ON NEARRINGS WITH DERIVATION

M. A. Khan

Department of Mathematics, Eritrea-Institute of Technology, Mainefhi, P.O. Box 10373, Asmara, Eritrea

M. S. Khan

Department of Mathematics and Statistics, Sultan Qaboos University, P.O. Box 36, P C 123, Al-Khodh, Muscat, Sultanate of Oman

Received: June 2005

MSC 2000: 16 W 20, 16 N 60, 16 Y 30

Keywords: Nearring, near-field, prime nearring, derivation, commutativity.

Abstract: In the present paper, it is shown that the multiplicative or additive commutativity of nearring N if N admits a non-zero derivation F or G such that [F(x), G(x)] = [x, y] for all $x, y \in B$, where N is a nearring and $B \subseteq N$. Further, we investigate under appropriate non-zero ideals of a nearring must be a commutative ring. Finally, we provide a counterexample in connection with the extension of semiprime nearring.

1. Introduction

Throughout the paper, N will denote a zero-symmetric left nearring with multiplicative center Z. For any $x, y \in N$, the symbol [x, y] will denote the commutator xy-yx, while the symbol (x, y) will denote the additive-group commutator x+y-x-y. A nearring N is distributively generated (d-g) if it contains a multiplicative subsemigroup of distributive elements which generates the additive group (N, +) (for references see [8]).

E-mail addresses: moharram_a@yahoo.com, mohammad@squ.edu.om

An element x of N is said to be distributive if (y+z)x = yx + zxfor all $y, z \in N$; N is said to be distributive if all the elements of N are distributive.

An ideal of a nearring N is defined to be a normal subgroup I of (N,+) such that

- (ii) $(x+a)y xy \in I$ for all $x, y \in N$ and $a \in I$. In a (d-g)-nearring (ii) may be replaced by (ii) $IN \subseteq I$.

A nearring N is called zero-symmetric if 0x = 0, for all $x \in N$ (recall that left distributivity yields x0 = 0). A nearring N is said to be prime if $aRb = \{0\}$ implies that a = 0 or b = 0.

If N is zero-symmetric then $xI = \{0\}$ or $Ix = \{0\}$ and $IN \subseteq I$ implies that x = 0 for all $x \in N$. For preliminary definitions and results related to nearrings, we refer Pilz [9]. A natural example of prime near ring was presented in Bell [3].

By a multiplicative derivation D on N we mean a mapping $D: N \to N$ such that D(xy) = xD(y) + D(x)y for all $x, y \in N$. If the multiplicative derivation D is also an additive endomorphism of N, then D is called a derivation.

If D is an additive endomorphism of N then, as noted in [10, Prop. 1, D(xy) = D(x)y + xD(y) if and only if D(xy) = xD(y) ++D(x)y for all $x,y \in N$.

In the literature, some recent results on rings deal with commutativity of prime and semiprime rings admitting suitably-constrained derivations. It is natural to look for comparable results on nearrings, and this has been done in [1], [2], [3] and [4]. The strong commutativity preserving (SCP)-derivations are motivated by recent studies of mappings F in rings having the property that [F(x), F(y)] = 0whenever [x,y] = 0 (for references see [5]). In [4], Bell and Mason established commutativity of nearrings admitting derivations which are SCP-derivations on its subsets. The aim of this paper is to study the commutativity of nearring with the following constraints: First, with suitably-restricted right cancellation property on N, we prove main Th. 2.1, which is a generalization of [6, Cor. 1]. Secondly, we deal with a type of derivation which is more general than SCP-derivations defined in [7]. Finally, we establish that a nearring N turn out to be a commutative ring if N satisfies [F(x), D(y)] = [x, y] for all x and y in some well-behaved ideal of N.

2. Some results on nearrings

The following are the main results:

Theorem 2.1. Let N be a nearring which has right cancellation property. If N admits a mapping F and a non-zero derivation D such that [F(x), D(y)] = [x, y] for all $x, y \in N$, then (N, +) is abelian.

