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Abstract: The ring of polynomials in two or more indeterminates is not en-
dowed with a canonical composition. Several compositions are proposed and
for each a number of first properties are determined.

For a ring R, the polynomial ring (R[z],+,-) is endowed with a
natural nearring multiplication, namely the usual composition f(z) o
o g(z) = f(g(x)). This nearring (R[z],+,0) has been studied exten-
sively —also in the setting as the composition ring (R[z], +,, 0). On the
other hand, the ring of polynomials in two indeterminates (R[z, 3], +, -)
does not admit a natural composition. That is, unless one wants
to construct the polynomials in two indeterminates by iterating the
one indeterminate construction. To wit, for any ring S we have the
polynomial composition ring (S[z],+,-,0). Replacing the ring S with
the ring (R[y], +,-) will give the composition ring (R[z,y],+,-,0) =
= ((R[y])[z],+, -, 0) with composition f(z,y) o g(z,y) = f(g(z,¥), ).
But this approach has the major disadvantage that the constant part
(or “foundation” in the composition ring terminology) is exactly the
elements of R[y], the polynomials in the one indeterminate y.
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In Clay [3] the composition f(z,y) o g(z,y) = f(9(=,y),9(z,v))
on R[z,y] was suggested and this was further developed by Gutierrez

and de Velasco [4]. This composition does not admit an identity, but it
does have left identities. But these two compositions are not the only
possibilities. Below we will present many more and for each we will
discuss some of its first properties. In particular, we will show that
there are compositions possible which do admit identities and which
have the constant part the underlying ring R. For compositions with
one-sided identities, we will describe the subset of R[z,y] on which they
are identities and then we will also determine the units.

1. Preliminaries

R will always be a commutative ring with identity 1. The polyno-
mial ring (R[z], +, -) has identity 1 and f(z) = fo+ fiz+faz%+ - -+ frz™
is a unit if and only if fy is a unit of R and f1, fa,..., fn (n > 1) are
nilpotent elements of R. On the other hand, the polynomial nearring
(R[z],+, o) has identity z and a polynomial is a unit in this nearring
if and only if it is of the form f(z) = fo + fiz where fo € R and f;
is a unit of R. Rp[z] will denote the O-symmetric part of the nearring
(R[z],+,0), i.e. all the polynomials of the form f(z) = fiz + faz® +
+-+-+ frz™,n > 1. For more information on nearrings, Pilz [6] or Clay
[3] can be consulted. The ring of polynomials in the two commuting

indeterminates z and y will be denoted by (R[z,y], + ) A typical el-
ement f(z,y) of R[z,y] will be written as f(z,y) = Z > f”a: 1
=0 j-}j=

where n > 0 (and also 4,j > 0) and f;; € R. For a given f(=z, y), we will

use fr to denote fr = > fi;,k=0,1,2,...,n. As usual, the degree
i+j=k

of f(z,y) is given by deg f(z,y) = max{i+j | fi; # 0}

We will rely heavily on the Substitution Rule:

Given £(2,), 9(z,5), h(z,y) € Rlz, y], then £(9(z, ), h(z, y)) wil
denote the polynomlal f where each occurrence of x has been replaced
by g(z,y) and each occurrence of 7 has been replaced by h(z,y). In
particular, if g(z,y) = r and h(z,y) = s where r and s are fixed ele-
ments of R, then f(’)" s) is Just the evaluatlon of f(z,y) in the point
(z,1) = (r,s).

To define the different compositions and to avoid unnecessary rep-
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etitions, we will use two functions oy, s : Rlz,y] — R[z,y] to define
the composition f(z,y) o g(z,y). For f(z,y) € R[z,y], we will de-
note a;(f(z,y)) by oi(f(z,y)) = ai(f)(z,y) € R[z,y]. Care should
be taken to distinguish between the functions o; and the polynomials
;(f). For example, let o be the constant function a;(f(z,y)) = y for
all f(z,y) € R[z,y]. Then ay(g(h(z,v), k(z,y)) = y by the definition of
a1 while a;(g)(h(z,y), k(z,y)) = k(z,y) by the substitution rule. For
another example, suppose o is the function a;(f(z,v)) = f(y,z) for
all f(z,y) € R[z,y], i.e. a1(f)(z,y) is the polynomial which is the same
as f(z,y) except that all occurrences of = and y are interchanged. Then
a1(g(h(z,y), k(z,v)) = g(h(y,z), k(y, z)) by the definition of ay while
a1(g)(h(z,v), k(z,y)) = g(k(z,y), h(z,y)) by the substitution rule. ‘

For a given pair a; and az, define a composition f(z,y) o g(z,y)
on R[z,y] by f(z,y) o g(z,y) = f(ca(g(z,v)), az(g9(z,v))). For various
choices of @y and @ we will get a nearring multiplication on R[z,y].
In fact, for all our choices given below, we will get a composition ring
structure on R[z,y]. Recall, a composition ring C is a quadruple C =
= (C,+,-,0) where (C,+,-) is a ring, (C,+,0) is a nearring and the
composition o distribute from the right over the multiplication (i.e. abo
oc = (aoc)(boc) for all a, b, ¢ € C)). The foundation of a composition ring
is Found(C) = {c € C | co0 = ¢}. This subset is a subcomposition ring
of C, but usually by the foundation is meant the ring (Found(C), +, -).
More about composition rings can be found in Adler [1].

The composition defined above (using the functions a; and o)
distributes from the right over both the addition as well as over the
multiplication, but in general it need not be associative. For this we
have to impose a suitable condition on the functions ; and oy, namely:

(A) For all i = 1,2 and ¢(z,y), h(z,y) € R[z, ],

ai(g)(al (h(CE, y)): Oéz(h(:m y))) = Ofi(g(al (h(wa y))a a2(h(m’ y))))

This condition can briefly be stated as a;(g) o h = aj(go h). To
demonstrate the requirements of this condition, we give an example. If

al(f(may)) = f(yam) and ag(f(l‘,y)) = f(il:,.’L') for all f(xay) € R[mayL
then condition (A) is not satisfied. Indeed,

a1(g)(a1(h(z, y)), a2(h(z, y))) = g(az(h(z,y)), a1 (h(z,y)))) =
= g(h(z,z), h(y,z)), but
o1 (g(a1(h(z,y), a2(h(z,y))) = c1(g(h(y, z), h(z,z)) =
= g(h(z,y), My, 9))-
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Proposition 1. Suppose the functions ay, as : Rlz,y] — Rlz,y] satisfy
condition (A). Then (R[z,y],+,,0) is a composition ring with respect
to the composition f(z,y) o g(z,y) = f(a1(g(z,v)), o2(9(z,))).

