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Abstract

A Jacobi matrix with matrix entries is a selfadjoint block tridiagonal matrix with posi-

tive definite blocks on the off-diagonals. A rotation number calculation for its eigenvalues

is presented. This is a matricial generalization of the oscillation theorem for the discrete

analogues of Sturm-Liouville operators. The three universality classes of time reversal in-

variance are dealt with by implementing the corresponding symmetries. For Jacobi matrices

with random matrix entries, this leads to a formula for the integrated density of states which

can be calculated perturbatively in the coupling constant of the randomness with an optimal

control on the error terms.

1 Introduction

This article is about matrices of the type

HN =





















V1 T2

T2 V2 T3

T3 V3
. . .

. . .
. . .

. . .
. . . VN−1 TN

TN VN





















, (1)
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where Vn = V ∗
n are selfadjoint complex L×L matrices and Tn are positive definite complex L×L

matrices. With the convention T1 = 1 and for a complex energy E ∈ C, introduce the transfer
matrices

T E
n =

(

(E 1 − Vn) T−1
n −Tn

T−1
n 0

)

, n = 1, . . . , N . (2)

Then set

UE
N =

(

1
ı1

)∗ N
∏

n=1

T E
n

(

1
0

)

(

(

1
ı1

)t N
∏

n=1

T E
n

(

1
0

)

)−1

. (3)

Theorem 1 Let E ∈ R and N ≥ 2.
(i) UE

N is well-defined, namely the appearing inverse exists.

(ii) UE
N is a unitary matrix which is real analytic in E.

(iii) The real eigenphases θE
N,l, l = 1, . . . , L, of UE

N can be chosen (at level crossings) to be

analytic in E and such that θE
N,l → 0 as E → −∞ and θE

N,l → 2πN as E → ∞.

(iv) E is an eigenvalue of HN of multiplicity m if and only if θE
N,l = π mod 2π for exactly m

of the indices l = 1, . . . , L.

(v) The matrix SE
N = 1

ı
(UE

N )∗∂EUE
N is positive definite. Each θE

N,l is an increasing function of E.

(vi) If HN is real, the unitary UE
N is symmetric and the positive matrix SE

N is real.

(vii) Let L be even and let

I =

(

0 −1
1 0

)

∈ Mat(L × L, C) (4)

with 4 blocks of size L
2
× L

2
. Suppose that HN is self-dual, namely the entries are self-dual:

I∗ T t
n I = Tn , I∗ V t

n I = Vn , n = 1, . . . , N .

Then UE
N and SE

N are also self-dual (equivalently, IUE
N and ISE

N are skew-symmetric).

Items (i), (ii), (iv), (vi) and (vii) result directly from the mathematical set-up, while the
analyticity statements of items (ii) and (iii) are based on elementary analytic perturbation theory
[Kat]. The second part of (iii) follows from a homotopy argument and item (v), even though
a consequence of a straight-forward calculation, is the main mathematical insight. It justifies
the term rotation numbers for the eigenphases. In the strictly one-dimensional situation and for
Sturm-Liouville operators instead of Jacobi matrices, the theorem has been known for almost
two centuries as the rotation number calculation or the Sturm-Liouville oscillation theorem [Wei,
JM]. For matricial Sturm-Liouville operators, Bott [Bot] has proven results related to the above
theorem. (The author learned of Bott’s work once this article was finished, and believes that the
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techniques presented below allow to considerably simplify Bott’s proof. A detailed treatment is
under preparation.) For related work on linear Hamiltonian system let us refer to the review
[FJN]. The discrete one-dimensional case and hence precisely the case L = 1 of Theorem 1
is also well-known (see e.g. [JSS] for a short proof). A rougher result was proven by Arnold
[Arn2]. In the one-dimensional situation the variable θE

N,1 is called the Prüfer phase. Therefore
one may refer to the eigenphases θE

N,l (or the unitaries UE
N themselves) also as multi-dimensional

Prüfer phases. The two supplementary symmetries considered in items (vi) and (vii) correspond
to quantum-mechanical Hamiltonians HN with time-reversal invariance describing systems with
odd or even spin respectively [Meh]. This notion is empty in the one-dimensional situation where
time-reversal invariance follows automatically from self-adjointness.

Crucial ingredient of the proof is that (3) for real energies actually stems from the Möbius
action of the symplectic transfer matrices (2) on the unitary matrices (Theorem 5), which in turn
are diffeomorphic to the Lagrangian Grassmannian via the stereographic projection (Theorem 4).
As a function of real energy, UE

N hence corresponds to a path of Lagrangian planes. If one
defines a singular cycle in the unitary group as the set of unitaries with eigenvalue −1, then the
intersections of the above path with this cycle turn out to be precisely at the eigenvalues of HN .

One new perspective opened by Theorem 1 concerns Jacobi matrices with random matrix
entries, describing e.g. finite volume approximations of the higher-dimensional Anderson model.
In fact, the unitary, symmetric unitary and anti-symmetric unitary matrices form precisely the
state spaces of Dyson’s circular ensembles. They are furnished with unique invariant measures
(Haar measures on the corresponding symmetric spaces). A good working hypothesis is hence
that the random dynamical system induced by the action of the symplectic transfer matrices on
the unitary matrices has an invariant measure (in the sense of Furstenberg [BL]) which is invariant
under the unitary group. This can only be true to lowest order in perturbation theory, under
a hypothesis on the coupling of the randomness (which has to be checked for concrete models),
and on a set of lower dimensional unitary matrices corresponding to the elliptic channels (in the
sense of [SB] and Section 4). This unitary invariance on the elliptic channels would justify the
random phase approximation or maximal entropy Ansatz (here as equidistribution of Lagrangian
planes) widely used in the physics community in the study of quasi-one-dimensional systems to
establish a link between random models like the Anderson Hamiltonian and invariant random
matrix ensembles (e.g. [Bee]). Furthermore, let us consider HN describing a physical system on
a d-dimensional cube, namely with L = Nd−1, and suppose d sufficiently large. Then a further
working hypothesis is that the positive matrices 1

N
SE

N are distributed according to the Wishard
ensemble of adequate symmetry (again on the elliptic subspaces and in the weak coupling limit).
If both working hypothesis turn out to hold and UE

N and SE
N are asymptotically independent,

namely randomly rotated w.r.t. each other (for large cubes), then Theorem 1 combined with
a convolution argument shows that the level statistics of HN is asymptotically given by the
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Wigner-Dyson statistics for quantum systems without or with time-reversal invariance for odd
or even spin, according to the symmetry of HN . Roughly, Theorem 1 hence gives one possible
way to make the heuristics given in the introduction to Chapter 9 of Mehta’s book [Meh] more
precise. Numerics supporting the above have been carried out in collaboration with R. Römer.

