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Abstract: In this paper we present skew-orthogonal polynomials of a discrete
variable. A skew-orthogonality property with respect to the powers {n* }1>0
of a discrete variable n will play a very important role in our construction.
This allows us to use the classic Charlier and Meixner polynomials.

1. Introduction

Classical orthogonal polynomials of a discrete variable have been
extensively used in some problems of mathematics, physics, computa-
tional mathematics and engineering. The Hahn, Meixner, Kravchuk
and Charlier polynomials are the principal examples of these special
functions. It is very important to note that all these polynomials are
solutions of some difference equations of hypergeometric type.

On the other hand the skew-orthogonal polynomials were intro-
duced in 1970 by Dyson in his phenomenal work about correlations
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between the eigenvalues of a random matrix and later developed by
Mehta (see [8]) and others. It should be observed that there is a deep
connection between skew-orthogonal polynomials and the theory of in-
tegrable systems. This relation was noted by Adler, Horozov and Van
Moerbeke in [1]. The first author has also presented a simple setting
for the skew-orthogonal polynomials which emphasizes the appearance
of non-uniqueness in the construction of these polynomials (see [6]).

To the best of our knowledge, skew-orthogonal functions of a dis-
crete variable have not been studied. The principal objective of this
paper is the construction of skew-orthogonal polynomials of a discrete
variable.

Let F' be an infinite dimensional real vector space. Suppose that
over F is defined a bilinear form Q (.,.) such that Q (z,y) = —Q (y, z).
In this case Q(.,.) is called a skew-bilinear form.
Definition 1. Let Q(.,.) be a skew-bilinear form over an infinite di-
mensional real vector space F. We say that the sequence {up},~q C F
of vectors is skew-orthogonal if: -

a) Q (uap, uom) = 0 = Q (uani1, Yams1) for n,m =0,1,...,

b) Q (u2n, Usm+1) = YnOn,m for n,m =0,1,..., where {vp},,5¢ is
a sequence of real non-zero numbers. B

Throughout the paper we use the following remark which is evi-
dent but will be very important for us.
Remark 2. Let {eg, e1,... } be alinearly independent system of vectors
belonging to an infinite dimensional real vector space F' over which is
defined a skew-bilinear form €2(.,.). Let us assume that {y,}, ¢ is a
sequence of real non-zero numbers. Then, if the system {u,}, - defined
in the form ug = ep and for any n, u, = cgeo+---ch_1€n—1 + e, where
ct € Rfort=0,...,n satisfies the following relations

Q (uzn, U2nt1) = Vn,
Q (ugn,em) =0, for m=0,...,2n—1,
Q(ugnt1,6m) =0, for m=0,...,2n—1,

then the system {un},~q is skew-orthogonal.

We would like to recall that other definitions of orthogonality have
been used formerly, for example, Birkhoff [5] and James [7] (with respect
to semi-inner-products) but this will be omitted in this paper.

Recall that on Z we have two important operators, namely the
forward difference operator A for which Ay (n) = ¢ (n+1) — ¢ (n),
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and the backward difference operator 7 defined by means of Ve (n) =
=@ (n)—p(n-1).

Next we give a brief introduction to the Charlier and Meixner
polynomials.

Recall that the classic monic Charlier polynomials Cy, (n;a) are de-
fined for any n € Z,, of the following form, the k-th polynomial is

L b
Cr (n; CL) = ; mpn,i (—a) )

where pni =n(n—1)---(n—i+1) = and a € (0, +00). The following
properties of the Charlier polynomials can be found in [4], for any n €
€ Z4 and k > 1 we have '

(c1) ACk (nja) = kCr—1 (n;a),

(c2) nCr(n; a) = Cri1(n; a)+(k+a)Ci(n; a)+akCy_1(n;a), where
C_i(n;a) =0,

(cs) n A VCi(n;a) + (a — n) A Cx(n;a) + kCy(n; a) = 0.