As usual, we will use Ry [x, y] to denote the O-symmetric part of
R[z,y]. Pointwise addition and multiplication induced by that on R
makes (M(R? R),+,) a ring where M(R?,R) = {f | f is a function
f: R* — R}; here R? denotes R ® R. Then we have a ring homo-
morphism 7 : R[z,y] — M(R? R) defined by n(f(z,y)) = f where f
is the function f : R? — R with f(r,s) = f(r,s) for all 7,s € R. If,
for a given a1 and as, R[z,y] is a composition ring, n need not be a
composition ring homomorphism, since no composition need to be de-
fined on M(R?, R). One would like to use the functions a; to define a
composition on M (R?, R), but this may not be possible. For example,
if iy denotes the formal partial derivative of f(z,y) with respect to z,
then a1 (h) need not be defined for all h € M(R?, R).

We will say a function o : R[z,y] — R|z,y] is extendable if there
exists a function @ : M(R?, R) — M(R?, R) such that for all f(z,y) €
€ Rz, yl, a(n(f(z,y)) =n(a(f(z,y)). This means a(f) =n(a(f)(z,y)) =
=n(a(f(z,y))=a(n(f(z,y))=a(f) for all f(z,y)€R]z,y]. If both ay
and o are extendable, then we can define a composition on M (R?, R)
by fog: R — R, (fog)(r,s) = f(@(9)(r,s),da(s)(r,s)) for all
s € R, f,g € M(R° R). Of course, for a given o and g, the ex-
tensions @1 and @ need not be uniquely determined, but once they
have been chosen, they are fixed for the deﬁmtlon of the composition
on M(R?, R).

Two extendable functions o; and «y are said to satisfy condltlon
(EA) (with respect to the extensions @7 and @) if:

(EA) For all'i=1,2 and g,h € M(R?,R),

@;(g) (@1 (h)(r, s),@2(h)(r,s)) = @i(g o h)(r,s) forallr,seR.

If ;1 and a3 are extendable, then condition (EA) will follow from
(A) provided the function 7 has certain propertles but in general it
need not be the case.
Proposition 2. Suppose the functzons o, Qe R[z,y]— R[z,y] are ex-
tendable and satisfy conditions (A) and (EA). Then (M ( (R Z,R) +,,0) 18
a composition ring with respect to (fog)(r, s):= f(a1(g)(r, 5), a(g)(r, s))
and m is a composition ring homomorphism.

We next remark on the relationship between R[z, y] := n(R|[z, y])
and M (R?, R). Using Lagrange’s interpolation (or the fact that a finite
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field is 2-polynomially complete) we see that it is the same as for the
one indeterminate case:

Proposition 3. n: R[z,y] — M(R?, R) defined by n(f(z,y)) =T is a
surjection if and only if R is a finite field.

The kernel of the map n,kern := {f(z,y) € Rlz,y] | f(r,s) =

= 0}, is of much interest; in particular if kern = 0 then the only

“vanishing” is the zero polynoxma,l We also need a result from Aczél
[2]. Suppose f(z) = foz™+ fiz" 14+ fr_12+ f is a polynomial in
one indeterminate over R and (R,+) has no nonzero elements of finite
order. If f(r) = 0 for all r € R, then f(2) =0,ie. fo=f1 = -+ =
= fn = 0. The argument given by Aczél is as follows: f(z) can be
written as f(z) = foz" +Pn_1(2) where P,_;(2) is a polynomial in 2
with degree at most n— 1. Let Fy(z) := f(z). Then Fi(z): =Fp(z+1) —
— Fo(2) = nfoz"! + P,_5(2) where P,_,(2) is a polynomial in z with
degree at most n — 2 and Fy(r) = 0 for all r € R. Repeat this process
to ultimately get F,(z) = nlfy with F,(r) = 0 for all r € R. From
the assumption on R we may conclude that fo = 0. This holds for any
n, so we can apply this technique as many times as necessary to get
f(z) = 0. As we shall see in the next proposition, this result extends
to R[z,y]. 4
Proposition 4. Let n: R[z,y] — M(R?, R) be defined by n(f(z,y)) =
=f. Ifn s injective, then R must be an infinite ring. For a converse,
if (R,+) has no nonzero elements of finite order, then 1 is injective.
Proof. Suppose 7 is injective. Then R[z,y] ~ n(R[z,y]) < M(R?,R).
If R is finite, then so is M(R?, R) and thus also R[z,y] which is not
possible. Hence R is infinite.

Suppose (R,+) has no nonzero elements of finite order. Then it
can be shown that 77 is injective by applying Aczél’s result twice to
Rlz,y] = (Rla])ly). 0 |

In each of the sections to follow, we will consider a composition
f(z,y) o g(z,y) = f(ea(g(z,y)), a2(g(z,y))) defined by two prescribed
functions a3 and @y. Amongst others, our functions o; will exhaust
all possibilities of the form a;(g(z,vy)) = = (or y) or, for s,t € {z,y}
fixed, o;(g(z,y)) = g(s,t) subject to the two functions oy and s ful-
filling condition (A). Every choice will have a “dual” which we will
not consider., For example, we will consider the composition f(z,y) o
o g(z,y) = f(g(z,y),y) (Sec. 2), but not its “dual” f(z,y) o g(z,y) =
= f(z,g(z,y)) which will have similar properties. The functions a;
and oy will always be extendable fulfilling condition (FA) with respect
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to the canonical extensions. By the canonical extensions we mean, for
example, the following. If a;(g9(z,y)) = z for all g(z,y) € R[z,y],
then (@ (h))(u,v) = u for all h € M(R?,R) and u,v € R. For an-
other example, if az(g(z y)) = g(z,z) for all g(a:,y) € Rlz,y], then
(@i(h))(u,v) = h(u,u) for all h € M(R? R) and u,v € R. Thus we get
two composition rings (R[z,y],+,+,0) and (M (R?, R), +,-,0). For each
R[z,y] we will then investigate the following:

(1) The ideal structure of composition rings in general, and in
particular the relation between maximal ideals of the foundation and
those of the composition ring, have been discussed earlier, see for exam-
ple Adler [1], Peterson and Veldsman [5] and Veldsman [7]. We will thus
not say much about the ideals of (R[z,y],+,-,0), but mainly remark
on two aspects, both inspired by the one indeterminate case. If C is a
composition ring with foundation K, an ideal J of the ring K is called
an C-ideal of C if co(k+7j)—coke Jforallce C,k € K and j € J.
A composition ring is called compatible if every ideal of the foundation
is an C-ideal. Any (R[z],+,-,0) is compatible, so it is natural to ask
whether this is true for the two indeterminate case. Another property
enjoyed by R[z] is that any ideal of the ring (R[z], +,-) is a left ideal of
the nearring (R|[z], 4, o) — we will comment on this property for R[z,y].
We use < to denote ideal and if endowed with a subscript, it will denote
the indicated one-sided ideal. Ideal of C means ideal of the composition
ring. Often in the literature, these ideals are called full ideals.

