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Abstract: In the present paper, it is shown that the multiplicative or additive
commutativity of nearring N if N admits a non-zero derivation F or @ such
that [F(z),G(z)] = [z,y] for all z,y € B, where N is a nearring and B C N.
Further, we investigate under appropriate non-zero ideals of a nearring must
be a commutative ring. Finally, we provide a counterexample in connection
with the extension of semiprime nearring.

1. Introduction

Throughout the paper, NV will denote a zero-symmetric left near-
ring with multiplicative center Z. For any z,y € N, the symbol [z, ]
will denote the commutator zy —yz, while the symbol (z,y) will denote
the additive-group commutator £ 4y —x —y. A nearring N is distribu-
tively generated (d — g) if it contains a multiplicative subsemigroup of
distributive elements which generates the additive group (N,+) (for
references see [8]).
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An element z of N is said to be distributive if (y + 2)z = yz + 2z
for all y,z € N; N is said to be distributive if all the elements of N are
distributive.

An ideal of a nearring N is defined to be a normal subgroup I of
(N,+) such that

(i) NIC,
(ii) (z+a)y —zy € I for all z, yGNandaEI

In a (d — g)-nearring (ii) may be replaced by (ii)’ IN C I.

A nearring N is called zero-symmetric if Oz = 0, for all z € N
(recall that left distributivity yields z0 = 0). A nearring N is said to
be prime if aRb = {0} implies that a = 0 or b = 0.

If N is zero-symmetric then zI = {0} or Jz = {0} and IN C I
implies that = 0 for all z € N. For preliminary definitions and results
related to nearrings, we refer Pilz [9]. A natural example of prime near
ring was presented in Bell [3].

By a multiplicative derivation D on N we mean a mapping
D : N — N such that D(zy) = zD(y) + D(z)y for all z,y € N.
If the multiplicative derivation D is also an additive endomorphism of
N, then D is called a derivation.

If D is an additive endomorphism of N then, as noted in [10,
Prop. 1], D(zy) = D(z)y + zD(y) if and only if D(my) = zD(y) +
+ D(z)y for all z,y € N.

In the literature, some recent results on rings deal with commu-
tativity of prime and semiprime rings admitting suitably-constrained
derivations. It is natural to look for comparable results on nearrings,
and this has been done in [1], [2], [3] and [4]. The strong commu-
tativity preserving (SCP)-derivations are motivated by recent stud-
ies of mappings F in rings having the property that [F(z), F(y)] = 0
whenever [z,y] = 0 (for references see [5]). In [4], Bell and Mason es-
tablished commutativity of nearrings admitting derivations which are
SCP-derivations on its subsets. The aim of this paper is to study the
commutativity of nearring with the following constraints: First, with
suitably-restricted right cancellation property on N, we prove main
Th. 2.1, which is a generalization of [6, Cor. 1]. Secondly, we deal with
a type of derivation which is more general than SCP-derivations de-
fined in [7]. Finally, we establish that a nearring N turn out to be a
commutative ring if N satisfies [F'(z), D(y)] = [z,y] for all z and y in
some well-behaved ideal of V.
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2. Some results on nearrings

The following are the main results:

Theorem 2.1. Let N be a nearring which has right cancellation prop-
erty. If N admits a mapping F' and a non-zero derivation D such that
[F(z), D(y)] = [z, y] for all z, y € N, then (N, +) is abelian.
Theorem 2.2. Let N be a nearring having no zero-divisors. If N
admits a mapping F and a non-zero commuting derivation D such that
[F'(z), D(y)] = [=,y] for allz, y € N, then N is a commuting ring with
no idempotent except 0 or 1.

Theorem 2.3. Let N be a non-zero nearring such that N = N for
all non-zero x € N. If N admits a mapping F and a derivation D such
that [F(z), D(y)] = [z,y] for allz, y € N, then N is a division ring.
Remark 2.1. A strong commutativity preserving derivation (SCP-derivation)
is a derivation D if [z,y] = [D(z), D(y)] for all z, y € N. Clearly, such
derivations preserve commutativity, in the sense that, if [D(z), D(y)] =
= 0 then [z,y] = 0. Every derivation is an SCP-derivation when N
is a commutative nearring. Th. 2.2 is an extension of [4, Th. 2], and
Th. 2.3 is a generalization of [4, Th. 4].

