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Abstract: We give a classification of affine surfaces with planar affine normals
which admit a one parameter subgroup of Lorentzian motions.

In three-dimensional euclidean space cylindrical surfaces can be
characterized by the fact that the normals are parallel to a plane. The
corresponding surfaces in affine geometry are called surfaces with pla-
nar affine normals. This class of surfaces has been investigated among
others by B. Opozda in [9] and B. Opozda, T. Sasaki in [10]. Denote
by S and V the affine shape operator and the induced connection re-
spectively (for definitions see Sec. 1 or [8]). A surface (which is not an
improper affine sphere) has planar affine normals if and only if S is of
constant rank 1 and im S is parallel with respect to V [9, p. 79]. In
[9] there is given a method how to construct these surfaces using the
solutions of certain differential equations (see also [8, p. 220]).

In the present paper we classify surfaces with planar affine nor-
mals admitting a 1-parameter subgroup of Lorentzian motions in three-
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dimensional Minkowski space. In case of Lorentzian rotations with
timelike or spacelike axis (see Sec. 2 the surfaces with planar affine nor-
mals are well known ([4], [5], [15]). They also appear as examples of
surfaces with locally symmetric induced connection V in [8, p. 220] and
[3, p. 210].

1. Affine surfaces |

Concerning the following basic facts of affine differential geometry
we refer to [8]. Let f: M — R® be an immersion of a 2-dimensional,
smooth, orientable, connected, differentiable manifold M in the stan-
dard affine space R3 Denoting by V the standard flat connection in
R? and by ¢ a vector field transversal to f, we have the equatlons of
Gauss and Weingarten

(1) Vx fo(Y) = fu(VxY) + G(X,Y)¢
and
(2) Vx€=—f.(SX) + r(X)¢

for arbitrary vector fields X,Y tangent to M. This gives an affine con-
nection V (the induced connection) and a symmetric bilinear map G,
a (1,1)-tensorfield S (the shape operator) and a 1-form 7 on M. The
immersion f (the surface ® = f(M)) is called nondegenerate, if G has
rank two, a fact that is independent of the transversal vector field £. In
the following we restrict our considerations to nondegenerate surfaces.

Let v¢(X,Y) := det (fu X, f.Y, £), where det is the standard vol-
umeform in R3 (parallel with respect to V). Then the connection V is
equiaffine with respect to vg, iff £ is a relative normal, that means r = 0
on M. Denoting by v the volumeform of G the gffine normal is (up
to sign) the unique transversal vectorfield £ with the property Ve = vg.
In this case G is called the Blaschke metric and S the affine shape op-
erator, which is selfadjoined with respect to G. The affine curvature K
and the affine mean curvature H are defined by

(3) K :=det(S), H := (1/2)tr(9).
Denoting I the identity map a surface is called a proper or improper
affine sphere if S = pI where p # 0 or p = 0. In case of an improper

affine sphere the affine normal vector is constant hence H = 0, K = 0.
The induced connection V is locally symmetric, if VR = 0 or
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equivalently V Ric = 0. Here R and Ric denote the curvature tensor of
V and the Ricci tensor respectively. Further V is projectively flat iff it
is projectively equivalent to a flat connection. It is well known, that V
is projectively flat iff the Ricci tensor Ric satisfies the Codazzi equation

(VxRic)(Y, Z) = (VyRic)(X, Z).
Denoting by (u,v) or (u! := u,u? := v) local coordinates, we write

partial derivatives of a vector function g with respect to the local coor-
dinates '

9 __0
Gy = Oud g 4yik = 8u98u’“ q.
If we put
(4) Dj = det(fy1, fi2, frjk ), D:= det(D;y),
then the components of the affine metric G are
(5) Gjx = |D|7Y*Dyy..

That means that the surface ® = f(M) is nondegenerate, iff D # 0. In
case of D > 0 and D < 0 the surfaces are locally strongly convex and
non-convex, respectively. The affine normal vector £ can be calculated

by
(6) ¢ :=(1/2)Ax,
where A is the laplacian with respect to G.

If £ has no critical point then {(M) is a curve iff rank S=1 ([10]).
A special case occurs when the affine normals of a surface f(M) are
parallel to a plane; we say f(M) has planar affine normals. That
means £(M) is a curve in a plane ¢, which contains the origin.