(2) We will determine the identity or one-sided identities (with
respect to the composition). If e(x,y) is a one-sided identity, then we
will describe the semigroup (D,,o) where D, = {f(z,y) € R[z,] |
| f(z,y) o e(z,y) = f(z,y) = e(z,y) o f(z,y)}. This semigroup has
identity e(z,y) and we will determine the group of units (U(D), o).
To facilitate this aspect of our investigations, note the following: For
any composition ring C, if e is an identity, then D, = {c € C'|coe =
= ¢ = e oc} coincides with C; if e is a left identity, then D, = Coe
which is a subcomposition ring of C' and the map C — Coe defined by
c— co e is a surjective composition ring-homomorphism with kernel
{u e C|uoC =0}. If e is a right identity, then D, = e o C which, in
general, is only a semigroup with respect to the composition. '

(3) If f(z,y) € U(De) vvlth inverse g(a: y), a geometrlc rela-
tionship between f and g will be given bydescnbmg a transformation
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T from the “graph” of f, graphf = {<b> lc=f(a,b),a,b € R} to

graphg = {(b) |c:'g'(a,b),a,bER}.

C
We should mention that for a given choice of o; and o, there
is often a symmetric version of the composition on R[z,y] possible by
interchanging o; and ag. Also, many of the compositions we will con-
sider can be extended to polynomials in more than two commuting
indeterminates. We will refrain from discussing any of these cases.

2. f(z, ) o 9(z, v) = f(9 (=, v), v)

For all f(z,y) € Rlz,y], let a1(f(z,v)) = f(z,vy) be the identity
function and aa(f(z,y)) = y a constant function. The resulting compo-
sition ring (R[z,y],+,-, o) with composition as above, has foundation
Rly], identity e(z,y) = = and thus D, = R[z,y]. Moreover, Rz, ] is
compatible and every ideal of the ring (R[z,y], +, -) is a left ideal of the
nearring (R[z,y], +,0). All this is hardly surprising, since R[z, ] is just
the composition ring in one indeterminate z over the ring (R[y],+,).
This means the units of R[z,y] are of the form f(z,y) = fo+ fiz where
fo € R[y] and f1 € U(R[y)), i.e. f(z,y) = foo + fory + fo2® + -+~ +
+ fomy™ + (fio + fuay + fi2y® + -+ + finy™)z where f;; € R with
fi0 € U(R) and f11, f12,-.., fin nilpotent. In fact, as is well-known,
we have a group isomorphism (U(R[z,y], o) ~ (R[y], +) + ¢ (U(R[y]), o)
where +4 denotes semi-direct sum. If f(z,y) € U(R[z,y]) with inverse
g(m,y), then z = g(f(x1y)yy)' So, if ¢ = 7(0’7 b), then a = e(a, b) =
= g(f(a,b),b) = G(c,b). Thus a transformation T : graph f — graphg
can be defined by

a c 0 0 1} fa
T{b|l:=|b}l=]|01 0 b |.
c a 1 0 0} \c¢

This is just reflection in z = z, an invertible linear transformation
(independent of f and e).

3. f(z, ¥) o 9(z, 9) = F(9(z 5)» 9(v» ¥))

For this composition we have ay(f(z,y)) = f(z, z) and aa(f(z,y)) =
= f(y,y) for all f(z,y) € R[z,y]. The motivation for this composition,
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as well as the one in the next section, is that in f, all occurances of z
should be replaced by something involving only g and z and similarly
for y. The composition ring (R[z,y], +, -, o) has foundation R, no iden-
tity but right identities. A polynomlal e(z,y) is a rlght 1dent1ty if and
only if it is of the form e(z,y) = Z Y €T gl for n > 1 and with
=1 i+j=Fk
e1 = := e+ 601 =1 and er = ). e; =0 for all k = 2,3,...,n.
z—i—;)—k

Rlz,y] is compa,tlble and an ideal I of (Rlz,y],+,-) is a left ideal with
respect to the composition if and only if f (z,z) € I and f(y, y) € I for
all f(z,y) € I.

Next we determine D, for the right 1dent1ty

IEy) Z Z ezjxy

Ck=li+i=k

We know that D, = e(z, y) o R[:c y], so a typical element of D, 1s of
the form

e(z,y) o g(z, y) = e(9(z,2), 9(y, y)) =

= Z > eiilgo +918+ + g™ (g0 + g1y + - + g™
L. =1i+j=k ‘

where g(z, y) Z > gijz'y?. Thus we have
=01+5=k

Proposition 5. Let e(z,y) = Z Z eijmzyf be a right identity in

k=litj=k
: ‘ : , . mn T ‘
(Rlz,4],+,9). Then D = {h(z,y) = 3. 3 hyz'y € Rlz,y] | m >
k=0 i+j=k

> 0 and there are go,gl, S 9m in R such that for all O < s5,t < mn with
s+t < mn, h,st — Z Z Z Z 10'11!---%17::.7;'.71' T | zjgz)o—’rjog“—'_]l e
=1i+j=k (a;) (b;)

. gim'”m where‘(a,z) denotes the sum over all ig,i1,...,%m with 0 <
<ip Sl i4 Ay, = 1,11+ g+ - +m7,m—-sand (b ) denotes
the sum over all jo,j1,...,5m with 0 < Jp L hio+ji+ o+ gm =
=771+ 2j2 + - + Mgy, =t} | |

Proposition 6. Let e(z,y) = Z > eiz'y’ be a right identity in
' - =1i+j=k
(Rlz,y],+,0). Then e(z,y) o f(x y) € U(De) if and only if f(z,y) =
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= Z > fijz'y? wherem > 1, f1 = fig+ fo1 € U(R) and fo = f3 =
07,+J—k

= fm = 0. Moreover, (U(D,),0) ~ (R,+) + 4(U(R),-) where -4
denotes the semi-direct sum with (r,u)(s,v) = (r + us, uv).

