € R%. Following [5] the R—hyper—
geometric function R,(b; X) (p € R) is defined as

1 o
(2.1) Ry(6:) = [ (w XpPm(0)dt,

where v = (¢,1 —t) and u- X = tz + (1 — t)y is the dot product of u
and X. Many of the important special functions, including celebrated
Gauss’ hypergeometric function »F; and the complete elliptic integrals
Ry and Rg admit the integral representation (2.1). For more details,
the interested reader is referred to Carlson’s monograph [5]. A nice
feature of the R-hypergeometric function is its permutation symmetry
in both parameters and variables. It follows from (2.1) that

(2.2) Rp(b1,b2;7,y) = Rp(bz, b1;y, 7).
For later use, let us record Carlson s inequality [3, Th 3]
- (23) (B (b5 X)]/7 < [Ry (6 X)) 7

(p,g#0,p<q).
We will need the following.

Proposition 2.1. Letp <0, b € R? | and let X,Y € R2 . Then the
following inequality



%
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(24)  Rp(5AX + (1~ NY) < [Ry(6; X)] [Rp(B; V)]

holds true for all0 < A < 1.

Proof. Inequality (2.4) states that the function R, is logarithmically
-convex (log-convex) in its variables. For the proof of (2.4) let us note
that the function z — 2P (z > 0) is log-convex provided p < 0. Thus
the following inequality

(2.5) (Ar 4 (1= A)s)P < (rP)*(sP)1—>

holds true for positive numbers r and s (0 < A < 1).

Making use of (2.1), (2.5) and Holder’s 1nequahty for 1ntegrals we
obtain

Ry(b;AX +(1—-N)Y) = /1 [u- AX + (1= NY)]"ps(t) dt =

B /01 (M- X) + (1= X)(u- Y] o (8) dt <
S /01 [ A 1=\
/ol(u'X)p“ b(%) dt} [ /0 l(u'Y)pﬂ'b(t) dt} .

= [Rp(b; X)) [R5 )] .
The proof is complete. ¢
When p = —1 and b = (4,1), then the corresponding R-hyper-
geometric function is denoted by R¢ (see [5)), i.e.,

) 1
(26) RC(:E)y) = R—l/Z <§: 17$7y> .

A formula connecting R¢ with the mean SB appears in [5] (also see [2,
(2.31)]). We have

(2.7) SB(z,y) = [Ro(=?, 4]

(u- X)P ()] [(u- Y)Pu(8)] "t <

3. Main results

To this end we will always assume that z,y > 0. We are in a
position to prove the following.
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Theorem 3.1. The following inequalities

(3.1) ySB(y,z) < SB*(z,y) < [SB*(y, z) +¥%] /2,
(3.2) Ay SB(\/4,VA) < SB?(z,y),

and

(3.3) SB(y,z) < SBWE, V4)

hold true.

Proof. In order to prove the first mequahty in (3.1) we shall show first
that the following formula

1 ;
(3.4) R_4 (5,1;9:2,342) =y 'Re(y?, 2?)
is valid. To this aim we employ a known transformation for the R-
hypergeometric functions [5, (5.9-19)]

R_q, (b1, b3;2,9) = y" "™ R_,, (a4, 02;53 ),
where a1 + as = by + bo Letting a1 =1,aa=12%,b; =%, by=1and

Fq

next replacing z by a: and y by y? we obtain, usmg the permutation
symmetry (2.2),

1 _ . 1
R-—l <§71;$27 y2) =Y l‘R—l/2 (17 §;x2’y2> =
- 1 -
=y 'R_1/3 (5,1;.?;2,932) =y Ro(y*,2%),

where in the last step we have used formula (2.6). The inequality in
question is established with the aid of (2.7), (3.4), and the inequality

1 o o=
[R——l ('2“,1;332,?;/2) :I < I:RC(mgayd)] ’
which follows easily from Carlson’s result (2.3). We have
2 2]~ 1 2\
ySB(y,z) = y[Ro(y?,2%)] " = [R—l (—2—,1;932,?;“)] <

< [Ro(a?,y%)] ™ = SB(z,y).
For the proof of the second inequality in (3.1) we use Lemma 2. 3 in [6]
to obtain
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1 .
RC’(mzvyz)Rl/2 (33 1;$27y2> > 1.

Application of

1 1
Ry <§, 1; w2,y2> =3 [z +1y”Re(z?,9%)]
(see [5, Table 8.5-1]) gives

1 :
5Rg(:t:2,y2)[m + 12 R (22, yz)] > 1.
Making use of (2.7) we obtain

1
SB%*(z,y) < 5 [mSB(a:,y) +y2].

Since zSB(z,y) < SB*(y,z) (see the first inequality in (3.1)) the de-
sired result follows. Inequality (3.2) follows from the first inequality in

(3.1). Replacing = by A and y by /Ay and next using the invariance
property (1.2) we obtain

(35)  VAySB(v/Ay,A) < SB*(A,/Ay) = SB%(z,y).

Application of the homogeneity property (1.3) gives SB(v/Ay, A) =
= \/ZSB(\/E V/A). Combining this with (3.5) gives the inequality
(3.2). In order to prove (3.3) we use the first inequality in (3.1) with y
replaced by A and z replaced by v Az. The result is

A[SB(A,VAz)] < SB*(VAz, A).