Now we present the well known classic monic Meixner polynomials
by means of their explicit representation as a hypergeometric function,

that is, for v € Ry and 8 € (0, 1) we have for the k-th polynomial
(k>0)

(1.6) B \s-(k 1Y’
]\/‘77 — l'ﬂ_, —q 1 1__..._
7m0 =(527) 2 (§) o+ dumtemienn (- 3).
where (7),, is the usual Pochhammer symbol (v),, = v (y+1) (y+2) -+
(y+n—1) with (v), = 1. In [3] and [4] the following facts were pre-
sented.

(m1) The Meixner polynomials satisfies a recurrence relation of
the form

kE(1+08)+
n]\/flg’)’;ﬂ) (n) _ ]\/Ilg’—)l'_,f’) (n) + ( —:8—)13 B'Y]V[]g’v,ﬂ) (n)+

Bk =147\ . (v.8)
" ( G- )M’“‘l )

for any k£ > 0, where ]Vfé7’ﬁ) (n) =1 and ]\/f@l’ﬁ) (n) = 0.
(m2) () & M n) = MEWD () + (2EEZL) M) (),
(ms) $VM (n) = MTP (n) + () (1= v = K)MTD ().
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2. Skew-symmetric difference operators in lj (Z)

In this section we shall study some skew-bilinear forms which
are defined by means of skew-symmetric linear difference operators in
12(Zy) where p: Zy — R. It will be the first step in the construction
of skew-orthogonal polynomials of a discrete variable.

Let p be a fixed real function of Z,. onto R. Let [2 (Z) denote the

collection of all real functions ¢ on Z., such that, > oo, | (n) ? p(n) is
finite. Then lﬁ (Z4) is a real linear space with an inner product defined
of the following form (f,g) = > ooy f(n) g (n) p(n). In what follows,
we will assume that all the moments pr = ), 59 n*p (n) corresponding
to p are finite.

Let p(n) = e %% be the usua.l Poisson distribution where a is a
positive real number. It is well known that

(1) (Ci (m;a),C (n;a)) =a Y1845,
and also
(2) (C’(na,) Y=0 fors=0,1,...,i— 1.

We introduce a linear operator L of 12 (Z,.) onto itself defined by
means of Lep = Ap+ A, for any ¢ of I2 (Z4), where Ap (n) = ¢ (n) -
—2p(n—1).

Next, we are going to show that the difference operator L. is
skew-symmetric.

Lemma 3. The operator L. is a skew-symmetrzc operator, that is,

(chag) == (L697 f) .
Proof. Let f, g € 12 (Zy) then we compute (L.f, g) we get

(Lef,9) = (Af+Af,g) =

(Z & fn+1)g i _ n—l)g()>

n=0 n:l

on the other hand
— (f, Leg) = — (£ (1) g (n+1)—g (n)) - (f (:90) - Eg (n—.l)) =

= _“Z f n)g n+1 )g(n—1),

) n=0 n——l
one can then replace n + 1 by m in the first term a,nd n—1by m in
the second. These changes lead to us to the following equality
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* m—1 X m
(hleg) == 3 gy m =1 g (m) vt X i tm+1)gm),
therefore (L. f, g) = — (£, Leg). ¢
By means of this lemma it is now easy to see that Q.(f,g) =
= (Lcf,g) is a skew-bilinear form.
- Take now the negative binomial distribution o(n) = ’?TT (77),, where
as before (), is the Pochhammer symbol. Here v € Ry and B € (0,1).
Then the following results are well known

(3) (M,g””ﬂ)(n),nj) =0 forj=0,1,...,k—1,
and
@) (352 (), TP () ) = (1) 6,

where d (k,[) > 0 for any k and [ (see [9]).

In this moment on 2 (Z,.) we will define a difference operator L,
which has the form L, ¢ (n) = ge(n—1)~(n+7v)p(n+1)forallp e
€ lf, (Z4). The operator L,, has the property of to be skew-symmetric
as we state in the following lemma.