2. Motions in Minkowski space R?

In the following
(7) ds? = —dz? + dy? + dz*

is the indefinite metric in Minkowski 3-space R3. Affine transformations
respecting (7) are called Lorentzian motions. The possible non trivial
1-parameter subgroups can be written in the following way ([2, p. 310})
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(8) Y| — |0 cosv —sin v y|+p| 0{,
\z \0 sinv  cos v \z 0

T /coshu sinh v 0 z ( 0
(9) Yy | +— | sinhv cosh v 0 yl+p| 0],

N\ e 2w\ (B (fe
(10) byl % 1-— % v yl+p % —v

z v —v . 1 4 vz

In case of p = 0 we have Lorentzian rotations fixing the points of an
axis g which is timelike (z-axis), spacelike (z-axis) and isotropic (z =
=y,z = 0) in case of transformations (8), (9) and (10), respectively.

In case of p # 0 the transformations are called Lorentzian screw
motions. Transformations (8) and (9) are compositions of a Lorentzian
rotation around a nonisotropic axis g with a translation parallel g. In
case of transformation (10) the orbits are cubic parabolas carried by
parabolic cylinders which are equal by translation. A map of type (10)
is called a cubic screw motion ( “kubische Schraubung” in K. Strubecker
[12], [13, p. 58] or “Grenzschraubung”) in W. Wunderlich [17]). A cubic
screw motion has no proper fixed point.

Remark 1. In case of (8), (9) and (10) exactly the pencil of planes
x = const., z = const. and = = y, respectively, are invariant.

3. Rotational surfaces with planar affine normals

3.1. Rotational surfaces with timelike and spacelike axis

Surfaces admitting Lorentzian rotations with timelike and space-
like axis coincide with the proper affine surfaces of rotation of elliptic
and hyperbolic type, respectively, in the sense of W. Siiss [16] and P. A.
Schirokow [15]. So we have the following result (see [4, p. 168], [5]):

Theorem 1. Let & C R3 be a Lorentzian surface of rotation with
timelike azis and planar affine normals which is-not an improper affine
sphere. Then ® admits a representation in local coordinates
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Flu,v) = (u, r(u) cosv, r(u) sinv)T and
r(u) = a sinu + G coswu, or

r(u) = a sinhu + 8 coshu

with (o, B) € R?\{0, 0}.

In case of spacelike axis

f(u,v) = (r(u) coshv, r(u)sinhv, u)T

with the same possibilities for r(u) as above.
Remark 2. These surfaces are well known, as they appear as examples
for surfaces with locally symmetric induced connection V for instance
in [3, p. 210] and [8, p. 220]. Because the affine shape operator is
diagonalizable for the surfaces of Th. 1, V is projectively flat, too ([9,
Th. 3.2]).

Remark 3. For improper affine spheres admitting Lorentzian rotations
with timelike or spacelike axis see [5, p. 168] or [14].

3.2. Rotational surfaces with isotropic axis

Theorem 2. Let ® C R} be a Lorentzian surface of rotation with
isotropic azxis and planar affine normals. Then ® is an improper affine
sphere and in pseudoisothermal coordinates (with respect to the affine
metric) ® admits the representation

2

(11)

v v2 AT
) = (et o)+ ww), 5 (et o)+ w(w) v av(u+0) )

F4

where

2
3 u2

w(u) =¢ (%— +0z3> +Pu (a€ ]R\{O}, B € R).

In a suitable coordinate system @ solves
(12) 6zz = 3y? + 2ex(z — a)(z? + az — 202) + 128z(z — ) — 622,

where e = +1 and e = —1 refers to locally convex and locally non convex
surfaces respectively. So the surfaces in consideration are algebraic of
order four. The affine normals are parallel to the lines x =y = 0.
Proof. (a) The Lorentzian rotation (10) (p = 0), o say, has the axis
z =y,z=0. Applying o to the curve (c;(u),cz(u),0)T gives the local
parametrization
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Do

v

' T
+ c1(u), —5:(61 (u) — ca(u)) + ca(u), vicy (u) — cz(u))> .

From Rem. 1 the planes z = y,z = 0 are invariant, so we have planar
affine normals iff the affine normal & = (¢, £2, £3) fulfills

(14) & (u,v) = €% (u,v).

Denotmg by a dot the denvatlve with respect to u, we calculate Dy
according to (4) in case of surfaces (13)

(15) D11 = (6162 —¢1é2)(c1 —c2), D1 = 0, Doz = — (&1 -‘c'2)(c1’:—cg)‘2.