As a first application of Theorem 1 and the techniques elaborated in its proof we develop
in Section 4 the lowest order perturbation theory for the integrated density of states (IDS)
of a semi-infinite real Jacobi matrix with random matrix entries. More precisely, we suppose
that the entries in (1) are of the form Vn = V (1 + λ vn + O(λ2)) and Tn = T (1 + λ tn +
O(λ2)) where V, T, vn, tn are real symmetric matrices and T is positive definite. The vn, tn are
drawn independently and identically from a bounded ensemble (vσ, tσ)σ∈Σ according to a given
distribution Eσ, and furthermore the dependence on the coupling constant λ ≥ 0 is real analytic
and the error terms satisfy norm estimates. Associated to a random sequence ω = (vn, tn)n≥1 are
random real Hamiltonians HN(ω, λ). The Anderson model on a strip is an example within this
class of models. The number of eigenvalues of HN(ω, λ) smaller than a given energy E and per
volume element NL is a self-averaging quantity in the limit N → ∞ which converges to the IDS
Nλ(E) (see Section 4 for the formal definition). Let furthermore Nλ,σ(E) denote the IDS of the
translation invariant Hamiltonian with ω = (vσ, tσ)n≥1. Finally let T E be the transfer matrix
defined as in (2) from the unperturbed entries V and T .

Theorem 2 Suppose that E ∈ R is such that T E is diagonalizable and does not have anomalies,

namely the rotation phases of the elliptic channels are incommensurate (cf. Section 4.2 for the

precise hypothesis). Then

Nλ(E) = Eσ

(

Nλ,σ(E)
)

+ O(λ2) . (5)

The same result holds for random perturbations of arbitrary periodic operators. The fact
that T E is not allowed to have any Jordan blocks means that E is not an internal band edge.
Together with the anomalies they form a discrete set of excluded energies. The main point of
Theorem 2 is not the calculation of the leading order term in λ (which is indeed given by the
most naive guess), but rather the control of the error term which is uniform in L as long as
one stays uniformly bounded away from anomalies and internal band edges. The estimates in
Section 4.2 also show how the error bound diverges as one approaches these energies. However,
this part of the analysis is not optimized and there is a definite need for refinement in order
to be able to study the thermodynamic limit of solid state physics models. The error bound
is nevertheless optimal in the sense that the O(λ2) contribution on the l.h.s. does depend on
further details of the model. Similar as in the one-dimensional situation (L = 1), the IDS and
the sum of the positive Lyapunov exponents are imaginary and real boundary values of a single
Herglotz function [KS]. Hence we also develop a perturbation theory for the sum of the Lyapunov
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exponents, with a considerably better control on the error terms than in [SB] where a particular
case has been treated.

This work is organized as follows. The next section recollects the tools from symplectic
geometry used in the proof of Theorem 1. In particular, it is shown that the Möbius action of
the symplectic group on the unitary matrices is well-defined and furthermore some formulas for
the calculation of the intersection number (Maslov index) are given. Section 3 provides the proof
of Theorem 1 and then gives some supplementary results on Jacobi matrices with matrix entries
and their spectra. Section 4 contains the definition of the IDS for Jacobi matrices with random
matrix entries and a formula for the associated averaged Lyapunov exponent. Then the proof of
Theorem 2 is given.

Acknowledgment: The author thanks Hajo Leschke, Demetris Pliakis and Robert Schrader for
discussions on the matters of the paper. This work was supported by the DFG.

2 Symplectic artillery

Apart from the propositions in Section 2.8 which may be strictly speaking new, this section is
probably known to the experts in symplectic geometry. But there does not seem to be reference
with a treatment as compact and unified as the present one. The author’s references were
[Hua, Sie, Arn1, CL, KoS, Arn3] and he hereby excuses for not citing all the interesting works
that he does not know of. The reader is warned that the complex Lagrangian planes and the
complex symplectic group are defined with the adjoint rather than the transpose. This differs
from standard references, but hopefully the reader will agree that it is natural in the present
context.

Let us introduce some notations. The following 2L × 2L matrices (matrices of this size are
denoted by mathcal symbols in this work) are composed by 4 blocks of size L × L:

J =

(

0 −1
1 0

)

, G =

(

1 0
0 −1

)

, C =
1√
2

(

1 − ı1
1 ı1

)

, I =

(

0 −I
I 0

)

,

where in the last equation I is given by (4) and hence L is supposed to be even. J is called
the symplectic form, C the Cayley transform and I the self-duality transform. The following
identities will be useful:

C J C∗ =
1

ı
G , C J C∗ =

1

ı
J , C I C∗ =

1

ı
I . (6)

In order to deal with the symmetry of Theorem 1(vii), hence L even, some further notations
are convenient. A matrix A ∈ Mat(L × L, C) is call self-dual if I∗AtI = A, and it is called
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self-conjugate if I∗AI = A. As already indicated in Theorem 1(vii), self-duality is closely linked
to skew-symmetry, namely A is self-dual if and only if (IA)t = −IA. The sets of skew-symmetric
and self-dual matrices are denoted by Skew(L, C) and Self(L, C) respectively. Moreover, for
selfadjoint matrices A∗ = A the notions of self-duality and self-conjugacy coincide.

2.1 Lagrangian Grassmannian

The set of L-dimensional subspaces of the complex vector space C2L is denoted by GC

L. The
vectors of a basis of such a plane form the column vectors of a 2L× L matrix Φ which has rank
L. Of course, a plane does not depend on the choice of the basis (and hence the explicit form of
Φ). Consider the relation: Φ ∼ Ψ ⇔ there exists c ∈Gl(L, C) with Φ = Ψc. The Grassmannian
GC

L is then the set of equivalence classes w.r.t. ∼:

G
C

L = {[Φ]∼ | Φ ∈ Mat(2L × L, C) , rank(Φ) = L } .

A plane is called (complex hermitian) Lagrangian if Φ∗JΦ = 0. Here A∗ = A
t

denotes

transpose of the complex conjugate of a matrix A. If Φ =

(

a
b

)

where a and b are complex

L×L matrices, the latter condition means that a∗b = b∗a is selfadjoint. The (complex hermitian)
Lagrangian Grassmannian LC

L is the set of Lagrangian planes:

L
C

L = {[Φ]∼ | Φ ∈ Mat(2L × L, C) , rank(Φ) = L , Φ∗JΦ = 0 } . (7)

This is a real analytic manifold. It contains the submanifold LR

L of real Lagrangian planes:

L
R

L =
{

[Φ]∼
∣

∣ Φ ∈ Mat(2L × L, C) , rank(Φ) = L , Φ∗JΦ = 0 , ΦtJΦ = 0
}

. (8)

Hence LR

L is a subset of LC

L characterized by a supplementary symmetry. That this coincides with
the usual definition of the real Lagrangian Grassmannian is stated in Theorem 3 below. If L is
even, then LC

L contains another submanifold characterized by another symmetry:

L
H

L =
{

[Φ]∼
∣

∣ Φ ∈ Mat(2L × L, C) , rank(Φ) = L , Φ∗JΦ = 0 , ΦtIΦ = 0
}

. (9)

The notation LH

L appealing to the quaternions is justified by the following theorem, in which HL

is considered as a vector space over C. Let A∗H denote the transpose and quaternion conjugate
(inversion of sign of all three imaginary parts) of a matrix A with quaternion entries. Similarly,
A∗R = At for a matrix with real entries.