Theorem 2.2. Let N be a nearring having no zero-divisors. If N admits a mapping F and a non-zero commuting derivation D such that [F(x), D(y)] = [x, y] for all $x, y \in N$, then N is a commuting ring with no idempotent except 0 or 1.

Theorem 2.3. Let N be a non-zero nearring such that xN = N for all non-zero $x \in N$. If N admits a mapping F and a derivation D such that [F(x), D(y)] = [x, y] for all $x, y \in N$, then N is a division ring.

Remark 2.1. A strong commutativity preserving derivation (SCP-derivation) is a derivation D if [x,y] = [D(x),D(y)] for all $x, y \in N$. Clearly, such derivations preserve commutativity, in the sense that, if [D(x),D(y)] = 0 then [x,y] = 0. Every derivation is an SCP-derivation when N is a commutative nearring. Th. 2.2 is an extension of [4, Th. 2], and Th. 2.3 is a generalization of [4, Th. 4].

We begin with the following known results which will be used extensively. The proofs of results (a), (b) and (c) can be found in [3], whereas (d) is proved in [7].

Result (a). Let D be a derivation on a nearring N. Then N satisfies the following partial distributive law: (xD(y)+D(x)y)z=xD(y)z+D(x)yz, for all $x,y,z\in N$.

Result (b). If D is a derivation on a nearring N and suppose $u \in N$ is not a left zero divisor. Let [u, D(u)] = 0. Then (N, +) is abelian.

Result (c). Let a nearring N has no non-zero divisors of zero. If N admits a non-trivial commuting derivation D, then (N, +) is abelian.

Result (d). A (d-g) nearring with identity 1 is a ring if N is distributive or (N, +) is abelian. Then (x, u) is a constant for every $x \in N$.

In the sequel, we establish the following lemmas.

Lemma 2.1. Let N be a nearring which admits a mapping F and a derivation D such that [F(x), D(y)] = [x, y] for all $x, y \in N$, then constants in N are multiplicatively central. In addition, if N has identity 1, then (N, +) is abelian.

Proof. Let c be a constant in N. Replacing y by c in the hypothesis, we get [x,c]=[F(x),D(c)]=[F(x),0]=0 for all $x\in N$. This implies that $c\in Z$. \Diamond

Next, if N has unity 1, then $1+1 \in Z$ and hence [1+1, x+y] = 0 for all $x, y \in N$. This implies that x+y+x+y=x+x+y+y, and hence, y+x=x+y gives the required result.

Lemma 2.2. Let N be a nearring which admits a mapping F and a derivation D such that [F(x), D(y)] = [x, y] for all $x, y \in N$. Then F is commuting on N if and only if D is commuting on N.

Proof. If F is commuting on N, then 0 = [F(D(y), D(y)] = [D(y), y] for all $y \in N$, that is, D is commuting on N, then 0 = [F(x), D(F(x))] = [x, F(x)] for all $x \in N$. \Diamond

Lemma 2.3. Let N be a nearring with identity 1 which admits a mapping F and a derivation D such that [F(x), D(y)] = [x, y] for all $x, y \in N$. Then (zy + z)x = zyx + zx for all x, y and $z \in N$.

Proof. Clearly, D(1) = 0 and [x, y + 1] = [F(x), D(y + 1)] = [F(x), D(y)] = [x, y], we have (y + 1)x = yx + x for all $y \in N$. Left multiplying by z yields the required result. \Diamond

Proof of Theorem 2.1. By our hypothesis, we have

$$[F(x), D(xD(x))] = [x, xD(x)]$$
 for all $x \in N$.

This gives that $[F(x), xD^2(x) + D(x)^2] = x[F(x), D^2(x)]$.

