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Abstract: The aim of this paper is to study rg-continuous map and rg-
irresolute map and to introduce and study rg-compact spaces and rg-connected
spaces.

1. Introduction

In 1993, N. Palaniappan and K. Chandrasekhara {3], introduced
the concept of regular generalized closed (briefly, rg-closed) sets and
regular generalized open (briefly, rg-open) sets in a topological space.
They also defined regular generalized continuous (briefly, rg-continuous)
map and regular generalized irresolute (briefly, rg-irresolute) map be-
tween topological spaces and studied some of their properties.

The purpose of this paper is to study these mappings and to define
and study the concept of regular generalized compact spaces and regular
generalized connected spaces.

Throughout this paper, spaces X,Y and Z mean topological spaces
(X,7),(Y,0) and (Z,7), respectively. For a subset A of X, the closure,
the interior and the complement of A are denoted by cl(A),int(A) and
AC | respectively.
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2. Definitions and basic properties

Definition 2.1. (1) A set A is said to be regular open (briefly, r-open)
(resp. regular closed (briefly, r-closed)) if A = int(cl(4)) (resp. A =
= cl(int(A4))). The family of r-open (resp. r- closed) sets of a space X
is denoted by RO(X) (resp. RC(X ) 4] ‘
(2) A set A is said to be semi-open (briefly, s—opén) (resp. semi-
closed (briefly, s-closed)), if A C cl(int(4)) (resp. int(cl(4)) C A) [2].
(3) A set A is said to be rg-closed if cl(A) C U whenever A C
C U, where U is r-open. It is said to be rg-open if A is rg-closed
(equivalently F' C int(A) whenever F C A and F is r-closed) [3].
Remark 2.2. In [3], Palaniappan and Chandrasekhara proved that the
union of two rg-closed sets is rg-closed, however the intersection of two
rg-closed sets is not rg-closed as seen in the following example.
Example 2.3. Let X = {a,b,¢,d},7 = {¢,{a}, {b},{a,b},{a,b,c},
{a,b,d}, X}. Take A = {a,c},B = {a,b},then A, B are rg-closed but
AN B = {a} is not rg-closed since {a} C {a} which is r-open and
ca} = {a,c,d} € {a}.
Definition 2.4. The intersection of all rg-closed sets containing a set
A is called the regular generalized closure of A and is denoted by rg-
cl(A). If A is rg-closed, then rg-cl(A) = A. The converse is not true,
since the intersection of rg-closed sets need not be rg-closed.
Lemma 2.5. If AC X, then A C rg-cl{(A) C cl(4).
Proof. Obvious, since a closed set is rg-closed. ¢
Lemma 2.6. If A C B, then rg- cl(A) C rg-cl(B).
Proof. Obvious. ¢ ,
Theorem 2.7. If A is rg-closed and A C B - cl(A), then B is rg-
closed. ,‘
Proof. Let A be rg-closed and A C B. Let U be r-open set containing
B, then A C U, so cl(A) C UBut since B C cl(A), so cl(B) C cl(4) C
CU. Hence, B is rg—closed O

3. Regular generalized continuous map

Definition 3.1. A map f : X — Y is called regular generalized con-
tinuous (briefly, rg-continuous) if f=1(V) is rg-closed in X for every
closed set V of Y. f is called regular-continuous (briefly, r-continuous)
if f~1(V') is r-closed in X whenever V is closed in Y ([3]).
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Theorem 3.2. Let f : X —Y be a map, then the following statements
are equivalent:

(1) f is rg-continuous.

(2) The inverse image of each open set V in'Y is rg-open in X.
Proof. Obvious. ¢
Theorem 3.3. Let f: X —Y be rg-continuous map, then f(rg-cl(A) C
C cl(f(A)) for every AC X.

Proof. Let A C X and f be rg-continuous map. Since cl(f(4)) is a

closed subset in Y, therefore f~1(cl(f(A))) is rg-closed in X, but A C
“HF(A) € FHC(F(A))). Hence f~1(cl(F(A))) is rg-closed subset

of X containing A, therefore rg-cl(4) C f L(cl(f(A)), so f(rg-cl(A)) C

C cl(F(4)). ¢

Theorem 3.4. Let f: X — Y be a map, then the following statements

are equivalent:

(1) For each x € X and each open set VinY with f(z) € V, there
exists an rg-open set U in X such that z € U, f(U) C V.