Theorem 3 One has, with equality in the sense of diffeomorphic real analytic manifolds,

L
R

L = {[Φ]∼ | Φ ∈ Mat(2L × L, R) , rank(Φ) = L , Φ∗RJΦ = 0 } ,

and

L
H

L = {[Φ]∼ | Φ ∈ Mat(L × L, H) , rank(Φ) = L , Φ∗HIΦ = 0 } .
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The proof is postponed to the next section.

2.2 Stereographic projection

Bott [Bot] showed that the complex Lagrangian Grassmannian L
C

L is homeomorphic to the unitary
group U(L), a fact that was rediscovered in [KoS, Arn3]. Arnold [Arn1] used the fact that LR

L

can be identified with U(L)/ O(L). Indeed, a real Lagrangian plane can always be spanned by an
orthonormal system, that is, be represented by Φ satisfying Φ∗Φ = 1. This induces (Φ,JΦ) ∈
SP(2L, R)∩O(2L) ∼= U(L). Of course, various orthonormal systems obtained by orthogonal basis
changes within the plane span the same Lagrangian plane. Hence LR

L
∼= U(L)/ O(L). Moreover,

the symmetric space U(L)/ O(L) can be identified with the unitary symmetric matrices by sending
a right equivalence class A O(L) ∈ U(L)/ O(L) to AAt. As these facts will be crucial later on,
let us give a detailed proof and some explicit formulas.

The stereographic projection π is defined on the subset

G
inv

L =
{

[Φ]∼ ∈ GL

∣

∣

(

0 1
)

Φ ∈ GL(L, C)
}

,

by

π([Φ]∼) =
(

1 0
)

Φ
( (

0 1
)

Φ
)−1

= a b−1 , Φ =

(

a
b

)

.

One readily checks that π([Φ]∼) is independent of the representative. If [Φ]∼ ∈ LC

L ∩ Ginv

L , then
π([Φ]∼) is selfadjoint. The fact that π is not defined on all of LC

L is an unpleasant feature that
can be circumvented by use of Π defined by

Π([Φ]∼) = π([C Φ]∼) , if [C Φ]∼ ∈ G
inv

L .

Theorem 4 (i) The map Π : LC

L →U(L) is a real analytic diffeomorphism.

(ii) The map Π : LR

L →U(L)∩ Sym(L, C) is a real analytic diffeomorphism.

(iii) Let L be even. The map Π : LH

L →U(L)∩ Self(L, C) is a real analytic diffeomorphism.

Proof. Let Φ =

(

a
b

)

where a and b are L × L matrices satisfying a∗b = b∗a. One has

L = rank(Φ) = rank(Φ∗Φ) = rank(a∗a + b∗b)

(10)

= rank
(

(a + ı b)∗(a + ı b)
)

= rank(a + ı b) = rank(a − ı b) .
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It follows that [CΦ]∼ ∈ Ginv

L so that it is in the domain of the stereographic projection π and
hence Π is well-defined. Next let us show that the image is unitary. It follows from (10) and a
short calculation (or alternatively the first identity in (6)) that

C L
C

L =

{

[( a
b

)]

∼

∣

∣

∣

∣

a, b ∈ GL(L, C) , a∗a = b∗b

}

.

Hence if [CΦ]∼ =
[(

a
b

)]

∼
∈ C L

C

L, one has

Π([Φ]∼)∗Π([Φ]∼) = (b∗)−1a∗a b−1 = 1 .

Moreover, Π is continuous. One can directly check that the inverse of Π is given by

Π−1(U) =

[(

1
2
(U + 1)

ı
2
(U − 1)

)]

∼

. (11)

As this is moreover real analytic, this proves (i).
For the case (ii) of the real Lagrangian Grassmannian, the second identity of (6) implies that

the supplementary symmetry in (8) leads to

C L
R

L =

{

[(

a
b

)]

∼

∣

∣

∣

∣

a, b ∈ GL(L, C) , a∗a = b∗b , (ab−1)t = ab−1

}

.

This implies that Π([Φ]∼) is symmetric for [Φ]∼ ∈ LR

L. Moreover, if U in (11) is symmetric, then
the last identity in (8) holds. Again Π is continuous, and Π−1 real analytic, so that the proof of
(ii) is completed.

For case (iii), the third identity of (6) implies that the supplementary symmetry in (9) gives

C L
H

L =

{

[( a
b

)]

∼

∣

∣

∣

∣

a, b ∈ GL(L, C) , a∗a = b∗b , I∗(ab−1)tI = ab−1

}

.

This implies that IΠ([Φ]∼) is skew-symmetric for [Φ]∼ ∈ LH

L. Again, if IU in (11) is skew-
symmetric, then the last identity in (9) holds, completing the proof. 2

Proof of Theorem 3. Let L̂R

L and L̂H

L denote the real analytic manifolds on the r.h.s. of the
two equations in Theorem 3. Let us first show L

R

L = L̂
R

L. The inclusion L̂
R

L ⊂ L
R

L is obvious
because for a real representative Φ the two conditions in (8) coincide. Moreover, this inclusion
is continuous. Due to Theorem 4(ii) it is sufficient to show that Π−1 : U (L)∩ Sym(L, C) → L̂R

L,
namely that one can choose a real representative in (11). Let us use the fact that every symmetric
unitary U can be diagonalized by an orthogonal matrix M ∈O(L), namely U = M tDM where
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D = diag(eıθ1 , . . . , eıθL) with θl ∈ [0, 2π). Now let D
1

2 = diag(eıθ1/2, . . . , eıθL/2) be calculated with
the first branch of the square root and choose S = diag(σ1, . . . , σL) ∈O(L) with σl ∈ {−1, 1}
such that the phase of σle

ıθl/2 is in [0, π). Then let us introduce the unitary V = M tD
1

2 S. One
has U = V V t. Furthermore set a = <e(V ) and b = −=m(V ) and then Π−1(U) = [Φ]∼ with

Φ =

(

a
b

)

. Indeed Π−1 is the inverse of Π:

Π([Φ]∼) = π

([(

V
V

)]

∼

)

= V V t = U .