Proof. Let e(:v y) o f(z,y) € U(D,) with i mverse e(z,y) o g(z,y), say

flzy) = Z > fiz'y? and g(z,y) = Z 2. gijz'y’. Since ¢ :

=0 i+j=k =0 i+j=k

: Rlz,y] — R[cc] defined by 9(h(z,y)) = h(:r ) is a surjective composi-

tion ring homomorphism, f(z,z) is a unit in R[z] with inverse g(z, z).

This means z = (fo+ fiz+ - -+ fmz™)(go+g12+- - -+ gpaP) from which

Weget flglzl’ gO::faOi:L andfz':f:s:.-.:fm:gz:.-.:gpzo
as required.
om o
Conversely, suppose f(z,y)= Z > fiz'y! withm > 1, f1 =
=0i}+j5=k

= fi0 + for € U(R), say the inverse of f; is u, and f = f3 =

= fm = 0. Let g(z,y) = goo+g10% + go1y where ggo = :ff—,glo =1U and

go1 = —f10. Then e(z,y)o f(z,y) € U(D,) with inverse e(z,y)og(z,y).
Lastly define n : U(D, ) = B+ 4U(R) by n(e(z,y) o f(z,y)) =

= (fo, f1) where f(z,y) = Zo Zkf”:c v withm > 1, f; € U(R)
i+j=

and fo = fs = -+ = f,, = 0. It can be verified that 7 is a group
isomorphism Wthh completes the proof. ¢ ‘

We conclude our discussion on this composition by describing the
transformation T'.: graph f — graphg for f(z,y) = e(z,y) o h(z, y) €
€ U(De) with inverse g(z,y). If c = f(a, b) then, from e(z, y) = f(z,y)o
°og(z,y) = g(f(z,z), f(¥,¥)), we get

c=T(ab) —ehla,a) i, 0) =
=g(f(h(a,a)),R(a,a)), F(A(b,b), h(b,b))) =
=g(ho + hohy + hia, ho + hohy + B2b)

since f(h(a,a)), h(a,a)) = €(ho+hih(a,a), ho+hih(a, a)) = ho+hohy+

+ hia and likewise F(h(b,b), h(b, b)) = hg + hohy + h2b. Thus, we may
deﬁne

a ho + hohi + h%a h% 0 0O ho + hoh1
T(b =] ho+ hohy -+ h%b =10 h% 0 b 4+ hg + hoh1
c c 0 0 1 0
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which is an invertible affine transformation (depending on f).

4. f(z, y) © g(z, y) = f(g(%; 0) — goos 9(0, ¥) — goo)

For the next composition we take a1 (f(z,y)) = f(z,0) — foo and
az(f(z,y)) = f(0,y) — foo for all f(z,y) € R|z,y]. The motivation for
this composition is in the spirit of the previous one — the argument be-
ing that in defining f(z,y)og(z,y), the z in f(z,y) must be replaced by
something involving g and . Using only g(z, 0) (and g(0, y) in the place
of y) we do not get an associative composition; hence the proposed com-
position to overcome this problem. With respect to this composition,
(R[z,y],+, -, o) is a compatible composition ring with foundation R. An
ideal I of R[z,y] with respect to multiplication is a left ideal with re-
spect to composition if and only if f(z,0)— foo € I and f(0,y) — foo € I
for all f(z,y) € I. Note that (0: R)s := {f(z,y) € Rlz,y] | f(z,y)o
oR = 0} = Rolz, y]<R|z,y] and the quotient composition ring 1?0 [;ﬁz}] is
isomorphic to the composition ring (R, +, -, *) where * is the constant
multiplication a * b = a for all a,b € R. R|z,y| does not have an iden-
tity, but it has right identities. An element e(z,y) € R[z,v] is a right
identity if and only if it is of the form e(z,y) = ego + = + ¥ + me(z,7)
where me(z,y) € Rz, y] with me(z,0) = 0 = me(0,y).

Proposition 7. Let e(z,y) =eq+z+y+me(z,y) be a right identity in
R[z,y]. Then D, ={f(z,y) € R[z,y] | f(z,y) = eoo + g(z) + h{y) +
+ me(g9(z), h(y)) for g(z) € Rolz] and h(y) € Roly]} with (De,0) =~
~ (Ro[z],0)@(Roly).0). Purthermore, U(D.) ={f(z,) € Rlz, ]| fiz,) =
— oo + 6z -+ vy + me(uz,vy) for uv € U(R)} and (U(De),0) =
~ (U(R),") ® (U(R),").

Proof. It is straightforward to determine D.; we only determine the
units of D.. Let f(z,y) = eoo + h(z) + k(y) + me(h(z), k(y)) be a unit
of D, with inverse g(z,y) = epo +p(z) +q(y) + me(p(z), ¢(y)). Suppose
that h(z) = hiz+hez?+- - - +hpz™ and p(z) = prz+p2x?+- - -+ prz™.
From eqo+z+y+me(z,y) = e(z,y) = f(z,y)og(z,y) = eco+h(p(z))+
+ k(a(v)) + me(h(p(z)), k(q(y))) we get, by comparing the coefficients

of the powers of z, 1 = hip1, 0 = hyps = hyps = --- = h;pm. Thus
hi,p1 € U(R) and p; = p3 = --- = pm,m,, = 0. But also h;piz* = 0 for
all t = 2,3,...,n; hence hg = hg = --- = h,, = 0. A similar argument

will show that k(y) = kyy for some k; € U(R). Thus f(z,y) is of the
required form. ¢
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Note that here we also have D, and U(D,) independent of which
particular identity e(z,y) we choose in the sense that for any two right
identities e; and ey we have De, ~ De, and U(D,,) =~ U(D,,). The
relationship between f(z,y) = egy + uzr + vy + me(uz,vy) € U(D,)
and its inverse g(z,y) = epo + v 2 + vty + me(u~1z, v 1y) can be
described by the transformation T : graph f — graph g defined by

2 2

a u-a u* 0 0 a
Tlib|l:=|v|=]0 42 0 b
c c 0 0 1 c

Indeed, if ¢ = f(a,b), then G(u2a, v2b) = c. Note that T is an invertible
linear transformation (which depends on f).