(2) For every subset A of X, f(rg-cl(4)) C cl(f(A)).

(3) For every subset B of Y, rg-cl(f~1(B)) C f~(cl(B)).
Proof. (1)=(2). Let AC X,z € Aand y = f(z) € f(rg-cl(4)).
Let V' be an open set containing y. From (1), there exists an rg-open
set U in X such that z € U, f(U) C V. Since z € rg-cl(A), therefore
UNA # ¢. Hence, f(U)Nf(A) # ¢. So VN F(A) # ¢ and y € cl(f(4)).
Therefore (2) holds. : '

(2)=>(1). Let z € X,V be an open set containing f(z). Let A =
= f71(VY), then z ¢ A. From (2), f(rg-cl(4)) C cl(F(4)) c VC. So
rg-cl(4) C f1(cl(f(4))) C f71(VC) = A. Therefore A = rg-cl(A4).
Then z ¢ rg-cl(A) and so there exists an rg-open set U containing z
such that U N A = ¢. Hence, f(U) C f(A°) C V.

(2)=(3). Let B C Y, put A = f~}(B). From (2), we have
f(rg-cl(f~1(B))) < el(f(f~*(B))) C cl(B). Hence rg-cl(f~*(B)) C
C FA(B)). |

(3)=(2). Let A C X and B = f(A). From (3), rg-cl(4) C
C rg-c(f7(B)) € fHcU(f(A)). So f(rg-cl(4)) C cl(f(A)). This
completes the proof. ¢
Remark 3.5. It is obvious that if f is continuous, then it is rg-
continuous but the converse is not true as seen in the following example:
Example 3.6. Let X =Y = {a,b,c}, 7 = {¢,X,{a,b}}, 0 =
= {¢,Y,{a,b},{c}}. Let f: (X,7) — (Y,0) be defined by f(a) = c,
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f(b) = b, f(c) = a. Then f is rg-continuous but it is not continuous
since f~1({c}) = {a} is not closed in X.

Remark 3.7. It is proved in [3] that the composition of two rg-
continuous maps need not be rg-continuous.

Theorem 3.8. Let f: X — Y be rg-continuous and g : Y — Z be
continuous, then go f :-X — Z is rg-continuous.

Proof. Let V be closed set in Z, then g7*(V) is closed in Y. But since
[ is rg-continuous then f~1(g~1(V)) is rg-closed in X. Therefore, go f
is rg-continuous. ¢

Definition 3.9. A map f: X — Y is called rg-irresolute if f~1(V) is
rg-closed in X for every rg-closed set V of Y [3]. It is called irresolute
if f~1(V) is s-open in Y for every s-open set V of Y ([1]).

Theorem 3.10. A map f: X — Y is rg-irresolute if for every rg-open
set A of Y, f~1(A) is rg-open set in X.

Proof. Obvious. ¢ :
Remark 3.11. It is obvious that if f : X — Y is rg-irresolute, then
it is rg-continuous but the converse is not true as seen in the following
example:

Example 3.12. Let X =Y = {a,b,c}, 7 = {9, {a},{c}, {a c} X}
o = {¢,{a},Y}. Define f : (X,7) — (¥,0) by: f(a) = b, f(b) =

= f(c) = ¢, then f is rg- continuous but it is not rg-irresolute since {b}
is rg-closed in Y but f~({b}) = {a} is not rg-closed in X.

" Theorem 3.13. Let f: X - Y, G:Y — Z be rg-irresolute mappings,
then go f : X — Z is rg-irresolute map.

Proof. Let V be an rg-closed set in Z, then g=!(V) is an rg-closed set
in Y. But since f is rg-irresolute, therefore f=*(g~1(V)) is an rg-closed
set in X. So we have that (go f)~1(V) = (g~ 1(V)) is an rg-closed
set in X. Therefore go f is rg-irresolute. ¢

Theorem 3.14. If f : X — Y is rg-irresolute mapping, then for every
AcC X, f(rg-cl(A)) C rg-cl(f(4)).