This construction of Π−1 was done with a bit more care than needed, but it allows to show
directly that Π−1 is locally real analytic. Let E 7→ U(E) be a real analytic path of symmetric
unitaries. Then analytic perturbation theory [Kat, Theorem II.1.10] shows that the diagonal-
ization U(E) = M(E)tD(E)M(E) can be done with analytic M(E) and D(E). Furthermore

E 7→ D(E)
1

2 S(E) ∈ diag(R/πZ, . . . , R/πZ) with S(E) defined as above is also analytic because

θ ∈ R/2πZ 7→ θ
2
∈ R/πZ is analytic. Thus V (E) = M(E)tD

1

2 (E)S(E) is analytic and therefore
also Π−1.

The proof of LH

L = L̂H

L is just an adapted version of the usual rewriting of symplectic structures
(here the symmetry induced by I and I) in terms of quaternions. Let the basis of H (as real
vector space) be 1 and the imaginary units ı, j, k satisfying Hamilton’s equations ı2 = j2 = k2 =
ıjk = −1. Then C is identified with the span of 1 and ı. Now let us introduce

Υ =

(

1 j 1 0 0
0 0 1 j 1

)

∈ Mat(L × 2L, H) ,

where all blocks are of size L
2
× L

2
. One readily verifies the matrix identity

Υ∗H I Υ = J − j I . (12)

Hence one obtains a map Υ : Mat(2L × L, C) → Mat(L × L, H) by matrix multiplication with
Υ (from the left) which induces a map on the (complex) Grassmannians of right equivalence
classes. Thus due to (12) we have exhibited an analytic map Υ : L̂H

L → LH

L . 2

2.3 Symplectic group and Lorentz group

Let K be one of the fields R, C and H and let L be even if K = H. The symplectic group SP(2L, K)
is by definition the set of complex 2L× 2L matrices conserving the Lagrangian structure in (7),
(8) and (9) respectively, e.g.

SP(2L, R) =
{

T ∈ Mat(2L, C) | T ∗J T = J , T tJ T = J
}

.
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One verifies that T ∈ SP(2L, K) if and only if T ∗ ∈ SP(2L, K). All symplectic matrices have a
unit determinant. Using the Jordan form, it can be proven that SP(2L, K) is arc-wise connected.
Theorem 3 implies respectively the identity and isomorphism (direct algebraic proofs can be
written out as well)

SP(2L, R) = {T ∈ Mat(2L, R) | T ∗RJ T = J } ,

and
SP(2L, H) ∼= {T ∈ Mat(L, H) | T ∗HIT = I } .

More explicit formulas are given in the next algebraic lemma.

Lemma 1 The complex symplectic group is given by

SP(2L, C) =

{(

A B
C D

)

∈ Mat(2L, C)

∣

∣

∣

∣

A∗C = C∗A , A∗D − C∗B = 1 , B∗D = D∗B

}

.

In this representation, elements of SP(2L, R) and SP(2L, H) are characterized by having respec-

tively real and self-conjugate entries A, B, C, D.

As already became apparent in the proof of Theorems 3 and 4, it is convenient to use the
Cayley transform. The generalized Lorentz groups are introduced by

U(L, L, K) = C SP(2L, K) C∗ .

¿From the identities (6) one can read off alternative definitions, e.g.

U(L, L, R) =
{

T ∈ Mat(2L × 2L, C) | T ∗ G T = G , T t J T = J
}

.

Let us provide again more explicit expressions.

Lemma 2 One has

U(L, L, C) =

{(

A B
C D

)

∈ Mat(2L, C)

∣

∣

∣

∣

A∗A − C∗C = 1 , D∗D − B∗B = 1 , A∗B = C∗D

}

=

{(

A B
C D

)

∈ Mat(2L, C)

∣

∣

∣

∣

AA∗ − BB∗ = 1 , DD∗ − CC∗ = 1 , AC∗ = BD∗

}

.

Furthermore, in that representation, A and D are invertible and ‖A−1B‖ < 1 and ‖D−1C‖ < 1.
For T ∈ U(L, L, R) one, moreover, has C = B and D = A. For T ∈ U(L, L, H) the entries

satisfy C = I∗BI and D = I∗AI.

Proof. The first relations are equivalent to T ∗GT = G, the second ones then follow from
the fact that T ∗ ∈ U(L, L, C) for T ∈ U(L, L, C). The fact that A is invertible follows from
AA∗ ≥ 1. Furthermore AA∗ − BB∗ = 1 implies that A−1B(A−1B)∗ = 1 − A−1(A−1)∗ < 1, so
that ‖A−1B‖ < 1. The same argument applies to D and D−1C. The last two statements can be
checked by a short calculation. 2
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2.4 Upper half-planes and Cartan’s classical domains

The upper half-plane and unit disc are defined by

U
C

L = {Z ∈ Mat(L × L, C) | ı(Z∗ − Z) > 0 } , D
C

L = {U ∈ Mat(L × L, C) | U∗U < 1 } ,

where Y > 0 means that Y is positive definite. Furthermore let us introduce the following subsets
(here L does not need to be even for K = H):

U
R

L = U
C

L ∩ Sym(L, C) , U
H

L = U
C

L ∩ Self(L, C) ,

and
D

R

L = D
C

L ∩ Sym(L, C) , D
H

L = D
C

L ∩ Self(L, C) .

Let us note that IDH

L = DC

L ∩ Skew(L, C). The sets DC

L, DR

L and IDH

L are called Cartan’s first,
second and third classical domain [Hua]. Furthermore UR

L and DR

L are also called the Siegel upper
half-plane and the Siegel disc [Sie]. The Cayley transform maps (via Möbius transformation) the
upper half-planes bijectively to the generalized unit discs, as shown next.

Proposition 1 The formulas

U = (Z − ı1)(Z + ı1)−1 , Z = ı (1 + U)(1 − U)−1 ,

establish an analytic diffeomorphism from U
K

L onto D
K

L for K = C, R, H.

Proof. (cf. [Sie]; reproduced for the convenience of the reader.) If v ∈ ker(Z + ı1), then
ıv = −Zv so that 0 ≤ 〈v|ı(Z∗−Z)|v〉 = −2 〈v|v〉 which implies v = 0. Hence Z + ı1 is invertible
and the first formula is well-defined. Similarly one checks the invertibility of 1 − U . To verify
that one is the inverse of the other is a matter of calculation. Moreover, both formulas preserve
the symmetry and self-duality of the matrices involved. 2

The boundary ∂UC

L of UC

L is a stratified space given as the union of strata ∂lU
C

L, l = 1, . . . , L,
where ∂lU

C

L is the set of matrices Z for which ı(Z∗ − Z) ≥ 0 is of rank L − l. The maximal
boundary is ∂LUC

L are the selfadjoint matrices. Furthermore ∂UR

L = ∂UC

L ∩ Sym(L, C) with strata
∂lU

R

L = ∂lU
C

L ∩ Sym(L, C). Corresponding formulas hold for K = H.