So from (5) we have G;; = G;;(u)(j =1,2),G12 = 0. In this case it is
easy to see that the affine normal is

1 1 1 d [ Gag
1 i .
( 6) f 2G f’ll RYe 2G22 4G22 (du <G11>> f’l“

With (13) and (16) condition (14) reads

S 1 d [ Gas .
1 — = (=22 — ) =0.
(17) o, (G- G)+ 4G <du (G11>> (61— ¢2) =0

Calculating &3 using (17) gives £3 = 0, so we have an improper affine
sphere. This fact could be seen without calculation: Every point of the
surface, P say (not on the axis g) determines on the one hand a meridian
plane pp connecting P with g and on the other hand an invariant
plane ¢p, containing his orbit (a parabola with isotropic diameters).
Clearly the affine normal £p is the intersection £p = @p N pp. Because
all invariant planes are parallel to the axis g, all afﬁne normals are
parallel g.

(b) To get a parametrization of the discussed surfaces we have to
determine ¢ (u), ca(u) solving (17). Instead of solving this differential
equation directly, we introduce (pseudo-) isothermal coordinates with
respect to the affine metric. A change of the local coordinates in a way
that u = v(u'),v = v/, that means a reparametrization of the meridian
curve gives
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/a2
(18) G111 = (G1107) ('—7> , Grrar =0, Garar = (Gaz 07).

du’
We can take v in a way that
(19) Gry =o(u), Gy =0, Gua = ea(u).
where € = 41 and € = —1 refers to locally convex and locally non

convex surfaces respectively. Because of
Gj/k/ = l det(Djrk/ |_1/4Dj/kr.
the requirement (19) gives with (15) the relation of the functions c1, cs

(20) Elég - éléz = —E(Cl — Cz)(él — éz),
where the dot now denotes the derivative with respect to u’. In the

following we write the previous notation u, v again. In case of Gq; =
= o(u), G12 =0, G2 = e0(u) we calculate from (16)

1
2 = — 2).
( 1) 3 2a(f711 +ef,22)
Using (13) we get
1L ? v? L . .07
§= '2—0_(5(61*02)+61+E(01—02), 5 (Cl_cz)+62+5(01_02),'U(Cl‘—cz)) .

Thus the condition (14) becomes
(22) (':'1=62<:>cl(u) 202(u)+d1u+d2, di, dy € R, d; #0.

The affine normal is
1
(23) §=o=(& +ela —e))(1,1,0)7.

Inserting (22) into (20) we get

u? u?
-3— +d2?> + dau -+ dg
and cy(u) follows from (22). Rescaling (13) by di ' and @ := dad; %,
B :=dsd; ™" and dy = 0 (without loss of generality) we get (11).
(c) Applying the coordinate transformation

(24) ci(u) = ¢ (dl

(25) Iy =T —Y, IZZ\/Q_Z; Z3=zT+Y

‘to the surfaces (11) gives a representation solving (in the previous no-
tation z := z1,y := %9, 2 := z3) equation (12). ¢
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4. Screw surfaces with planar affine normals

4.1. Ruled screw surfaces

In case of a ruled surface the affine normals along a generator are

contained in a plane. So the affine normals are planar iff the gener-
ators are planar, that means they are parallel to a plane ( “konoidale
Regelfiiche”) (see [10, Th. 3.3]). So in case of transformations (8) and
(9) it yields ‘
Theorem 3. Let ® C R3 be a ruled surface which is not an improper
affine sphere. If ® has planar affine normals and ® is a screw surface
with respect to transformations (8) (timelike azis), then ® admits a.local
representation ‘

(26)  f(u,v)=(pv, ucosv—asinv, usinv+acosv), a€R, pcR\{0}.
In case of a screw transformation (9) (spacelike axis) we get

(27)  f(u,v) = (acoshv +usinhwv, asinhv + ucoshv, pv)T, or
(28) f(u,v) = (ucoshv + asinhv, usinhv + acoshv, pv)T.

4.2. Screw surfaces with timelike axis

Theorem 4. Let & C R? be a non ruled surface which is not an
improper affine sphere. If ® has planar affine normals and @ is a
screw surface with respect to transformations (8) (timelike azis), then
® admits a local representation

(29) f(u7 ’U) = (p’u, g(u) Sin(u - U)—

— g(u) cos(u — v), —g(u) cos(u - v) — g(u) sin(u — U))T,

where

(30) g(u) = (oz sinh(x/%u) + ﬂcosh(\/zu)) (k> 0),
(81)  g(u) = (asin(v=Eu) +Bcos(v=F u)) (k <0,k # —1)

with (o, 8) € R2\{0, 0}. Solutions with —1 < k < 0 are locally strongly
convezr. In case of k € R\(—1,0) the surfaces are locally not strongly
convez. The induced connection V of surfaces (29) is locally symmetric
and projectively flat.