Lemma 4. The difference operator L,, is skew-symmetric.
Proof. To see this, note that for any f, g € 12(24)

(Lmf,g) = <%f(n—1)— (n+’y)f(n+1),g(n)> =
= ;%f(n—~1)g(n)%(’Y)n—g(n—l-’y)f(n—l—l)g(n)%(7)71’
thus
(Imf,9) = ; f(n—1)g(n) (fi_l)! (Vn = TLZ:O f(n—i—l)g(n)%(y)nﬂ,
now
(f, Lmg) = <f(n),g—g(n~l)— (n—!—’\/)g(n—}-l)) =
= 290105 () (g () >+ 1 () 5 O

doing m = n — 1 in the first sum and m = n + 1 in the second sum,
then we obtain
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m

- g

=0
oo
n=0

This lemma allows us to assert that Q.. (f,9) = (Im/f,g) is a
skew-bilinear form.
Here concludes the first step in our construction.

m~1>(—£-"3__—1)—!(v)m:—(me,g>. 0

3. Skew-orthogonal polynomials associated to the
Charlier polynomials

The objective of this sectlon is to build skew-orthogonal polynomi-
alsin I2 (Zy) when p (n) = e™® 2~ starting from the discrete orthogonal
Charher polynomials and the skevv—blhnear form §2.. We begin with the
following lemma
Lemma 5. For all s € N, we have

(5) nCs(n — 1;a) = Csp1(n; a) + aCs(n; a).
Proof. Firstly we note that

VAC;(n;a) = Cs(n+1;a) —2Cs(n; a) + Cs(n — 150a),
that is

Cs(n —1;a) = VACs(n;a) — Cs(n + 1;a) +2Cs(n;a) =

= VACs(n;a) — ACs(n; a) + Cs(n; a),

hence
(6) nCs(n—1;a) = nVACs(n;a) — nACs(n; a) + nCs(n; a).

Using now the property (c3) we can replace the term nVAC,(n;a) in
(6) and we obtain a new equation

nCs(n —1;a) = — ((a — n) & Cs(n;a) + sCs(n;a)) —
—nACs(n;a) +nCs(n;a) = —a A Cs(n; a) — sCs(n; a) + nCs(n; a),
and from (c3) it shows that
nCs(n —1;a) = —a A Cs(n; a) — sCs(n;a)+
+ Csq1(n;a) + (s + a)Cs(n; a) + asCs_1(n; a),
finally, it follows of (c¢;) that
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nCs(n —1;a) = —asCy_1(n;a) — sCs(n; a)+
+ Cst1(n;a) + (s + a)Cs(n; a) + asCs_1(n;a),

thus '
' nCs(n — 1;a) = Cst1(n; a) + aCs(n; a),
therefore, the lemma, is proved. ¢

The principal result of this section is the following assertion.
Theorem 6. Let Q.(f,9) = (L.f,g) for all f,g € L2, where p(n) =
= _“%. Then o system of discrete skew-orthogonal polynomz'als

{gs (n; a,).} s>g With respect to Q., can be constructed with the help of
the classic monic Charlier polynomials if we take

1

Farp (5 0)

m
Gom (n; @) = 2™Ma™m) Z
k=0

(7)
@2m+1 (n;a) = Comy1(n;a),

and where the sequence {ym}, ., is composed of the following numbers

1
(8) Tm = _E“C2m+1 (n§ CL) ”%g

Proof. For this end let us lean on the only concrete method we have at
hand, Rem. 2. We write goy, (n) and gam1 (n) as a linear combination
of the Charlier polynomials, that is

2m—1

G (730) = Cam(mia) + 3 B2 Ci(n; a),
k=0

2m
Q2m4-1 (n; CI,) = C‘Zm-{—l (TL; a) =+ Z bim—i—lck (’r"; CL),
k=0

where b7™ and b;™*" are constant which will be determined below. For
brevity, from now on, we write g, (n).instead of g, (n;a).

It is clear that go = 1 and ¢ (n) = Cy(n;a) + b}. We must have
Qc(g0,q1) = (Lcl,Ci(nsa) + b)) = 4. Since (Lel)(n) = 1 — Z and
(1,C1(n;a)) = 0, it then follows that v = — (2,C1(n;a) + (1,8%) —
— (2:80) = = (3, Ca(n @) + 85— b} = — (2, G (m; ).