Similarly the boundary ∂DC

L is a stratified space with strata ∂lD
C

L, l = 1, . . . , L, of matrices U
for which U∗U ≤ 1 and rank(1 − U∗U) = L − l. For K = R, H one defines in the same way the
stratified boundaries ∂DK

L = ∪L
l=1∂lD

K

L. Of particular importance will be the maximal boundaries
(L even for K = H):

∂LD
C

L = U(L) , ∂LD
R

L = U(L) ∩ Sym(L, C) , ∂LD
H

L = U(L) ∩ Self(L, C) .

By Theorem 4 the maximal boundary ∂LDK

L is hence identified with the Lagrangian Grassmannian
LK

L . Let us also note that the Cayley transformation of Proposition 1 has singularities on the
boundaries and mixes the strata. In particular, ∂LUK

L is not mapped to ∂LDK

L.
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2.5 Möbius action

The Möbius transformation (also called canonical transformation or fractional transformation)
is defined by

T ·Z = (AZ+B) (CZ+D)−1 , T =

(

A B
C D

)

∈ GL(2L, C) , Z ∈ Mat(L×L, C) , (13)

whenever the appearing inverse exists. This action implements the matrix multiplication, namely

π
(

T ([Φ]∼)
)

= T · π
(

[Φ]∼
)

, if [Φ]∼ ∈ G
inv

L and [T Φ]∼ ∈ G
inv

L . (14)

Indeed, let Φ =

(

a
b

)

. Then [T Φ]∼ ∈ Ginv

L implies that Ca + Db is invertible. As b is invertible

(because [Φ]∼ ∈ Ginv

L ), it follows that Cab−1 +D = Cπ([Φ]∼)+D is invertible so that the Möbius
transformation T · π

(

[Φ]∼
)

is well-defined. The conditions in (14) are automatically satisfied in
the situation of the following proposition. The proof of item (ii) is contained in the proof of
Theorem 5 below; item (i) then follows directly from (ii) due to Proposition 1.

Proposition 2 [Hua, Sie] Let K = C, R, H and let L be even for K = H.

(i) SP(2L, K) acts on UK

L by Möbius transformation.

(ii) U(L, L, K) acts on DK

L by Möbius transformation.

The following proposition states that the action of Proposition 2(ii) extends to the stratified
boundary of DK

L. Moreover, the action on the maximal boundary ∂LDK

L implements the natural
action of the symplectic group on the Lagrangian Grassmannian. Due to singularities it is not
possible to extend the action of Proposition 2(i) to any stratum of the boundary of UK

L.

Theorem 5 Let K = C, R, H and L even if K = H and l = 1, . . . , L. The Lorentz group

U(L, L, K) acts on ∂lD
K

L by Möbius transformation. For the case l = L of the maximal boundary,

this action implements the action of SP(2L, K) on the Lagrangian Grassmannian LK

L:

Π
(

[T Φ]∼
)

= C T C∗ · Π
(

[Φ]∼
)

, [Φ]∼ ∈ L
K

L , T ∈ SP(2L, K) .

Proof. One has to show that for U ∈ ∂lD
K

L and T , T ′ ∈ U(L, L, C) the Möbius transformation
T · U is well-defined, is again in ∂lD

K

L and that (T T ′) · U = T · (T ′ · U). Let T be given in
terms of A, B, C, D as in Lemma 2. Then this lemma implies that (CU +D) = D(1+D−1CU) is
invertible so that the Möbius transform is well-defined. Let us first show that (T ·U)∗(T ·U) ≤ 1.
For this purpose, one can appeal to the identity

(C U + D)∗ (C U + D) − (A U + B)∗ (A U + B) = 1 − U∗ U , (15)

12



following directly from the identities in Lemma 2. Indeed, multiplying (15) from the left by
(CU + D)∗)−1 and the right by (CU + D)−1 and using 1− U∗U ≥ 0 shows (T · U)∗(T · U) ≤ 1.
Next let us show that the invertible (CU + D) maps ker(1 − U∗U) to ker(1 − (T · U)∗(T · U))
and ker(1 − U∗U)⊥ to ker(1 − (T · U)∗(T · U))⊥. If v ∈ ker(1 − U∗U), then (15) implies

‖ (C U + D) v ‖ = ‖ (A U + B) v ‖ = ‖ T · U (C U + D) v ‖ ,

so that (CU + D)v ∈ ker(1− (T ·U)∗(T ·U)) because 1− (T ·U)∗(T ·U) ≥ 0. Similarly for v ∈
ker(1−U∗U)⊥ one has ‖(CU+D)v‖ > ‖T ·U(CU+D)v‖ implying that v /∈ ker(1−(T ·U)∗(T ·U)).

The argument up to now shows that T · U ∈ ∂lD
C

L. A short algebraic calculation also shows
that (T T ′) · Z = T · (T ′ · Z). It remains to show that the symmetries are conserved in the cases
K = R, H. For T ∈ U(L, L, R) one has C = B and D = A by Lemma 2, so that

T · U − (T · U)t = ((BU + A)−1)t
[

(BU + A)t(AU + B) − (AU + B)t(BU + A)
]

(BU + A)−1 .

For symmetric U one checks that the term in the bracket vanishes due to the identities in
Lemma 2, implying that T · U is again symmetric. Similarly one proceeds in the case K = H.

Now let us come to the last point of the proposition. Given U ∈ ∂LDK

L, let [Φ]∼ ∈ LK

L be
such that Π([Φ]∼) = U (by the construction in the proof of Theorem 4). For T ∈ SP(2L, K),
one then has [T Φ]∼ ∈ LK

L. Theorem 4 implies that both [CΦ]∼ and [CT Φ]∼ = [CT C∗CΦ]∼ are in
G

inv

L . From (14) now follows that CT C∗ · π([CΦ]∼) = π([CT Φ]∼). 2

It is interesting to note (and relevant for Section 3.6) that the Möbius transformation sends
U

K

L to U
K

L for some complex matrices in GL(2L, C) which are not in SP(2L, K). In particular, for
δ > 0 one even has:

(

1 ı δ 1
0 1

)

· Z = Z + ı δ 1 ∈ U
K

L , for Z ∈ U
K

L ∪ ∂U
K

L . (16)

The following formula shows that the Möbius transformation appears naturally in the cal-
culation of a volume distortion by an invertible matrix, namely the so-called Radon-Nykodym
cocycle. It will be used for the calculation of the sum of Lyapunov exponents in Section 4.1.