Proof. Let AC X, then rg-cl(f(A)) is rg-closed in Y, but f is rg-ir-
resolute, so f~1(-cl(f(A))) is rg-closed in X. Also, AC f~(f(4)) C
C fHrg<l(f(4))).  So, rg-cl(A) C rg-cl(f 1 (rg-cl(f(4))) =
= f71(rg-cl(£(A))). So f(rg-cl(4)) C rg-cl(f(A4)). ¢

Remark 3.15. Irresolute maps and rg-irresolute maps are independent
of each other as shown in the following example.

Example 3.16. (1) Let X =Y = {a,b,c}, 7 = {¢, {a},{b},{a, b}, X}
o = {¢,{a},{b,c},Y}. Let f: (X,7) — (Y,0) be the identity map,
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then f is irresolute but not rg-irresolute since f~'({a}) = {a} is not
rg-closed in X.

(2) Let X = {a,b,c,d}, 7 = {&,{c,d},X},Y = {p,q}, 0 =
= {¢,{p},Y}. Let f: (X,7) — (¥,0) defined by f(a) = f(b) =
= f(d) = p, f(c) = q. Then f is rg-irresolute but it is not irresolute
since {p} is s-closed in ¥ but f~1({p}) = {a,b,d} is not s-closed in X.

4. rg-compact spaces

Definition 4.1. (1) A collection {4, : @ € V} of rg-open sets in
a topological space X is called rg-open cover of a subset B of X if
B Cc U{Ay : @ € V} holds.

(2) A topological space X is called regular generalized compact
(briefly, rg-compact) if every rg-open cover of X has a finite subcover.

(3) A subset B of X is called rg-compact relative to X if for every
collection {Aq : @ € V} of rg-open subsets of X such that B C U{4, :
: a € V}, there exist a finite subset V, of V such that B C U{A, :a €
€ Vo}

(4) A subset B of X is said to be rg-compact if B is rg-compact
as a subspace of X.
Theorem 4.2. FEvery rg-closed subset of rg-compact space X is rg-
compact relative to X.
Proof. Let A be rg-closed subset of X, then A® is rg-open. Let
O = {Gq : @ € V} be a cover of A by rg-open subsets of X. Then
W = O U A€ is an rg-open cover of X, ie., X = (U{Ga: @ € V}) U
U AC. By hypothesis, X is rg-compact. Hence W has a finite subcover
of X say (G1UGaU---UG,) U AC. But A and AC are disjoint, hence
ACGiUGyU---UG,. So O contains a finite subcover for A, therefore
A is rg-compact relative to X. ¢
Theorem 4.3. Let f: X — Y be a map: ‘

(1) If X is rg-compact and f is rg-continuous bijective, then'Y is
compact.

(2) If f is rg-irresolute, and B is rg-compact relative to X, then
f(B) is rg-compact relative to Y .

(3) If X is compact and f is continuouse surjective, then Y is
Tg-compact.
Proof. (1) Let f: X — Y be an rg-continuous bijective map, and X
be an rg-compact space. Let {Ay : € V} be open cover for Y, then
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{f7'(Aa) : @ € V} is an rg-open cover of X. Since X is rg-compact,
it has a finite subcover say {f~1(A1), f~1(Aq), ldots, f1(A,)} but f
is surjective, so {Aj, Ao, ‘. n} is a finite subcover of Y. Therefore,
Y is compact. ;

(2)Let BC X be rg-compact relative to X, {Aq : @ € V} 'be any
collection of rg-open subsets of ¥ such that f (B) C U{4y:a eV}
Then B C U{f'(A4s) : @ € V}. By hypothesis, there exist a finite
subset Vo of V such that B C U{f1(4,) : @ € V,}. Therefore, we
have f(B) C U{As : @ € V,} which shows that f(B) is rg-compact
relative to Y. ; ; ;