Proof. We generate a screw surface with timelike axis by applying
transformation (8) to a cross section ¢ = ¢(I) in the plane z = 0, where



Affine surfaces with planar affine normals 77

c: I CR—R. Because ¢ is not a straight line, we can put c(u) =
= (0, (u), Z(w), where

(32) Y(u) = —g(u) cosu+ g(u) sinu, Z(u)=—g(u)sinu — g(u) cosu,
where g : I C R — R is the support function with

(33) g#0, g+g#0.

Applying (8) to (0,Y (u), Z(u)) gives (29). From this representation we
calculate

(34)  Du=-p(g+§)? Diz=p(g+§)? Da=—plg+§).

If the surface has planar affine normals they are necessarily parallel to
the invariant planes z = const., that means the affine normal is

(35) £=(¢'=0,6%¢.
Calculating £ from (6) we get
(36) l=0&§=kg, keR\{0,-1}.

This gives the solutions (30) and (31) for g.

The affine normal of surfaces (29) are

¢ = 1 (0, cos(u — v), sin(u —v))7,

where 1 # 0 is a constant. Hence V is locally symmetric (see [10,
Th. 2.3], [8, p. 219]). Because the affine shape operator is diagonalizable
(applying the reparametrization u = v’ + v/, v = v'), V is projectively
flat too ([9, Th. 3.2}). ¢
Remark 4. If ® is an improper affine sphere admitting a screw trans-
formation (8), the affine normals are parallel to the axis. For represen-
tations see [6], [14].
Remark 5. If k < 0 the cross sections (0, X (u), Y (u)) of surfaces (29)
are cusped cycloids, which are closed curves if v—=k € Q. In case of
—1 < k < 0 the cross sections are epicycloids (for instance k = —1/4
... Nephroide, k = —1/9 ... Cardioide) while k < —1 gives hypocycloids
(for instance k = —4 ... Astroide, k = —9 ... Steiner threecusp).
Remark 6. If k < 0 the surfaces of Th. 4 are screw surfaces which carry
translation surfaces at the same time. Taking two helices I3 (u),l2(v)
with parallel axis

I3 (u) = (pru,rcosu,rsinu)’, r>0p; #0,
l2(v) = (p2v,scosv, ssinv)?, s>0ps #0,
then
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flu,v) =1l1(uw) +12(v), (u, v) € R2
is the local representation of a translation surface, which is a screw

surface at the same time (see E. Miiller [7]). Iff the constants are
related by

TIS8=—EP]: Dy (s=:t1)
the surface is part of a surface of Th. 4. In the special case € = —1 and
p1 = pa, f(R?) is part of a right helicoid.
Remark 7. Considering the case k > 0, that means

g{u) = asinh(\/];u) + 8 cosh(vk u) - a; exp(vVku) + B exp(—Vku)

where (ai,81) € R*\{0,0}, the selection of the screwing parameter p
according to p? = 4k oy B gives the euclidean minimal screw surfaces,
that is the well known 1-parameter family of screw surfaces containing
the catenoid and the right helicoid.

Remark 8. In case of k > 0 with a = 8 we have

(37) 9(u) = a exp(Vku), (o # 0)

and the cross sections are logarithmic spirals. They are shadow lines of
the surface with respect to light centers on the axis g, 50 these surfaces
belong to the class of (euclidean) screw surfaces carrying a l-parameter
family of plane shadow lines (see O. Réschel [11]). The sections with
planes containing g (meridians) are exponential lines; together with the
cross sections they form the net of affine lines of curvature. Surfaces
with cross sections determined by (37) are the only surfaces from Th. 4
with plane affine lines of curvature. The surfaces determined by (37)
are also the only surfaces of Th. 4 with flat affine metric, that is the
scalar curvature x of the affine metric G is zero: Calculating & in case .
of surfaces (29) gives x = 0 ¢ gj — §2 = 0. This gives (37).

4.3. Screw surfaces with spacelike axis

Theorem 5. Let & C ]Rff be a non ruled surface which is not an

improper affine sphere. If ® has planar affine normals and ® is a
screw surface with respect to transformations (9) (spacelike axis), then
® admits a local representation

f(u,v) = (X (u) coshv + ¥ (u) sinh v, X (u) sinh v + Y (u) coshv,pv)T,

where (X (u), Y(u),0) represents the cross section in the plane z = 0
with
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X (u) = g(u) coshu — g(u) sinhu
Y (u) = —g(u) coshu + g(u) sinh u,
X (u) = —g(u) sinhu + §(u) coshu
Y (u) = g(u)sinhu — g(u) coshu,

and g(u) is given by (30) or (31), where k € R\{0,1}. The induced con-
nection V of these surfaces is again locally symmetric and projectively

flat.
The proof of Th. 5 is analogous to that of Th. 4.