Lemma 3 Suppose that [Φ]∼ ∈ Ginv

L and [T Φ]∼ ∈ Ginv

L where T ∈ GL(2L, C). With notations

for T as in (13) one has

det
(

(T Φ)∗(T Φ)
)

det
(

Φ∗Φ
) =

det
(

(T · π([Φ]∼))∗(T · π([Φ]∼)) + 1
)

det
(

(π([Φ]∼))∗(π([Φ]∼)) + 1
)

∣

∣

∣
det

(

C π([Φ]∼) + D
)

∣

∣

∣

2

.

13



Proof. Let Φ =

(

a
b

)

. As b is invertible by hypothesis,

det
(

(T Φ)∗(T Φ)
)

det
(

Φ∗Φ
) =

det
(

(Aab−1 + B)∗ (Aab−1 + B) + (Cab−1 + D)∗ (Cab−1 + D)
)

det
(

(ab−1)∗ (ab−1) + 1 )
.

Furthermore, it was supposed that Cab−1 + D is also invertible, and this allows to conclude the
proof because π([Φ]∼) = ab−1. 2

2.6 Singular cycles

Given ξ ∈ Sym(L, R)∩ Self(L, C), let us set Ψξ =

(

ξ
1

)

. The associated singular cycle (often

called Maslov cycle, but it actually already appears in Bott’s work [Bot]) is

L
K,ξ
L =

{

[Φ]∼ ∈ L
K

L

∣

∣

∣
Φ C

L ∩ Ψξ C
L 6= {~0}

}

.

It can be decomposed into a disjoint union of L
K,ξ,l
L , l = 1, . . . , L, where

L
K,ξ,l
L =

{

[Φ]∼ ∈ L
K

L

∣

∣ dim
(

Φ C
L ∩ Ψξ C

L
)

= l
}

.

It is possible to define singular cycles associated to Lagrangian planes which are not of the form
of Ψξ, but this will not be used here.

It is convenient to express the intersection conditions in terms of the Wronskian associated
to two 2L × L matrices Φ and Ψ representing two Lagrangian planes

W (Φ, Ψ) = Φ∗JΨ ,

namely one checks that Φ CL ∩ Ψ CL 6= {~0} ⇔ det
(

W (Φ, Ψ)
)

= 0 , and, more precisely,

dim
(

Φ C
L ∩ Ψ C

L
)

= dim
(

ker W (Φ, Ψ)
)

. (17)

Note that even though W (Φ, Ψ) does depend on the choice of basis in the two Lagrangian planes,
the dimension of its kernel is independent of this choice. Furthermore, W (Φ, Ψ) = 0 if and only
if [Φ]∼ = [Ψ]∼.

Arnold showed in [Arn1] that L
R,ξ
L is two-sided by exhibiting a non-vanishing transversal vector

field on L
R,ξ
L . This allows to define a weighted intersection number for paths in a generic position,

namely for paths having only intersections with the highest stratum L
R,ξ,1
L . Bott proved a similar

result for L
C,ξ
L already earlier [Bot]. Using the following proposition, it will be straightforward in

the next section to define intersection numbers for paths which are not necessarily in a generic
position.

14



Proposition 3 Π(LK,ξ,l
L ) = ∂ξ,l

L DK

L where ∂ξ,l
L DK

L is the following subset of the maximal boundary

∂LDK

L:

∂ξ,l
L D

K

L =
{

U ∈ ∂LD
K

L | rank (Π([Ψξ]∼) − U) = L − l
}

.

Setting ∂ξ
LDK

L = ∪l=1,...,L ∂ξ,l
L DK

L, one has Π(LK,ξ
L ) = ∂ξ

LDK

L. One has 1 /∈ ∂ξ
LDK

L for any ξ ∈
Sym(L, R)∩ Self(L, R).

Proof. Given U , let Φ =

(

a
b

)

where a = 1
2
(U + 1) and b = ı

2
(U − 1) as in the proof of

Theorem 4. Hence Π([Φ]∼) = U . Then one verifies

W (Ψξ, Φ) = a − ξ b =
1

2

(

U + 1 − ı ξ (U − 1)
)

=
1

2
(1 − ı ξ)

(

U − Π([Ψξ]∼)
)

.

As 1 − ı ξ is invertible, the result follows directly from (17). No more care is needed in the real
case because the dimension of the kernel of the Wronskian is independent of a basis change from
the above Φ to the real one in the proof of Theorem 4. 2

We will only use the singular cycles associated to ξ = − cot(ϕ
2
) 1 where ϕ ∈ (0, 2π), and

only need to use K = C as the supplementary symmetries are irrelevant for the definition and
calculation of the intersection number (Bott or Maslov index) in the next sections. Let us denote
these singular cycles, subsets of LC

L, by L
ϕ
L = ∪l=1,...,LL

ϕ,l
L . The image under Π will then be

written as ∂ϕ
LDC

L = ∪l=1,...,L∂ϕ,l
L DC

L. Because Π(Ψξ) = eıϕ1, it follows from Proposition 3 that

Π(Lϕ,l
L ) = ∂ϕ,l

L D
C

L = {U ∈ U(L) | eıϕ eigenvalue of U with multiplicity l} . (18)

2.7 The intersection number (Bott index)

Let Γ = ([ΦE ]∼)E∈[E0,E1) be a (continuous) closed path in LC

L for which the number of intersections

{E ∈ [E0, E1) | Γ(E) ∈ L
ϕ
L} is finite. At an intersection Γ(E) ∈ L

ϕ,l
L , let θ1(E

′), . . . , θl(E
′) be

those eigenphases of the unitary Π(Γ(E ′)) which are all equal to ϕ at E ′ = E. Choose ε, δ > 0
such that θk(E

′) ∈ [ϕ − δ, ϕ + δ] for k = 1, . . . , l and E ′ ∈ [E − ε, E + ε] and that there are no
other eigenphases in [ϕ − δ, ϕ + δ] for E ′ 6= E and finally θk(E

′) 6= ϕ for those parameters. Let
n− and n+ be the number of those of the l eigenphases less than ϕ respectively before and after
the intersection, and similarly let p− and p+ be the number of eigenphases larger than ϕ before
and after the intersection. Then the signature of Γ(E) is defined by

sgn(Γ(E)) =
1

2
(p+ − n+ − p− + n−) = l − n+ − p− . (19)

Note that −l ≤ sgn(Γ(E)) ≤ l and that sgn(Γ(E)) is the effective number of eigenphases that
have crossed ϕ in the counter-clock sense. Furthermore the signature is stable under perturbations
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of the path in the following sense: if an intersection by L
ϕ,l
L is resolved by a perturbation into

a series of intersections by lower strata, then the sum of their signatures is equal to sgn(Γ(E)).
Finally let us remark that, if the phases are differentiable and ∂Eθk(E) 6= 0 for k = 1, . . . , l, then
sgn(Γ(E)) is equal to the sum of the l signs sgn(∂Eθk(E)), k = 1, . . . , l. Now the intersection
number or index of the path Γ w.r.t. the singular cycle L