We begin with the following known results which will be used
extensively. The proofs of results (a), (b) and (c) can be found in [3]
whereas (d) is proved in [7]. ‘
Result (a). Let D be a derivation on a nearring N. Then IV satisfies the
following partial distributive law: (zD(y) + D(z)y)z = 2D (y)z+ D(z)yz,
for all z,y,z € N.

Result (b). If D is a derivation on a nearring N and suppose u € N is
not a left zero divisor. Let [u, D(u)] = 0. Then (IV, +) is abelian.
Result (c). Let a nearring N has no non-zero divisors of zero. If N
admits a non-trivial commuting derivation D, then (N, +) is abelian.
Result (d). A (d—g) nearring with identity 1 is a ring if N is distributive
or (N,+) is abelian. Then (z,u) is a constant for every z € N.

In the sequel, we establish the following lemmas.

Lemma 2.1. Let N be a nearring which admits a mapping F and o
deriwation D such that [F(z), D(y)] = [z,y] for allz, y € N, then con-
stants in N are multiplicatively central. In addition, if N has identity 1,
then (N,+) is abelian.

Proof. Let c be a constant in N. Replacing y by c in the hypothesis,
we get [z,c] = [F(z),D(c)] = [F(z),0] = 0 for all z € N. This implies
that ce Z. ¢

)
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Next, if N has unity 1, then 1+1 € Z and hence [1+1,z+y] =0
for all z,y € N. This implies that z +y+z+y=z+z +y+y, and
hence, y + z = = 4+ y gives the required result. -

Lemma 2.2. Let N be a mearring which admits a mapping F' and a

derivation D such that [F(z), D(y)] = [z,y] for all z, y € N. Then F

is commuting on N if and only if D is commuting on N. :

Proof. If F'is commuting on NV, then 0 = [F(D(y), D(y)] = [D(y),y]

for all y € N, that is, D is commuting on N, then 0=[F(z), D(F(z))]=
= [z, F(z)] for alze N. O

Lemma 2.3. Let N be a nearring with identity 1 which admits a

mapping F and a derivation D such that [F(z),D(y)] = [z,y] for all

z, y € N. Then (zy+ 2)z = zyz + zz for all z,y and z € N.

, Proof. Clearly, D(1) = 0 and [z,y + 1] = [F(z),D(y + 1)] =
= [F(z),D(y)] = [z,y], we have (y + 1)z = yz + z for all y € N.

Left multiplying by z yields the required result. ¢ ;

Proof of Theorem 2.1. By our hypothes1s we have

[F(z), D(zD(z))] = [z,2D(z)] for all z € N.

This gives that [F(z),zD?*(z) + D(z)?] = z[F(z), D*(z)].
In view of Result (a); this yields ~

F(z)zD*(z) + F(z)D(2)* — (2D*(2)F(2) + D(2)*F(z)) =
= zF(z)D*(z) — zD?*(z) F(z).

This implies that F(z)zD?(z)+F(z)D(z)*~D(z)?F(z) = zF(z)D?(z)
for all z € N. Clearly, by our hypothesis, [F(z), D(z)] = 0, the last
equation implies that F(ac):cDQ(a:) = gF(z)D?*(z) for all z € N.

Now two cases arise: (i)If D?(z) = 0, then D(z) is a constant and
hence by Lemma 2.1, D(w) is central, in particular, [D(z),z] = 0 for
allz € N.

(i) If D(z) # 0, then D? (:v) can be cancelled and we find
[F(m), z] =0 for all z € N, i.e., F' is commuting on N, which yields, by
Lemma, 2.2, D is commuting on V.

Combining of Result (c) and the obtained result, we get the re-
‘quired result. ¢
Proof of Theorem 2.2. For all z € N, [D(z),z] = 0, in view of
Lemma 2.2 yields that [F(z),z] = 0 for all z € N. For any z,y € N,
we have ~ , ' '
zlz,y] = [z, zy] = [F (), D(zy)] = [F(z),2D(y) + D(z)y]-

By an application of Result(a), it gives
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zlz,y] = F(2)eD(y) + F(2)D(z)y — (D(y)F(z) + D(z)yF(z)).
Further, in view of Result (c), (IV, +) is abelian and since [F(z),D(z)] =
= 0, the last equation reduces to
zlz,y] = 2[F(z), D(y)] = z[F(z), D(y)] + D(z)[F (z),].
This implies that

(2.1) D(z)[F(x),y] =0, forall z,y € N,
Hence
(22) [F(z),4] = 0.