Now

- (Z.ama) =~ Grfma) - (6, Cr(mi0)) =
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1 .
=-C 1C1(n; a)llig = Yo,

here we have used the fact that Ci(n;a) = n — a. Note that in fact bj
is arbitrary. Hence we can take b = 0 and ¢; = Ci(n;a). Therefore
Qc(g0,91) = o holds. :

Now let us assume that m > 1. From Rem. 2 it follows that to
compute b%m when & = 0,...,2m — 1, it is suitable to require that
the equalities Q(qam (n),nf) = 0for i =0,...,2m — 1 are held. In
this case this idea is feasible and Rem. 2 const1tutes an implement to
calculate the coefficients b2™.

In fact

2m—1

Qc(gom (n),n*) = (AC’gm(n a Z v2™ A Cr(n;a),n )

2m—1
(AC’zm nja)+ Y b"ACk(n;a),n ) .

k=0

By the property (c1) of the Charlier polynomials and of the expression
of A it follows that Q:(gam (n),n') can be written in the form

2m—1
(9) QC(QQm (n) ,’)’Li) = <2m02m_1 (n; a)+ Z chzkmC'k_l(n; a),ni) -+

k=0

2m—1
+ (C’zm(n; a)+ Z b2 Cr(n; a),ni> —

k=0

n .-,m_
_<Eczm(” Zb mCx(n —1;a),n )f

~ In the previous expression, in order to do all the polynomials
“depending only of n, but not simultaneously of n and n — 1 we use
Lemma 5 to write Cs(n — 1;a) by means of some other polynomials
Ci(n;a), where | = 0,1,... ,2m. Thus, from (5) and (9) it shows that
Qc(gam (n) ,nt) could be expressed as

2m-—1
Qe(gam (n),n?) = (Q,ngm_l(n; a) + Z kb2 Cr—1(n; a),ni> +

k=0
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2m—1
Com(mia) + 3 ™ Ciln; )n> -
k=0

(Come1(n; @) + aCapm (n;a), Y-

(g: Be™ (Cry1(n;a) + aCr(n;a)), n)

Then, since 0 < 3 < 2m — 1 this would imply

2m—1
Qc(g2m (n) ,ni) = <2mC’2m_1(n; a) + Z kbimC'k_l(n; a),ni> —
(10) =0

+
Dli—‘ Qll—‘/'\

1 2m—1 -
- = ( Z b Chp (s a),n’) .
@\ =0

Next, each equation Q.(g2m (n),n') = 0 will be studied in detail
using the orthogonality of the Charlier polynomials (2). We recall that

m 2> 1, then for i = 0 we deduce that b3™ = 0. Let us suppose that
m > 1 and let s be such that 0 < 2s < 2m — 1 then from (10)

Qc(gam (n) ,nzs) = ((25 +1) b93+1C'as(n; a), nz‘s) —

(bgs IC‘DS(TL; a),nzs) s
hence, it is evident that the equatmns Qc(gam (n) ,n%%) = 0 imply that

b3, = a(’)s—l—l) b35" 1. Therefore b7, =0 for s =0,1,... ,m — 1.
Let m > 1 and let s, such that, 0 < 25+ 1 < 2m — 1 then taking

1 =254+ 11in (10) we have

Qc(gam (n), 95+1) ((95 +2) b25+2c”s+1 (n;a), nst) -

1
- (37 Casy1(n; a), n?+1)

thus the equality Qc(gam (n),n***) = 0 will be satisfied if b3 =
= a(2s+2)b3™ , holds. On the other hand, it is easy to show that

b3m_, = 2am (whenm >1) which follows from the equation
Qc(gam(n), n®*™~1) = 0. Since all the odd coefficients are zero we
have

Q2m (n) = Cam(n;a) + 2amCy(m—1)(n; a)+
+2%a*m (m — 1) Coim-2y(n;a) + -+ +2"a™mlCy(n;a) =
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m
1
= 2Ma™m]! Z et Cai(n;ya).
i=0
Now, let us computeb3™ % As before, the equalities £:(gam(n),n') =
=0 for i = 0,1,...,2m — 1 enables us to find these constants. A
straightforward calculation tells us that fors=0,1,... ,2m —1

2m :
Qc(gamaz (n) ,n') = <(2m+ 1) Com(n; a)—l—z kby™ 1 Cy_1(n; a), n") —
k=0
(11)

1 2m

5 ,

-2 (S o).