Application of the invariance property (1.2) to the first member and the
homogeneity property (1.3) to the second member of the last inequality
compeletes the proof of (3.3). ¢

Inequalities for particular means defined in Sec. 1 are contained
in Cor. 3.2. Therein we will also use means of an arbitrary order. For

instance, the symbol P, (r # 0) will stand for the first Seiffert mean of
order r which is defined as

r 1/r
P.(z,y) = P. = [P(z",y")] m
Other means of an arbitrary order are derived from means of order one

in the same way.
Corollary 3.2. Let r > 0. The following inequalities

GP<IL*<(G*+P?/2, LA<LP?><(I?+A%)2,

(3.6) AT < M? < (A2 +T2)/2, MQ<T?< (M?+QY)/2,
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(3.7) (GAZP)/* < Ly, < P,
and
(3.8) (Ar AZM)YA < Py < M,

hold true. Inequalities (3.7) and (3.8) are reversed if r < 0.

Proof. Inequalities (3.6) follow immediately from the first inequality
in (3.1) and from (1.8). For instance, substituting z:= A and y:=G
in (3.1) and utilizing the first two formulas in (1.8) we obtain GP <
< L? < (G? + P?%)/2. The remaining three inequalities in (3.6) can be
established in an analogous manner. We omit further details. For the
proof of inequalities (3.7) we substitute z := A, y := G and A := Ay,
in (3.2) and also we let z := G, y := A and A := Ay in (3.3). The
result is '

(3.9) \/aAl/z SB(\/E, \/Al/z) < Lz(x, y) < 534(\/5, \/A1/2 )-

Use of P(z,y)=S(G,A) (see (1.8)) yields P(yz, ) = SBWG,\/A1/2).

This in conjunction with (3.9) gives

\/_G—AI/ZP('\/E:\/g) ..<_ Lz(m7y) ..<_ P4(\/Ea\/§)

The inequalities (3.7) now follow by letting z := 227, y := 3" (r # 0)
and raising all members of the resulting inequalities to the power of
1/(4r). Inequalities (3.8) are derived from (3.2) and (3.3) in a similar
fashion. We let z := G, y := A and A := Ay/; in (3.2) and z := A,
Yy := G and A := A/ in (3.3). The resulting inequalities read as
follows

(3.10) VA Ays SB(VA,[A1)3) < PX(z,y) < SB*VA, 1[A1)).

Using M(z,y) = SB(Q,A) (see (1.8)) we obtain M(yz,/y) =
= SB(VA, /4] /2). Application of the last formula to (3.10) yields

VAA ) Mz, /5) < PYz,y) < M*(Vz, /7).

The last inequalities are generalized to means of an arbitrary order in
the same way as the one used earlier in the proof of (3.7). We omit
further details. ¢

Theorem 3.3. Let x1,z3,y1,y2 > 0. Then
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2 2 2 2
(3.11)  SB(z1,y1)SB(zs,y2) < SB? (\/wl +:v2’\/y1 + Y3 ) .

2 2

Proof. In order to establish (3.11) we let p = —%, b = (3,1), X =
= (z1,91), Y = (23,73) and A = £ in (2.4). The result is

2 2 2 2
T1 %3 Y1 +¥s 2 2
R?:( o °) < Ro(a,47)Re (23, 3)-

F4

Raising both sides of the last inequality to the power of —1 and next
using (2.7) we arrive at (3.11). ¢

Corollary 3.4. Let z > 0 and let Q and A stand for the root-mean-
square and the arithmetic mean, respectively, of T and y. Then

(3.12) SB(z,2)SB(y,z) < SB*(Q, 2),
(3.13) . SB(z, A)SB(y, A) < M*(z,v),
(3.14) SB(z,7)SB(z,y) < §B*(z,Q),
(3.15) SB(A,z)SB(A,y) < T?%(z,v),
and

(3.16) PM < A?, LT < A%,

Proof. Inequality (3.12) follows from (3.11) by letting z; =z, 25 = y
and y; = y» = z while (3.13) is a special case of (3.12) when z = A.
For the proof of (3.14) we let 1 = x5 = 2, y1 =z and Y3 = y in (3.11)
while (3.15) is a special case of (3.14) when z = A. Inequalities (3.16)
follow from (3.12) and (3.14), respectively. To see this we let z := G,
y:= () and z := A. Since the root-mean-square of G and Q is equal to
A, the assertion follows. ¢

Before we will state the last result of this paper, let us recall the
Ky Fan rules which have been derived in [9, Lemma 2.1]. They can be
employed to obtain the Ky Fan type inequalities from the existing Ky
Fan inequalities.

Let a,a’,b, and b’ be positive numbers.

(1)Ifa<band <fg<lorifb<aand1< % <%, then

1 1 1

1
. <ot
(3.17) al -V b

(ii) Ifa’ <V and & then

<t
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(3.18) aa’ < bb'.
(iii) If & < £, then
a a+b b
(3.19) = < Y < v
and
a Vab b
(3.20) > < — < v

In what follows we will assume that z and y are positive numbers
both not bigger than 1/2 and we will write G/ for G(z’,y'), L’ for
L(z',y'), etc., where z' =1 —z and ¢ =1 —y.

Theorem 3.5. The following inequalities
(3‘)1) __.i<i.__}_§i__l_< 11 <i_~i<i_l
G G-I L~P P~-A A-M M-T T

and
(3.22) GG <LL' < PP < AA <MM' <TT'

are valid.
Proof. In order to establish inequalities (3.21) it suffices to apply (3.17)
to (1.10) and (1.9). Inequalities (3.22) are obtained in an analogous
manner utilizing (3.18), (1.10) and (1.9). ¢ o

More Ky Fan type inequalities for the means under discussion
can be obtained with the rule (iii) apphed to (1 10) and (1.9). We omit
further details.
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