5. f(z; y) o 9(z, y) = f(pg(z, y), q9(z, v))

Let p and g be fixed elements of R and define a; and an by
a1(f(z,y)) = pf(z,y) and aa(f(z,y)) = ¢f(z,y) for all f(z,y) €
€ Rlz,y]. With p = ¢ = 1, this is just the composition proposed
by Clay [3] and which has been investigated by Gutierrez and de Ve-
lasco [4] (actually, they considered the more general case with 2 or more
indeterminates).

For a; and a3 as defined above, the resulting composition ring on
R[z,y] has foundation R, it is compatible and any ideal of R[z,y] with
respect to multiplication is a left ideal with respect to the composition.
We do not have an identity, but e(z,y) is a left identity if and only if
it is of the form e(z,y) = >~ 3 e;;z'y,n > 1, with exgp+eqrg=1

k=lit+j=k
and ) eyp'q’ = 0forall k =2,3,...,n. For a given Ting R and
i+i=k
P, g € R, there may not be any left identities (e.g. if R = Z with p and
q not relatively prime). Interesting to note is that if p = ¢ = 1, then
these left identities are exactly the right identities with respect to the
composition f(z,y) o g(z,y) = f(g(z,7),9(y,y)) which we considered
in Sec. 3. -
Proposition 8. Lete(z,y) = > Y. e;;z'y? be a left identity. Then
k=1 i+j=k
D. = Rlz,y] o e(z,y) = {ro + rie(z,y) + roe(z,y)? + - - + rme(z, y)™ |
| m > 0,71,72,...,7m € R} with (De,+,-,0) =~ (R[e],+,-,0) where
e = e(z,y). Moreover, U(D) = {ro + rie(z,y) | ro € R,m1 € U(R)}
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with (U(De),0) ~ (R, +) + 4 (U(R), ).
Proof. For any f(z,y) ce(z,y) € R[z,y] o e(z,y) we then have

f(z,y) o e(z,y) = foo + (frop + forq)e(z, y)+
+ (fao0® + f110q + fo2q®)e(z, y)*+
+ (fmop™ + frn—1,0™ g+ -+ fomg™e(z, y)™
which is in
{ro+rie(z,y)+rae(z, y)*+ - +rme(z,y)™ | m > 0,71,72, .. ,Tm € R}.

Conversely, we know e1op + eg1¢ = 1. This means, for any r € R
there are a,b € R with » = ap + bq. More generally, for any k£ > 1
and r € R, there are G0, 01, .- € R with r = aop® + a1p* ¢ +
+ -+ ar_1pg® 1 + arg® since (e10p + €019)® = 1. This means any
o —{—rle(m y) +rae(z,y)? + -+ rme(z, y)™ can be written in the form
f(=z,y) o ez, y).

The mapping ro + rie(z,y) + ree(z,y)® + -+ + rme(z,y)™ —
1o+ rie+7rae? + -+ rpe™ from D, to Rle] is clearly a surjective
composition ring homomorphism, we only remark on the injectivity.

I ro+rie(z,y)+rae(z,y)%+- - +rme(z,y)™ =0, thenrg =11 =
=:-- =7y = 0. Indeed, 7o = 0 is clear and from r;(e;9z + g1y +- -+
+eony™) +ra(e10r +eny+ -+ eony™)? + -+ rmlewns ey + oo+
—I—eonyn)m =0, weget rielg = =0 = 7"1601 Thusr; =11 (pelo—l—qem) = 0.
Also ’7‘26%027 = 7'26106013:1; = r2601y = 0 implies raelo = T9€10€01 =
= r3ed; = 0. Then ry = ra(pe1p + geo1)? = 0. Continue in this way to
getro=ri=--=7r,=0.90 :

Let f(z, y) = fo+ fie(z,y) € U( e): f1 € U(R), with inverse
9(z,y) = go + gre(z,y) where fig1 =1 and go = —g1fo. If c = f(a,b),
then g(a,b) = f; '(c— fo). Thus g(a,b) = —fofit + f72(c— fo). A
transformation 7" : graph f — graph g can be defined by

a ‘ a

TVb = b =
c e — fo(1+ f1))
10 0 a 0
=lo1 o ||s]+] o
0 0 fi? ¢/  \—fitfol+ f1)

This is an invertible affine transformation (which depends of f).
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6. f(z, ¥) o 9(z, ¥) = f(g10T, goy)

One could, of course, take the composition f(z,y) o g(z, y) to be
trivial in the sense of defining f(z,y)og(z,y) = 0 for all f(z,v),9(z,y) €
€ Rlz,y] or f(z,y)og(z,y) = f(z,y) for all f(z,y), g(z,y) € R[z,y]. In
both cases we do get a composition ring on R[z,y], but this is not very
interesting. In the latter case, with the composition constant, every
element of R[z,y] is a right identity. The more right identities e there
are, the smaller D, should be, as it is in this case since D, = {e}.
To further illustrate this point, we next consider an “almost constant”
composition.

For every f(z,y) € R[z,y], let 1 (f(z,y))= froz and ax(f(z,y))=
= fo1y. This gives a compatible composition ring on R[z,y] with foun-
dation R. An ideal I of (R[z,y],+,-) is a left ideal of (R[z,y],+,0) if
and only if {10z € I and g,y € I for all i(z,y) € I. We have e(z,y) =

n
= >, > e;z%y’ a right identity of R[z,y] if and only if n > 1 and
k=0 i+j=k
€10 = o1 = 1. We will write e(z,y) as e(z,y) = epp +z +y + me(z,y)
n
where me(z,y) = 3, 3 e;;zyd. This then gives:
k=2i+j=k

Proposition 9. For a right identity e(z,y) = ego + z +y -+ me(z,y),
De = {f(z,y) € Rlz,y] | f(z,y) = eoo + az + by + me(az, by),a,b €
€ R} with (De,0) ~ (R, )®(R,"). Moreover, (U(De),0) =~ (U(R),)®
S(U(R),") where U(D.) = {f(z,y) € Rlz,y] | f(z,y) = eqo + uz +
+ vy + me(uz,vy),u,v € U(R)}.