In view of Result (a), this yields

$$F(x)xD^{2}(x) + F(x)D(x)^{2} - (xD^{2}(x)F(x) + D(x)^{2}F(x)) =$$

= $xF(x)D^{2}(x) - xD^{2}(x)F(x).$

This implies that $F(x)xD^2(x)+F(x)D(x)^2-D(x)^2F(x)=xF(x)D^2(x)$ for all $x \in N$. Clearly, by our hypothesis, [F(x),D(x)]=0, the last equation implies that $F(x)xD^2(x)=xF(x)D^2(x)$ for all $x \in N$.

Now two cases arise: (i)If $D^2(x) = 0$, then D(x) is a constant and hence by Lemma 2.1, D(x) is central, in particular, [D(x), x] = 0 for all $x \in N$.

(ii) If $D(x) \neq 0$, then $D^2(x)$ can be cancelled and we find [F(x), x] = 0 for all $x \in N$, i.e., F is commuting on N, which yields, by Lemma 2.2, D is commuting on N.

Combining of Result (c) and the obtained result, we get the required result. ◊

Proof of Theorem 2.2. For all $x \in N$, [D(x), x] = 0, in view of Lemma 2.2 yields that [F(x), x] = 0 for all $x \in N$. For any $x, y \in N$, we have

$$x[x,y] = [x,xy] = [F(x),D(xy)] = [F(x),xD(y)+D(x)y].$$

By an application of Result(a), it gives

$$x[x,y] = F(x)xD(y) + F(x)D(x)y - (xD(y)F(x) + D(x)yF(x)).$$

Further, in view of Result (c), (N, +) is abelian and since [F(x), D(x)] = 0, the last equation reduces to

$$x[x, y] = x[F(x), D(y)] = x[F(x), D(y)] + D(x)[F(x), y].$$

This implies that

(2.1)
$$D(x)[F(x), y] = 0$$
, for all $x, y \in N$,

Hence

$$[F(x), y] = 0.$$

Replacing y by D(y) in (2.2), we have

$$0 = [F(x), D(y)] = [x, y]$$
 for all $x, y \in N$,

which yields N is a commutative ring.

Taking $e \neq 0$, an idempotent element in N. Then, we have

$$D(e) = D(e^2) = eD(e) + D(e)e = 2eD(e).$$

This gives eD(e) = 2eD(e), i.e., eD(e) = 0. Thus D(e) = 0, e is a constant, which is central by Lemma 2.1. Since e(ex - x) = 0 for all $x \in N$, e is a left identity element which is central, it follows that e = 1. \Diamond

Proof of Theorem 2.3. Taking any non-zero element $n \in N$. Then there exists an idempotent element e in N such that ne = n, $ne^2 = ne$ and $n(e^2 - e) = 0$. This shows that N has no zero divisors, the last equation implies that e is a non-zero idempotent which must be a left identity. Clearly, $D(e) = D(e^2) = eD(e) + D(e)e$ and hence D(e) = D(e) + D(e)e, i.e., D(e)e = 0. Thus D(e)N = D(e)eN = 0. This gives D(e) = 0, i.e., e is a constant, by Lemma 2.1, $e \in Z$. Thus, N has 1. Therefore, xN = N for all $0 \neq x \in N$, by an application of Lemma 2.3 shows that N is distributive. In addition, using Lemma 2.1, (N, +) is abelian and hence, by Lemma 2.3, N is a ring which must be a division ring. \Diamond

3. Commutativity results on ideals of nearrings

In this section, we prove the following results which show that nearring N turn out to be a commutative ring if N satisfies the property [F(x), D(y)] = [x, y] for all $x, y \in I$, where I is an ideal of N. The following Th. 3.1 is a generalization of [6, Th. 3] or [4, Th. 3] and Th. 3.2 is an extension of [4, Th. 6].

Theorem 3.1. Let N be a nearring and U be a non zero ideal of N which contains no zero divisors of N. If N admits a mapping F with the property that $F(U) \subseteq U$, and a non-zero derivation D such that D is commuting on U and [F(x), D(y)] = [x, y] for all $x, y \in U$, then N is a commutative ring.

Theorem 3.2. Let N be a prime nearring and U a non zero ideal of N which is distributively generated (d-g) nearring with identity. If N admits a mapping F and a derivation D such that [F(x), D(y)] = [x, y] for all $x, y \in U$, then N is a commutative ring.