Replacing y by D(y) in (2.2), we have

0=[F(z), D(y)] = [z,y] forall z,y € N,

which yields N is a commutative ring.
Taking e # 0, an idempotent element in V. Then, we have

D(e) = D(e?) = eD(e) + D(e)e = 2eD(e).
This gives eD(e) = 2eD(e), i.e., eD(e) = 0. Thus D(e) = 0, e is a
constant, which is central by Lemma 2.1. Since e(ex — z) = 0 for all
z € N, e is a left identity element which is central, it follows that
e=1.¢
Proof of Theorem 2.3. Taking any non-zero element n € N. Then
there exists an idempotent element e in N such that ne = n, ne? =ne
and n(e® — e) = 0. This shows that N has no zero d1v1sors the last
equation implies that e is a non-zero idempotent which must be a left
identity. Clearly, D(e) = D(e®) = eD(e) + D(e)e and hence D(e) =
= D(e) + D(e)e, i.e., D(e)e = 0. Thus D(e)N = D(e)eN = 0. This
gives D(e) = 0, i.e., e is a constant, by Lemma 2. 1, e € Z. Thus,
N has 1. Therefore zN = N for all 0 # z € N, by an application of
Lemma 2.3 shows that N is distributive. In addltIOIl using Lemma 2.1,
(N, +) is abelian and hence, by Lemma 2.3, N is a ring which must be
a division ring. ¢

3. Commutativity results on ideals of nearrings

In this section, we prove the folloWing results which show that
nearring N turn out to be a commutative ring if N satisfies the property
[F'(x), D(y)] = [z,y] for all z,y € I, where I is an ideal of N. The
following Th. 3.1 is a generalization of [6, Th. 3] or [4, Th. 3] and
Th. 3.2 is an extension of [4, Th. 6].




136 M. A. Khan and M. 5. Khan

Theorem 3.1. Let N be a nearring and U be a non zero ideal of N
which contains no zero dwisors of N. If N admits a mapping F' with
the property that F(U) C U, and a non-zero derivation D such that D
is commuting on U and [F(z),D(y)] = [z,y] for all z,y € U, then N
is a commutative Ting. ‘

Theorem 3.2. Let N be a prime nearring and U a non zero ideal of
N which is distributively generated (d — g) nearring with identity. If N
admits a mapping F and a derivation D such that [F(z), D(y)] = [z, y]
for all z,y € U, then N is a commutative Ting.

Remark 3.1. It is well known that in a prime ring IV, the centralizer of
any non-zero one sided ideal is equal to the center of N. In particular, if
N has a non-zero central ideal then N must be commutative. Combining
this facts together with Th. 1 of [5] gives the followmg result for prime
rings.

Lemma 3.1. Let N be a prime ring and U a non zero ideal of N. If N
admits ¢ mapping F' and o derivation D such that [F(z), D(y)] = [z, y]
for all z,y € U, then N is a commutative Ting.

Proof of Theorem 3.1. Without loss of generality, we first claim
that: '

If D is a non-zero denvatlon of N, then D is also a non-zero derivation
of U. Taking D(u) = 0 for all uw € U. Then, D(nu) =0 for alln € N
and u € U, and hence D(n)u = 0, gives that D(n) =0 for all n € N.

Secondly, we establish that: If u is a non-zero element of U, then
(N,+) is abelian. By application of Result (b), it follows that addi-
tive commutator (z,u) is constant for all z-. € N and v € U. This
implies that n(z,u) = (nz,nu) is also constant for any n € N. Thus,
D(n)(z,u) = 0. But (z,u) € U and hence cannot be a non-zero divi-
sors of zero. Thus (z,u) = 0 and (U,+) is abelian. Further, if u is a
non-zero element of U and z,y € N then (nz,ny) = n(z,y) = 0, yields
that (z,y) = 0 for all z,y € N. So we get (I, +) is abelian.