ϕ
L is defined by

ind(Γ, Lϕ
L) =

∑

Γ(E)∈L
ϕ
L

sgn(Γ(E)) . (20)

Let us give a different expression for this index. If E ∈ [E0, E1] 7→ θE
l are continuous paths

of the eigenphases of Π(Γ(E)) with arbitrary choice of enumeration at level crossings, then each
of them leads to a winding number. A bit of thought shows that

ind(Γ, Lϕ
L) =

L
∑

l=1

Wind
(

E ∈ [E0, E1) 7→ θE
l

)

. (21)

In particular, the r.h.s. is independent of the choice of enumeration at level crossings. Moreover,
for the r.h.s. to make sense, one does not need to impose that the number of intersections
is finite, as is, of course, necessary in order to define an intersection number. Similarly, the
index of a closed path Γ in the real or quaternion Lagrangian Grassmannian could be defined;
however, this index coincides with ind(Γ, Lϕ

L) if Γ is considered as path in the complex Lagrangian
Grassmannian.

In the literature, ind(Γ, Lϕ
L) is often referred to as the Maslov index, at least in the case of

a path in LR

L. The same object already appears in the work of Bott [Bot] though, and it seems
more appropriate to associate his name to it. The above definition using (19) appears to be
considerably more simple, and the author does not know whether it was already used elsewhere.

2.8 Arnold’s cocycle

Arnold has shown [Arn1] that H1(LR

L, Z) ∼= Z. This and H1(LK

L, Z) ∼= Z follows from Theorem 4.
The generator ω of the de Rahm groups can be chosen as follows. A continuous closed path
Γ = ([ΦE ]∼)E∈[E0,E1) in L

C

L gives rise to a continuous closed path E ∈ [E0, E1) 7→ det(Π([ΦE ]∼))
in S1. Its winding number defines the pairing of (the de Rahm class of) ω with the (homotopy
class of the) path Γ:

〈ω |Γ 〉 = Wind
(

E ∈ [E0, E1) 7→ det(Π([ΦE ]∼))
)

.
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Any continuous path in LC

L can be approximated by a differentiable one, hence we suppose from
now on that Γ is differentiable. Then one can calculate the pairing by

〈ω |Γ 〉 =

∫ E1

E0

dE

2π
=m ∂E log(det(Π([ΦE ]∼))) . (22)

The next theorem is Arnold’s main result concerning this cocycle.

Theorem 6 [Arn1] Provided a closed differentiable path Γ has only finitely many intersections

with the singular cycle L
ϕ
L,

ind(Γ, Lϕ
L) = 〈ω |Γ 〉 .

Proof. Set U(E) = Π(Γ(E)). As already used in the proof of Theorem 4, the diagonalization
U(E) = M(E)∗D(E)M(E) can be done with a differentiable unitary matrix M(E) and a differ-
entiable diagonal matrix D(E) = diag(eıθE

1 , . . . , eıθE
L ). As ME(∂EME)∗ = −(∂EME)(ME)∗, one

has

=m ∂E log(det(U(E))) =
1

ı
Tr ((D(E))∗∂ED(E)) =

L
∑

l=1

∂E θE
l .

Integrating w.r.t. E as in (22) hence shows that 〈ω |Γ 〉 is equal to the sum of the winding
numbers of the eigenphases and this is equal to the index by (21). 2

Remark It follows from the Gohberg-Krein index theorem that the intersection number is also
equal to the Fredholm index of an associated Toeplitz operator [BS].

If T ∈ SP(2L, C), then one can define another closed path in LC

L by T Γ = ([T ΦE ]∼)E∈[E0,E1).
Because SP(2L, C) is arc-wise connected, it follows from the homotopy invariance of the pair-
ing that 〈ω | T Γ 〉 = 〈ω |Γ 〉. The following proposition allows T to vary and also analyzes
intermediate values of the integral in (22), denoted by:

∫ E

Γ

ω =

∫ E

E0

de

2π
=m ∂e log(det(Π([Φe]∼))) , E ∈ [E0, E1) .

Proposition 4 Let Γ = ([ΦE ]∼)E∈[E0,E1) be a closed differentiable path in LC

L and (T E)E∈[E0,E1)

be a differentiable path in SP(2L, C) such that Γ′ = ([T EΦ]∼)E∈[E0,E1) is a closed path in LC

L for

any given [Φ]∼ ∈ LC

L. Furthermore let us introduce the closed path Γ′′ = ([T EΦE ]∼)E∈[E0,E1).

Then

〈ω |Γ′′ 〉 = 〈ω |Γ 〉 + 〈ω |Γ′ 〉 .

Furthermore, with the notation

C T E C∗ =

(

AE BE

CE DE

)

,
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one has (independent of [Φ]∼)

〈ω |Γ′ 〉 =

∫ E1

E0

dE

2 π
=m ∂E log

(

det(AE(DE)−1)
)

, (23)

and, uniformly in E,

∣

∣

∣

∣

∫ E

Γ′′

ω −
∫ E

Γ

ω −
∫ E

E0

de

2 π
=m ∂e log

(

det(Ae(De)−1)
)

∣

∣

∣

∣

≤ L .

Proof. Set Ue = Π([Φe]∼). Due to Theorem 5,

∫ E

Γ′′

ω =

∫ E

E0

de

2π
=m ∂e

(

log(det(Ae Ue + Be)) − log(det(Ce Ue + De ))
)

.

In the first contribution, let us use det(Ae Ue + Be) = det(Be (Ue)∗ + Ae) det(Ue), of which the

second factor leads to
∫ E

Γ
ω. Hence

∫ E

Γ′′

ω −
∫ E

Γ

ω =

∫ E

E0

de

2 π
=m ∂e (log(det(Be (Ue)∗ + Ae)) − log(det(Ce Ue + De ))) .

Now Ae and De are invertible due to Lemma 2. Hence

∫ E

Γ′′

ω −
∫ E

Γ

ω −
∫ E

E0

de

2 π
=m ∂e log

(

det(Ae(De)−1)
)

=

∫ E

E0

de

2 π
∂e =m

(

Tr
(

log(1 + (Ae)−1Be (Ue)∗)
)

− Tr
(

log(1 + (De)−1Ce Ue)
)

)

.

As ‖(Ae)−1Be‖ < 1 and ‖(De)−1Ce‖ < 1 by Lemma 2, only one branch of the logarithm is
needed. As E → E1 this term therefore vanishes implying the result on the winding numbers
because the third term on the l.h.s. then gives 〈ω |Γ′ 〉 as one sees repeating the above arguments
with Ue replaced by the constant Π([Φ]∼). Moreover, one may carry out the integral on the r.h.s.
of the last equation using the fundamental theorem, so that this r.h.s. is equal to

1

2 π

(

Tr
(

log(1 + (AE)−1BE (UE)∗)
)

− Tr
(

log(1 + (DE)−1CE UE)
)

)

.