Remark 3.1. It is well known that in a prime ring N, the centralizer of any non-zero one sided ideal is equal to the center of N. In particular, if N has a non-zero central ideal then N must be commutative. Combining this facts together with Th. 1 of [5] gives the following result for prime rings.

Lemma 3.1. Let N be a prime ring and U a non zero ideal of N. If N admits a mapping F and a derivation D such that [F(x), D(y)] = [x, y] for all $x, y \in U$, then N is a commutative ring.

Proof of Theorem 3.1. Without loss of generality, we first claim that:

If D is a non-zero derivation of N, then D is also a non-zero derivation of U. Taking D(u) = 0 for all $u \in U$. Then, D(nu) = 0 for all $n \in N$ and $u \in U$, and hence D(n)u = 0, gives that D(n) = 0 for all $n \in N$.

Secondly, we establish that: If u is a non-zero element of U, then (N,+) is abelian. By application of Result (b), it follows that additive commutator (x,u) is constant for all $x \in N$ and $u \in U$. This implies that n(x,u) = (nx,nu) is also constant for any $n \in N$. Thus, D(n)(x,u) = 0. But $(x,u) \in U$ and hence cannot be a non-zero divisors of zero. Thus (x,u) = 0 and (U,+) is abelian. Further, if u is a non-zero element of U and $x,y \in N$ then (nx,ny) = n(x,y) = 0, yields that (x,y) = 0 for all $x,y \in N$. So we get (N,+) is abelian.

Thirdly, we prove that N is a commutative ring: Note that arguments used in the proof of Th. 2.2 of relation (2.1) are still valid in the present situation. Hence D(x)[F(x),y]=0 for all $x,y\in U$. Clearly, $[F(x),y]\in U$ and hence the last equation implies that if D(x)=0 then 0=[D(x),F(y)]=[x,y]. In particular, [F(x),y]=0 for all $x,y\in U$. But since D is non-zero on U and hence [F(x),y]=0 for all $x,y\in U$. Replacing y by yD(y) in the last obtained result, we have 0=[F(x),yD(y)]=y[F(x),D(y)]=y[x,y] for all $x,y\in U$. We conclude that [x,y]=0 for all $x,y\in U$. Now, If u is a non-zero element of

U and $n, m \in N$ then $u^2[n, m] = u^2nm - u^2mn = u(un)m - u(um)n = unum - umun = 0$ thus, [n, m] = 0 for all $n, m \in N$ and hence, N is a commutative ring. \Diamond

Proof of Theorem 3.2. Let e be an identity element of U. Then eu = u for all $u \in U$ and hence, we have D(u) = eD(u) + D(e)u. This give eD(e)u = 0 for all $u \in U$, so eD(e) = 0. Thus for each $u \in U$, uD(e) = ueD(e) = 0, i.e., $UD(e) = \{0\}$. This implies that D(e) = 0 and hence D(e+e) = 0. Since Lemma 2.1 is valid in the present situation, we obtain that both e and e+e commute with elements of U, and U, is abelian. Trivially, one can see that $U(n, m) = \{0\}$ for all $u \in V$ thus, $u \in V$

Since U is a (d-g) nearring with identity and (U, +) is abelian, application of Result(d) gives that U is distributive. Let $u, v \in U$ and $m, n \in N$. Then

$$u\{(m+n)v - (mv + nv)\} = (um + un)v - (umv + unv) = 0.$$

This implies that (m+n)v = mv + nv. Putting of v by zv for any $z \in N$, gives that (m+n)zv = mzv + nzv. We obtain $\{(m+n)z - (mz+nz)\}U = \{0\}$ and hence (m+n)z = mz + nz for all $n, m, z \in N$, i.e., N is distributive. This indicates that N is a ring which is commutative by Lemma 3.1. \Diamond

Corollary 3.1. Suppose N is a prime nearring admitting a derivation D and U is a non-zero ideal of N which is (d-g) nearring with identity. If for each $x \in U$, there exists an integer $i = i(x) \ge 1$ such that $[D^i(x), D(y)] = [x, y]$ for all $y \in U$, then N is a commutative ring.