4.4. Screw surfaces with isotropic axis

Theorem 6. Let ® C R? be surface which admits a cubic screw mo-
tion (10). If ® has planar affine normals then ® is an improper affine
sphere and the following two cases are possible

(a) @ is a Cayley ruled surface admitting the representation
\/§’U k O

(38)  Fluw)=p| PPl 1| o),
,p_\/§v3 V2v
3

with the equation

3pp
3p*z2=3pzy—z® — 222,
(39) p'z=3pzy— e
(b) ® has the representation
(40)
v? 2 v? 2 2 T
flu,v) = (u3+ﬂu2%p (E- -+ v) ,ul+Bulvtp (; — v) ,6u“+pv‘> )

with B8 # 0, p # 0. This means ® is generated by the Neil parabola
(u?, Bu?) in the isotropic plane z = y. In a suitable coordinate system
® solves the equation . ,

(41) B (69”2 — 6pzry +22°)* = 9p (2py — 2°)°,

50 the surfaces (40) are algebraic of order siz.
Proof. We take the generating curve in the plane z =y
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(c1(w), ca(u) = c1(u), cs(u))”,

where u is taken from some suitable interval I. Applying (10) gives the
representation

(42) flu,v) = (Cl (u) + c3(u)v +p <§ + v) c1(u)+

3 T
-l—c;;(u)v—i—p(%——v),C3(u)—!—pU2> .
According to (4) we calculate

(43) - Dy =2p (é1és — é163), D1a =2pcl, Dao = —4p°és.

If ¢3 = 0 in I we have D13 = Dy3 = 0 so that f is degenerate. Hence
locally we can take cz(u) = u. Then (43) becomes

(44) D1y =2pé;, Diay=2p, Dyy=—4p%é.

If the surface has planar affine normals so these normals are necessarily
parallel to the invariant planes z =y, that means

(45) £ (s, ) = £(u,v).
A straightforward calculation of £ shows the equivalence of (45) with
(46) é1(u) = VAu+ B, (4, B) e R*\{0,0}.

Calculating the third component of the affine normal £ using (46) we
get

€ = p(1,1,0)7,
where y # 0 is a constant. So @ is an improper affine sphere.
In case of A =0 we have

c1(u) = Bu+ B,
where we can take §; = 0 without restriction. Inserting this into (42)
gives '

3 3 T
(47) flu,v) = ‘(P (%%—v) +u (64v),p (%Jrv) +u (8+v), vz—l—u) .
Applying the coordinate transformation ‘

1, ; 1,
48 =—(z—Y), Ta=2, z3=—(+
(48) Z1 \/5( Y) ;2; 3 = \/5( Y)

gives
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(49)} flu,v) = (\/ijv,u+pv2, V2 (p%i +u(ﬂ+v)>>T

solving the equation (in the previous notation z := z;/, y := 5/, 7 :=
!

(50) 3ypgz=3pmy— 5?(2193/-:6)

Changing to osculating lines as parametric lines taking

pu,v') = (u' +Bp (v - B),v - B) = (u,v),
gives f' := f oy with

[ pVE(V - B) 0
(51) f’(u’,v’) — PU’ (’U’ _ /8) 4 u 1 ,
ALy vay

that is except for a translation of the coordinate system representation
(38).
In case of A # 0 we have from (46)

c(u) = ?’A(Au—l—B)?’/2

by omitting an additive constant. Reparametrizing the generating curve
(using the previous notation) by

(Cl(u),CQ(U),Cg(U)) = (u37u37:3u2)3 (ﬁ 7_'é 0)7

gives (40). Applying (47) and then eliminating v and v finally gives
(41). ¢

Remark 9. The Cayley surface is well known to be equiaffine homo-
geneous ([8, p. 93]). The surface admits a one parameter family of
cubic screw transformations (see for instance [1, p. 100], [12, p. 80], [17,
p-124]). Iff § = 0 the surfaces (39) are right helicoids with respect to
cubic screw transformations; in this case in every point S of the surface
the generator eg intersects the orbit of S orthogonally (in the sense of
Minkowski inner product (7)) (see [17, p. 120], [2, p. 311]). The surfaces
(38) and (39) respectively are affinely equivalent to the special Cayley
surface

Z'—'SL‘y'——3—
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