k=0

Then for i = 0, it follows from (11) that b3™+! = 0. On the other

hand, if m > 1 and let s € N be such that 0 < 2s < 2m — 1 one can
evaluate 1 = 2s in (11). In this case we obtain that

Qec(gamy1 (n),n>°) = ((2s + 1) b7 Cos(ns a), n**) —
1
L pgricuma) ),

hence, in order to Qc(gams1 (n),n*) = 0 is sufficient that b3oi " =
en 1)b§;n+1, Here, we recall that b2™"! = 0, so ba7' = 0 for
=1,. - 1.
Let m and s be chosen such that m > 1and 0 < 2s+1 <2m—1.
Taking in (11) ¢ = 2s + 1 we have

Qe(gomr1 (n) ,n*Y) = ((25 + 2) B34 Cosqa(ns a), 0> ) —
1
= = (035 Caspa (msa), > )

thus if 527! = a2(s+1) bg’(’;ﬁ) then Q(gamy1 (n),n**1) = 0 for

m>1and s=0,1,...,m—2. Wheni=2m — 1 turn out that
Qo(gzma1 (n) , 0™ = 2mb3+ Com1(n;a), n* ™) -
1

~ = (bmt2Com-1(n; @), ™).

It follows from this equality that Qc(gamy1 (n),n?™™ 1) is zero if for
instance b2 13 = 2ambimtt. We choose b3 = 0. Under this selec-
tion we obtam g2m+1 (n) Cam+1(n; a). It remains to see that v, =
= Qc(g2m (1), gam+1 (n)). This will be done now. To see this, notice
that f



Skew-orthogonal polynomials of a discrete variable 149

Qc(Q2m (’I’I,) y42m+1 (n)) = (AQ2m (n) + qum (TL) y @2m+1 (TL)) )
hence

Qc(QZma QQm-}—l) =

m
1 , 1
= 2M M| ; il (21021'—1@; a)— Z_L‘C.’Zi—i—l (n; a), Coamy1(m; a)) =
1 2
=——lleemt1 (n;a) 7. O

4. Skew-orthogonal polynomials associated to the
Meixner polynomials

This section is devoted to present skew-orthogonal polynomials of

a discrete variable with respect to the skew-bilinear form Qm (f,9) in
12(Zy) when p(n) = ;LT (7),, and under the following conditions v €
€ Ry and B € (0,1). For this purpose it is then suitable to use the
Meixner polynomials.

Let us start with a lemma.
Lemma 7. Let I (n) = %Mlg'y’ﬁ) (n=1)—(v+mn) j\/[lgmﬁ) (n+1) fork,

n € N. Then Iy (n) can be expressed as
1-0 k
(12)  Iy(n) = (T) MID (n) + 77 e+ 7= 1 MTP ().

Proof. Since I}, (n :—":MW’) n —-@V]Vf(%ﬂ) n)— ’“/+n)A]\/[E%m (n)—
Bk B8 k k

—(y+n)M ,g%ﬁ ) (n), then using now the properties (ms) and (mg3) of the
Meixner polynomials we have

k
I (n) = gM,g%m (n)— 5 (M,ﬁ”’ﬁ) (n)+ (Fﬁ;—I)(l—y—k)M,ﬁf{’) (n)> -
k(M (L) MO (4w M0 O )
thus
5 () = (152 a0y - EQHEE By,
(13)
I ks gy OpNY

-1
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Taking into account the recurrence relation (mi), then from (13) it
follows (12). ¢

Our last result is the following theorem.
Theorem 8. Let [%(Zy) when p(n)= %(v)n. With respect to Qm(f, 9)
there exists a system of discrete skew-orthogonal polynomials given as
follows

kpk k an2i
O ) = 2 BEE (7 + Da,z) Lk D VI
) (IB - 1)2k =0 2’1’137”1" (7 + 1)(2i,2) ’
and ¢ (n) = M{E)n) where v = FEIMGE ()3, for any
k=0,1,--- and S
(v + Ve =+ 1) (y+1+2)-(y+1+2k-2).

Proof. In the proof of this theorem we use Lemma 7 and the orthog-
onality property of the Meixner polynomials (3). But it is very similar
to the proof of Th. 6, therefore the proof of Th. 8 will be omitted. ¢
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