(3) Let A = {A, : @ € V} be an rg-open cover of Y. Since
J is continuouse, therefore f~!(A,) is open in X. The collection
W = {f71(As) : @ € V} is an open cover of X. Since X is com-
pact, W has a finite subset say {f (A1), f~1(42),... ,F 1 (An)} which
cover X. Since X = f(A;)U f(Ag) U f(AR) and f is surjec-
tive, therefore Y = f(X) = f(f A )Uf (A)u---uft ( n)) =

= FF A U F(FH(A2)) U+ U F(F~1(An)) C A1 U Ay U--- U A4,
Thus {4, A4,,... A} is a ﬁmte rg-open subcover of Y, and Y is rg-
compact. ¢

5. rg-connected spaces

Definition 5.1. A space X is said to be regular generalized connected
(briefly, rg-connected) if it can not be written as a disjoint union of
two non empty rg-open sets, otherwise it said to be rg-disconnected. A
subset of X is said to be rg-connected if it is rg-connected as a subspace
of X.
Theorem 5.2. For a space X, the followmg are equwalent

(1) X is rg-connected.

(2) X and ¢ are the only subsets of X which are both rg- open and
rg-closed.

(3) Each rg-continuous map of X into some discrete space Y with
at least two points is a constant map.
Proof. (1)=(2). Let X be rg-connected, and A be an rg-open and rg-
closed subset of X. So A€ is both an rg-open and an rg-closed subset
of X. Since X is the disjoint union of the rg-open sets A and AC, one
of these must be empty, that is, A = ¢, or A = X.

(2)=>(1). Let X be rg—dlscon.nected ie, X = AU B where A
and B are disjoint non-empty rg-open subsets of X. Then A is both
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rg-open and rg-closed. By assumptlon A= ¢ or A= X, therefore X
is rg-connected.

(2)=-(3). Let f: X — Y be rg-continuous map from X into the
discrete space Y with at least two points, then {f~ y):yeY}isa
covered of X by rg-open and rg—closed sets. By assumption, f~(y) =
=¢or XforeachyeY. If f7l(y) =¢p forally € Y, thenflsnot
a map. So there exist s exactly one point y € ¥ such that f~1(y) # ¢
and hence f~!(y) = X. This shows that f is a constant map.

(3)=(2). Let O # ¢ be both an rg-open and an rg-closed subset
of X. Let f : X — Y be rg-continuous map defined by f(0) = {y} and

f(O°) = {w} for some distinct points y and w in Y. By assumption f
is constant, therefore 0 = X. ¢
Remark 5.3. It is obvious that every rg-connected space is connected
but the converse is not true as seen in the following example:
Example 5.4. Let X = {a,b,c},7 = {¢,{a},{c},{a,c}, X}. X is
connected but not rg-connected since {a,c}, {b} are disjoint rg-open
sets and X = {a,c} U {b}.
Theorem 5.5. Let f: X — Y be a map:

(1) If X is rg-connected and f is rg-continuous surjective, then
Y is connected.

(2) If X is rg-connected and f is rg-irresolute surjective, then Y
18 Tg-connected.

(3) If X is connected and f is continuouse surjective, then Y is

rg-connected.
Proof. (1) Let Y be disconnected, then Y = A U B, where A and
B are disjoint non-empty open subsets of Y. Since f is rg-continuous
surjective, therefore X = f~1(A) U f~1(B) where f~1(A), f1(B) are
disjoint non-empty rg-open subsets of X. This contradicts the fact that
X is rg-connected. Hence, Y is connected.

(2) Suppose that Y is not rg-connected. Put Y = A U B, where
A, B are disjoint non-empty rg-open subsets of Y. Since f is rg-ir-
resolute surjective, therefore X = f~1(A) U f~1(B), where f~1(4),
f7Y(B) are disjoint non-empty rg-open subsets of X. So X is not
rg-connected, a contradiction.

(3) Suppose that Y is not rg-connected. Let Y = AU B, where
A, B are disjoint non-empty rg-open subsets of Y, so they are open.
Since f is continuose surjective, f~1(A), f~1(B) are disjoint open sub-
sets of X and X = f~1(A) U f~1(B) contradict the fact that X is
connected, therefore Y is rg-connected. ¢
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