Let f(z,y) = eoo + uz + vy + me(uz,vy) € U(D,) with inverse
9(z,y) = ego +ulz + vy + me(u z,v71y). Then we can define
T : graph f — graphg by

a u2a 2

U 0 0 a
T b )=’ ]=]0 ¢v* 0 b
c c 0 0 1 c

This is an invertible linear transformation (which depends on f).

All the above should look familiar: In Sec. 4 we considered the
composition f(z,y) o g(z,v) = f(g(z,0) — goo, 9(0,%) — goo). The right
identities with respect to this composition are very similar to the ones in
this section (in fact, the right identities of Sec. 4 will be right identities
with respect to the composition of this section) and the units for both
compositions coincide as does the transformation 7.
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7. f(z, y) o 9(z, y) = f(9(=, 2), 9(z, T))

Taking o1 (f(z, ) = 0a(£(z,9)) = f(z,3) for all f(z,y) € Rlz,1]
gives a composition ring on R[z,y]. However, it does not seem to be
very interesting. Although it is compatible with foundation R, there
are no one-sided identities and an ideal I of R[z,y| with respect to the
multiplication will be a left ideal with respect to the composition if and
only if i(z,z) € I for all i(z,y) € I.

8. f(z, y) o g('z,"y)‘ = f(9(z, ¥), 9(y, 7))

The structure of the last two compositions we consider is much
more interesting. Firstly we take a1 (f(z,y))=f(z,y) and as(f(z,y))=
= f(y,z) for all f(z,y) € R[z,y]. Then we get a compatible composition
ring on R[z,y] with foundation R and identity e(z,y) = z. Recall that
e(z,y) = = is also the identity for the composition f(z,v) o g(z,y) =
= f(g(z,v),y) considered in Sec. 2. But these two composition rings
cannot be isomorphic since the foundation of the composition ring in
Sec. 2 is R[y].

We will discuss the ideal structure of this composition ring in more
detail.

Proposition 10. Let I be an ideal of (R[z,y|,+,-). Then:

(i) I<i(R[z,y],+,0) if and only if i(y,z) € I for all i(z,y) € I.

(i) I < (R[z,y], +,+,0) if and only if I <-(R[z,y],+,0).

Proof. (i) Suppose I <;(R|z,y],+,0) and let i(z,y) € I. Then f(z,y)o
o (i(z,y) +0) — f(z,y) o0 € I for any f(z,y) € R|[z,y]. In particular
for f(z,y) =y, we get i(y,z) = f(z,y) o (i(z,y) +0) — f(z,y) 00 €
€ I. Conversely, suppose the condition holds and let f(z,v), g(z,y) €
€ R[z,y],i(z,y) € I. Then

f(z,y) o (i(z, ) + 9(z,v)) — flz,y) o g(z,y) =

= f10i(z,y) + fo18(y, T) + Faoilz,y)* + 2fa0i(y, z)g(z, y)+
+ fr1i(z, )iy, =) + Fuilz, )9y, z) + firg(z, v)ily, ) + ...
oot fin—1i(y, z)g(y, z)" e L

~ (ii) Suppose I < ,(R|[z,y],+,0). For any i(z,y) € I and f(z,y) =

=y, i(y,z) = i(f(z,9), f(y,2)) = i(z,y) o f(z,y) € I. Using (i) we
may conclude that I <;(R[z,y],+,-,0). ¢
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Ideals of (R[z,y],+,-) which are also left ideals of (R[z,y],+,0)
need not be ideals of the composition ring. Define v : R[z, y] — R[z]
by v(f(z,y)) = f(z,z). Then v is a surjective composition ring homo-
morphism with kery = {f(z,y) € R[z,y] | f(z,z) = 0} <« R[z, y].

If I<R[z,y] with INkery = 0, then i(z,y) = i(y, z) for all i(z,y) €
€ I. Indeed, if i(z,y) € I, then z(:v y) —ify,z) € INkery = 0. Let
h(z,y) € R[a: y] with h(z, y) = h(y,z). Then I := R[z,y]h(z,y) is an
ideal of (R[z,y],+, ) and a left ideal of (R[z,y],+,0), but it need not
be an ideal of R[z,y].

Because R|z,y] is compatible, any ideal J of R is an C-ideal of R
and so (J : R)2 := {f(z,y) € Rlz,y] | f(z,y)or € Jforall r € R}
is an ideal of R[z,y]. In fact, (J : R); is the kernel of the surjective
composition ring homomorphlsm n: Rlz,y] — M(R/J,R/J) defined
by n(f(z,v)) = f and Fr+J) = f(r,r) +J. Then kern C (0: R), C
C (J : R)z and the first inclusion is in general sharp. For example, if
R=12Z4 and f(z,y) = z+y+12% + 4>, then f(z,z) # 0, but flr,r)y=0
for all r € R.

Proposition 11. Let L «;(R[z,y],+,0) where R is a ring with % 5 €ER
(i.e. 2:=1+1 is invertible). If LNU(R) # 0, then L = Rlz,y].”
Proof. Note firstly that L N U(R) # 0 implies R C L. Indeed, for
v € LNU(R) and any r € R, r = (ru=Yu € RL C L; this latter
inclusion follows from ri(z, y) =rzol(z,y) € Rylz, y] oL C L. Thus
a = 3 € R C L and also a® € L. Then from z+a?=2%0(z + a)—
—z?0z € L we get £ € L. This means Rz, y] C L since for any
f(@,) € Rol,y), f(@,5) = f(s,4) ox € Rofz,y] o L C L. Thus
Rlz,y] =R+ Ro[z,y] CL+L=1L.