Thirdly, we prove that N is a commutative ring: Note that argu-
ments used in the proof of Th. 2.2 of relation (2.1) are still valid in the
present situation. Hence D(z)[F'(z),y] = 0 for all z,y € U. Clearly,
[F(z),y] € U and hence the last equation implies that if D(z) = 0 then
0 = [D(z), F(y)] = [z,y]. In particular, [F(z),y] = 0 for all z,y €
€ U. But since D is non-zero on U and hence [F(z),y] = 0 for all

z,y € U. Replacing y by yD (y) in the last obtained result, we have
0 = [F(z),yD(y)] = y[F(z), D(y)] = y[=,y] for all z,y € U. We con-
clude that [z,y] = 0 for all z,y € U. Now, If u is a non-zero element of
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U and n,m € N then u?[n,m] = u?nm — v?mn = u(un)m — u(um)n =
= unum — umun = 0 thus, [n,m] =0 for all n,m € N and hence, N is
a commutative ring. ¢
Proof of Theorem 3.2. Let e be an identity element of UU. Then
eu = u for all u € U and hence; we have D(u) = eD(u) + D(e)u. This
give eD(e)u = 0 for all u € U, 50 eD(e) = 0. Thus for each u € U,
uD(e) = ueD(e) = 0, ie., UD(e) = {0}. This implies that D{e) =
= 0 and hence D(e + ¢) = 0. Since Lemma 2.1 is valid in the present
situation, we obtain that both e and e + e commute with elements of
U, and (U, +) is abelian. Trivially, one can see that U(n,m) = {0} for
all n,m € N thus, (n,m) = 0 for all n,m € N, yields (N, +) is abelian.
Since U is a (d — g) nearring with identity and (U, +) is abelian,
application of Result(d) gives that U is distributive. Let u,v € U.and
m,n € N. Then

u{(m +n)v — (mv + nv)} = (um + un)v — (umv + unv) = 0.
This implies that (m-+n)v = mv-+nv. Putting of v by zv for any z € N,
gives that (m+n)zv = mzv-+nzv. We obtain {(m+n)z—(mz+nz)}U =
= {0} and hence (m + n)z = mz + nz for all n,m,z € N, i.e., N is
distributive. This indicates that N is a ring which is commutative by
Lemma 3.1. $
Corollary 3.1. Suppose N is a prime nearring admitting a derivation
D and U is a non-zero ideal of N which is (d— g) nearring with identity.
If for each x € U, there exists an integer 1 = i(x) > 1 such that
[D*(z), D(y)] = [z,y] for ally € U, then N is a commutative Ting.
Proof. By Th. 3.1, (N,+) is abelian, which in the setting of (d—g)
nearrings forces N to be a ring. Further, it is clear that D is commut-
ing on U, hence if D # 0, we can invoke [8, Th. 1 (2)] to the effect
that a prime ring admitting a nontrivial commuting derivation must be
commutative. Finally, if D = 0, Cor. 3.1 is obvious. ¢
Corollary 3.2. Let N be a ring admitting o derivation D and U a
non-zero ideal of N with identity. Then U = N.

Remark 3.2. In view of Lemma 3.1, in the hypothesis of Th. 2.3 N
can be extended to a field.

4. Counterexample

In ring theory, it is known that a mapping F : N — N, where N
is a ring, is called commuting if [F(z), z] = 0 holds for all z € N. This
theory has been initiated by a result of Posner [10, Posner’s Second
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Th.], which states that existence of a non-zero commuting derivation
D : N — N, where N is a prime ring forces the ring to be commu-
tative. In general, Posner’s Second theorem cannot be generalized on
semiprime ring as shows the following example. Let N7 be a noncom-
mutative prime ring and let Ny a commutative prime ring that admits
a non-zero derivation D : Ny — N3. Then N = N; @ N; is a noncom-
mutative semiprime ring.

In this context, we construct an example in nearrings which shows
that our Th. 3.2 cannot be extended to semiprime nearring. B
Example 4.1. Let N7 be a noncommutative prime ring and N; a non-
commutative prime nearring admitting a non-zero commuting deriva-
tion §. Then N = N; € N; is a noncommutative semiprime nearring.
Define D : N — N by D(z,y) = (0,6(y1)). Then D is a non-zero
commuting derivation on N. Now, we define ' : N — N by D(z,y) =
= (z1,0). Then [D(z),F(y)] = [z,y] for all z,y € N.
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