Proof. By Th. 3.1, (N, +) is abelian, which in the setting of (d-g) nearrings forces N to be a ring. Further, it is clear that D is commuting on U, hence if $D \neq 0$, we can invoke [8, Th. 1 (2)] to the effect that a prime ring admitting a nontrivial commuting derivation must be commutative. Finally, if D = 0, Cor. 3.1 is obvious. \Diamond

Corollary 3.2. Let N be a ring admitting a derivation D and U a non-zero ideal of N with identity. Then U = N.

Remark 3.2. In view of Lemma 3.1, in the hypothesis of Th. 2.3 N can be extended to a field.

4. Counterexample

In ring theory, it is known that a mapping $F: N \to N$, where N is a ring, is called commuting if [F(x), x] = 0 holds for all $x \in N$. This theory has been initiated by a result of Posner [10, Posner's Second

Th.], which states that existence of a non-zero commuting derivation $D: N \to N$, where N is a prime ring forces the ring to be commutative. In general, Posner's Second theorem cannot be generalized on semiprime ring as shows the following example. Let N_1 be a noncommutative prime ring and let N_2 a commutative prime ring that admits a non-zero derivation $D: N_2 \to N_2$. Then $N = N_1 \bigoplus N_2$ is a noncommutative semiprime ring.

In this context, we construct an example in nearrings which shows that our Th. 3.2 cannot be extended to semiprime nearring.

Example 4.1. Let N_1 be a noncommutative prime ring and N_2 a noncommutative prime nearring admitting a non-zero commuting derivation δ . Then $N = N_1 \bigoplus N_2$ is a noncommutative semiprime nearring. Define $D: N \to N$ by $D(x,y) = (0,\delta(y_1))$. Then D is a non-zero commuting derivation on N. Now, we define $F: N \to N$ by $D(x,y) = (x_1,0)$. Then [D(x),F(y)] = [x,y] for all $x,y \in N$.

References

- [1] BEIDAR, K. I., FONG, Y. and WANG, X. K.: Posner and Herstein's theorems for derivation of 3-prime nearrings, *Communication in Algebra* **24** (1995), 1581–1589.
- [2] BELL, H. E. and MARTINDALE, W. S.: Centralizing mapping of semiprime rings, *Canad. Math. Bull.* **30** (1987), 92–101.
- [3] BELL H. E. and MASON, G.: On derivation in nearrings, in: Near-rings and near-fields G. Betsch (ed.), 31–35, North-Holland, Amsterdam, 1987.
- [4] BELL, H. E. and MASON, G.: On derivation in nearrings and rings, Math. J. Okayama Univ. 34 (1992), 135–143.
- [5] BREŠAR, M.: Commuting traces of biadditive mappings, commutativity preserving mappings, and Lie mappings, *Trans. Amer. Math. Soc.* **335** (1993), 525–546.
- [6] DENG, Q., YENIGUL M. S. and ARGAC, N.: On commutativity of nearrings with derivations, Math. Proc. R. I. Academy 98A (1998), 217–222.
- [7] FRÖHLICH, A.: Distributively generated nearrings, I. Ideal Theory, Proc. London Math. Soc. 8 (1958), 76–94.
- [8] HIRANO, Y., KAYA, A. and TOMINAGA, H.: On a theorem of Mayne, Math. J. Okayama Univ. 25 (1983), 125–132.
- [9] PILZ, G.: Near-rings, 2nd ed., North-Holland, Amsterdam, 1983.
- [10] POSNER, E.: Derivations in prime nearrings, Proc. Amer. Math. Soc. 8 (1957), 1093-1100.
- [11] WANG, X. K.: Derivations in prime nearrings, Proc. Amer. Math. Soc. 121 (1994), 361–366.