Proposition 12. Let R be a field with more than 2 elements. Let L
be a left ideal of (R[z,y],+,0) with LNR #0. Then L = R[z,y].
Proof. If char R # 2, then % € R and the result follows from the
previous proposition. Suppose char R = 2 and choose u € R\ {0,1}.
Then both 4 and w := u — 1 are invertible. As in the proof of the
prewous proposition, we get R C L and RL C L. From z? 4+ z +1 =
=2%0(z+1)—2%0z € Lweget 22+2z € L. Let p := u—lz%
Smceu € R C L, we have z® + uz + u? = po(z+u) —poz € L.
But then 2® + £+ uz +u? —z € L and so wz = uz — z € L. Hence
z =w ' (wz) € RL C L. Thus Rolz,y] C L and L = R[z,y] follows. ¢
Prop051t10n 13. Let R be a ring with 3 and let I <;(R[z,y], +,0).
Then I <« (R[z,y],+,).
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Proof. As in the proof of Prop. 11, we have RI C I. Let i(z,y) € I
and f(z,y) € R[z,y]. Then f(z,y)i(z,y) = 3[(z® o (f(z,v) +i(z,v)) -
— 2?0 f(z,y)) — (z? oi(z,9))] € I. O e
Next we investigate the units. Since R[z,y] — R[z] defined
by f(z,y) — f(z,z) is a surjective composition ring homomorphism,

we know that if f(x y) = Z > f” z'y? is a unit in Rz,y], then
=01i4j=

flz,z) = Z fxz® is a unit in R[z] (with respect to composition). This
k=0
means fi = fio+ for € U(R) and fo = fs =+ = f, = 0. Al-
though these conditions are necessary for f(z,y) to be a unit, they are
in general not sufficient. Note that in the next result, and also in the
last part of this section, we deviate from our canonical notation for the
coefficients in f(z,y).
Proposition 14. Any f(a: Y) = fo+uy+ filz —y) + falz — y)® +
+ falz —)* + -+ fan(z — y)*™ with n > 0,u and 2f1 — u in U(R)
and fa, fa,..., fan € R is a unit in Rz, y]. :
Proof. Let f(:L‘,y) = fo + uy + fl(w — y) + fz(l_. _ y)Z + f4($ ,_ y)4 +
+ -+ + fon(z — y)*® be of the specified form. Put w = u™l,gy =
= —wfo, g1 = wfi(2f1 —uw)"! and go; = —wfe;(2fi — u)~! for i =
=1,2,...,n. We will show that , ,
9(z,y) = go+twy+gi(z—y) +g2(c—9)* +gs(z—v)*+ - -+ gan(z—y)*"
is the inverse of f(z,y). '
Note firstly that (2f; — u)(Zgl —w) =1 and if we write g for
g(z,y) and g for g(y, z), then g — g = (291 — w)(z — y). Hence
fz,9) 0 9(z,9) = fl9(z, 1), 9(y, ) =

= fot+ug+ fi(g—79)+ Z fai(g —ﬁ)gi =
- = fot+u(gotwz+gi(y— w)+2 g2i(z— y)°1)+f1(291— Wz—y)+

+ Z f2i(201 — w)% (3 — )% =
(fo+“90)+$+($—y)(“u91+f1(991 w))+
+Z( —Y)*(g2iu + f2i(291 —w)*) =z

smce fo —I—ugo = O —’U,gl—l-fl(r)gl— ) =0 a,nd ggiu—l—fgi(.?gl—w)zi = O
Likewise it can be shown that g(z,y) o f(z,y) = z. ¢
Whether the units mentioned in the above result are the only

possible units is still not clear. We conclude with a description of a
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transformation T': graph f — graph g for the unit f(z, Y) = fo+uy+
n .
+ filz —y) + 3 fai(z — y)* with inverse g(z,y).
i=1

Suppose ¢ = f(a,b). Then ¢ = fo+ub+ fi(a—b)+ i fzi(a— b)?

and if € = £(b, a), then €= fy +ua+ f1(b—a) + ng,(b—~a) =c+
=1

+ (b—a)(2f1 —u) = c+ (b— a)t where t = (2f; ~u)
From ¢ = e(z,y) = g(z,y) o f(z,y) = g(f(=z,), 9(y, z)) we then
have a = g(f(a,b), f(b,a)) = g(c,2). We may thus define T by

(2)-)-[3 H C)

which is an invertible linear transformation (which depends on f).

9. f(zy) o 9(z, y) = f(g(l'a Y)s g(yay))

For our last composition, we take a1(f(z,y)) = f(z, y) and
a2(f(z,y)) = f(y,y) for all f(z,y) € R[z,y]. This gives a compatible

composition ring on R[z,y] with foundation R and identity e(:v y) = z.
As for the previous composition, it can be shown that
Proposition 15. Let I be an ideal of (R[z,y],+,-). Then:

(1) I<i(B[z,y],+,0) if and only if i(y,y) € I for all i(z,y) € I.

(ii) I < (R[x,y],+,-,0) if and only if I a.(R][z,],+,0).

Next we determine the units of R[z,y] and we do so for R an
integral domain.
Proposition 16. Let R be an integral domain. A unit of R[z,y] is of
the form: f(z,y) = fo+ froz+ fory with fio and f1 = fio+ for in U(R).
The inverse of f(x,y) is g(z,y) = go+ g10% + gory where g1 = gi0 +go1
is the inverse of f1, fiogi0 = 1,90 = —?lf—o- and go1 = JTm‘]’}l

m . i3
Proof. Let f(z,y) = Z > fij:czyj be a unit in R[z,y] with inverse
=01i4+j=

9(z,y) = Z > gijz'y’. Suppose m > 2 and n > 2. Since Rlz,y] —
=01i+j=k

— R|[z] deﬁned by h(z,y) — h(z,z) is a surjective composition ring
m

homomorphism, we know that f(z,z) = . fixz* is a unit in R[z]
k=
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with inverse g(z,z) = Z gxz®. This means fi = fio + fo1 € U(R)

with inverse g1 = ¢10 +gol and fo = f3 == fm =g = g3 =

= = gn = 0. Let us write g for g(z,y) and g for g(y,y). Then
m Lo - :

z=c¢e(z,y) = f(9,9) = > . [fijg"9’. We will refer to this equation
k=0 i+j=k

throughout the remainder of the proof, in particular to compare terms

to ultimately get fi;; =0 for all i+ j > 2.

Suppose fmo # 0. The coefficient of ™™ on the right-hand side
of the above equation is fr097, and on the left-hand side it is 0, hence
gno = 0. Suppose gno = gn-11 = *** = Gn—(t-1)4—1 = 0 for 1 <
<t <n-—1 We show g,¢: = 0. Consuier the term containing

z™("—tymt  This term has degree mn and will appear with fy,g. Thus
0 = fmo( X Girji Ginjs - - - Giminn )T~y where the sum is over all
indices 41,42,...,%m, 51,72, +-,Jm € {0,1,2,...,n} with 41 + 45+ --- +
+im = mn—mt,j1 + jo+ -+ jm = mt and i, + jp, < n for all
p=1,2,...,m. Every i, is of the form i, = n—r, for some 0 < r, <n
where ry +r9+ - +7ry =mt = j1 +Jo+ -+ jm. Thenn > ip +
+ Jjp =n —1p + jp for all p. This means r, > j, for all p. If rp; > jp,
for some pg, then mt = j1 +jo + -+ + m < 51 + st Tp, o
+Jm < T1+72+ -+ 71y = mt; a contradiction. Therefore j, = Tp
and i, = n — jp for all p. If j, < ¢— 1 for some p, then gn_; ; =
= 0 by assumption and thus gi,3, Giyjo - - - Gipjp - - - Gimim = 0. So, for
possible nonzero terms in ) gi, 4, Gizjs - - - Gisnjms SUPPOSE jp > t for all
p. But from j; + j2 + -+ + jm = mt we then have j, = ¢ for allp
Hence 0 = fmo(zgiljlgizjz oG im ) m(n= t)ymt me(O 0+ +
+ gn—ttn—tt - Gn-tt + -+ + 0)z™Dy™ and s0 g,—;: = 0. Thus
9no = gn—1,1 =+ =go1 =0.

Next we look at terms containing z™(=1=t)ymt e  terms of
degree m(n — 1). Using similar arguments as above, we get gn—10 =
= G(n—-1)-1,1 = = go,n—1 = 0. We may repeat this process to get
In—k,0 = Jn—-k)-1,1 = - = gon—k = 0 for £ =0,1,2,... as long as
n—k > 2. So, suppose g(,—k)—tt =0 forall t =0,1,2,...,n—k;jk =
=0,1,2,...,n—2. Then the equation above becomes = = fy+ fio(g0o+
+ 910 + go1¥) + fo1(go + 91y) + f20(go + g10Z + g01¥)* + f11(g0 + g107 +
+ g01¥)(g0 + 919) + fo2(go + g1¥)® + -+ - + Fmo(go + g10Z + gory)™ +
+ fm—1,1(90 + g10% + go1%)™ (g0 + 91¥) + - - - + fom (90 + G1y)™.

Comparing the coefficient of 2™, we see that frogs = 0 which
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gives the contradiction gi1g = 0. Thus fr,o = 0.
Suppose now fm,—1,1 7 0. Then

0= fm—l,l ( Zgiljlgizjz . -gim—1jm—1>$n(m_1)gly

where the sum is over all indices i1,%2,...,9m—_1,51, J2, - - ; jm—1 With
itig+ o Fimey =n(m—1),51 + 2+ + jme1 = 0 and i, +
+Jp <nforall p=12,...,m—1 This means i; = 15 = --- =

=in_1 =nandso 0= fm_l,lgm)—lw"(m“lgly. Since g1 # 0 we get
gno = 0. Suppose gn—j; = 0 for all j = 0,1,2,...,t— 1,0 < ¢ <
<mn. Then fn 1 1(29213191012 Qi 11T (m_l)(n_t) (m_l)t)gly =
=0where i3 +ig+ - +im_1=(m—1)(n—1),51+52+ 4 jmo1 =
= (m — 1), ip + jp < n. As in the previous case (for fno # 0) we
get 0= frm1 1919n 1,62 D=0y (M=t and thus g, tt = 0. Thus
9no = gn—1,0 = -+ = go1 = 0. Next consider the terms of degree
(m—1)(n—1)+1. They will appear with fr,_11 and we get

0= fm——l,l ( Zg’iljlg'inB S gim—1jm—1)m(m_l)(n_l)*ty(m_l)tgly where
'il —{—'Lg-{- . '+’im_1 = (m—l)(n—l)—t,]1+_j2+ . '+jm—'1 = (m——l)t,
ip + Jp < n. As before, we will get In—1)—tt = 0,0 <t <n—1, and we
may continue until we get the contradiction g1p = 0. Thus fr,—1 1 =0.

Using similar arguments, we successively get f_ 1,0 =0, fm—22 =
=0, ... till eventually we have f(z,y) = fo + fioz + fo1v (remember
f2:f3:"':fm:0)-

Thus z = fo + fi09 + fo1g. Since fig # 0 (we need fip # 0 to get
an z term on the right-hand side), we get g;; = 0 for all 1+ j > 2 which
concludes the proof. ¢ v

This composition ring is not isomorphic to the one considered in
the previous section (compare units). Finally we describe the transfor-
mation 7' for the unit f(z,y) = fo + fiox + fo1y with inverse > g9(z,y) =
= go + 910% + gory. Let ¢ = f(a,b). Then a = g(F(a,b), f(b,b)) =
=g(c, fo+f1b). But ¢ = fo+ fioa+ fo1b implies e+ fiob— froa = fo+fib.
We may thus define T' by

a c 0 0 1 a
T{bo )=\ c—fioa+fiob | =|—fi0 fio 1 b
c a 1 0 0 c

This is an invertible linear transformation (which depends on f).

In conclusion, we should mention that there are still many matters
to explore for both the nearrings (R[z,y],+,0) and (M(R?, R),+,0)
with respect to the various compositions introduced above. For exam-
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ple, one would like to know their ideal étructure in particular whether
they are simple when R is a field (finite or mﬁmte) One would also
like to know their radicals.

References

[1] ADLER, L: Composnnon Rings, Duke J. Ma,th, 29 (1962), 607—623

[2]- ACZEL, J.: Uber die Gleichheit der Polynomfunktionen auf Ringen, Acta Sei.
Math. Szeged 21 (1960), 105-107. '

[3] CLAY, J.: Nearings: Geneses and Applications, Oxford Science Publications,
1992.

[4] GUTIERREZ, J. and DE VELASCO, C. R.: Polynomial near-rings in severa.l
variables, in: Near-Rings and Near-Fields, Eds. Y. Fong et al., Kluwer Academic
Publishers, 2001, 94-102. :

[5] PETERSEN, Q. N: and: VELDSMAN, S.: Composition near-rings, in: Near-
rings, Nearfields and K-loops, (Proc. Conf. Nearrings and Nearfields, Hamburg
1995. Editors: G. Saad and M. J. Thomsen), Kluwer Academic Publishers, The
Netherlands, 1997, 357-372.

[6] PILZ, G.: Near-rings, 2nd ed., North-Holland, Amsterdam, 1983.

[7] VELDSMAN, S.: Polynomial and transformation composition rings, Contr. Al-
gebra and Geometry 41 (2000), 489-511.