The bound follows now from the spectral mapping theorem for the logarithm function. 2

In order to calculate the integral in (22), one can also appeal to the following formula.
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Lemma 4 If E 7→ ΦE is differentiable and [ΦE ]∼ ∈ LC

L, then

=m ∂E log(det(Π([ΦE ]∼))) = 2 Tr
(

(

(ΦE)∗ΦE
)−1

(ΦE)∗ J (∂E ΦE)
)

. (24)

Proof. As in the proof of Theorem 6, let us begin with the identity

ı ∂E log(det(Π([ΦE ]∼))) = Tr
(

(Π([ΦE ]∼))∗ (∂E Π([ΦE ]∼))
)

. (25)

Introducing the invertible L × L matrices

φE
± = ( 1 ±ı1 ) ΦE ,

one has Π([ΦE ]∼) = φE
− (φE

+)−1. Furthermore the following identities can be checked using the
fact that ΦE is Lagrangian:

(φE
+)∗ φE

+ = (φE
−)∗ φE

− = (ΦE)∗ ΦE , (φE
±)∗∂EφE

± = (ΦE)∗∂EΦE ± ı (ΦE)∗J ∂EΦE . (26)

Corresponding to the two terms in

∂E Π([ΦE ]∼) = (∂EφE
−) (φE

+)−1 − φE
− (φE

+)−1(∂EφE
+) (φE

+)−1 ,

there are two contributions C1 and C2 in (25). For the first one, it follows from cyclicity

C1 = Tr
(

(

(φE
+)∗φE

+

)−1
(φE

−)∗ ∂E φE
−

)

,

while for the second

C2 = −Tr
(

(φE
+)−1 ∂E φE

+

)

= −Tr
(

(

(φE
+)∗φE

+

)−1
(φE

+)∗ ∂E φE
+

)

.

Combining them and appealing to (26) concludes the proof. 2

Next let us calculate the pairing for two examples. The first one was already given by Arnold
[Arn1]. For η ∈ [0, π], introduce the symplectic matrices

Rη =

(

cos(η) 1 sin(η) 1
− sin(η) 1 cos(η) 1

)

, C Rη C∗ =

(

eıη 1 0
0 e−ıη 1

)

,

as well as the closed path Γ = (Rη[Φ]∼)η∈[0,π) for an arbitrary [Φ]∼ ∈ LC

L. As det(Π([RηΦ]∼)) =
e2ıLη det(Π([Φ]∼)), one deduces 〈ω |Γ 〉 = L. The second example concerns transfer matrices.
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Lemma 5 Let T E be a matrix built as in (2) from a selfadjoint matrix V and positive matrix

T . For an arbitrary [Φ]∼ ∈ LC

L with (1 0) Φ invertible and M ∈ SP(2L, C), consider the path

Γ = (MT E[Φ]∼)E∈R
where R = R∪{∞} is the one-point compactification. Then Γ is closed and

〈ω |Γ 〉 = L. Moreover, E ∈ R 7→
∫ E

Γ
ω is strictly monotonously increasing.

Proof. First suppose that M = 1. Then note that Π([T EΦ]∼) = 1 + O(E−1), hence the path
is closed. Next one calculates

C T E C∗ =
1

2

(

(E 1 − V ) T−1 − ı(T + T−1) (E 1 − V ) T−1 + ı(T − T−1)
(E 1 − V ) T−1 − ı(T − T−1) (E 1 − V ) T−1 + ı(T + T−1)

)

.

Let AE and DE denote the upper left and lower right entry. Then =m ∂E log(det(AE)) is equal
to

Tr
(

(

T−1(E − V )2T−1 + (T + T−1)2 + ı(T−1V T − TV T−1)
)−1

(1 + T−2)
)

.

As there is a similar expression for =m ∂E log(det(DE)), this shows that the integral in (23) is
finite. In order to calculate the winding number, it is convenient to consider the homotopy

T E(λ) =

(

(E 1 − V (λ)) T (λ)−1 −T (λ)
T (λ)−1 0

)

, 0 ≤ λ ≤ 1 .

where V (λ) = λV and T (λ) = λT + (1− λ)1 (the latter is always positive). Then the pairing of
Γ(λ) = (T E(λ)[Φ]∼)E∈R

with ω is independent of λ. Hence it is sufficient to calculate the pairing
at λ = 0, which is due to the above replaced into (23) given by

〈ω |Γ(0) 〉 =

∫ ∞

−∞

dE

π
Tr

(

(E2 + 4)−1 2 1
)

= L ,

completing the proof in the case M = 1. If M 6= 1, the winding number is the same because
SP(2L, C) is arc-wise connected, as already pointed out above. The monotonicity can be checked
using the r.h.s. of (24) for ΦE = MT EΦ. In fact, (ΦE)∗ΦE is strictly positive, and

(ΦE)∗J ∂EΦE = Φ∗

(

T−2 0
0 0

)

Φ ,

which is strictly positive by hypothesis. As the trace of a product of two positive operators is
still positive, this concludes the proof. 2
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3 Jacobi matrices with matrix entries

Given integers L, N ∈ N, let (Tn)n=2,...,N and (Vn)n=1,...,N be sequences of respectively positive
and selfadjoint L×L matrices with complex entries. Furthermore let the left and right boundary
conditions ζ and ξ be also self-adjoint L × L matrices. In the real and quaternion case, one
chooses ζ and ξ symmetric and self-dual. Then the associated Jacobi matrix with matrix entries
HN

ξ is by definition the symmetric operator acting on states φ = (φn)n=1,...,N ∈ `2(1, . . . , N)⊗C
L

by
(HN

ξ φ)n = Tn+1φn+1 + Vnφn + Tnφn−1 , n = 1, . . . , N , (27)

where T1 = TN+1 = 1, together with the boundary conditions

φ0 = ζ φ1 , φN+1 = ξ φN . (28)

One can also rewrite HN
ξ defined in (27) and (28) more explicitly as a block diagonal matrix;

this gives (1) albeit with V1 and VN replaced by V1 − ζ and VN − ξ. The dependence on ζ is not
specified, but it could potentially be used for averaging purposes. If ζ = ξ = 0 one speaks of
Dirichlet boundary conditions.

3.1 Transfer matrices and dynamics of Lagrangian planes

As for a one-dimensional Jacobi matrix, it is useful to rewrite the Schrödinger equation

HN
ξ φ = E φ , (29)

for a complex energy E in terms of the 2L × 2L transfer matrices T E
n defined in (2). For a real

energy E ∈ R, each transfer matrix is in the symplectic group SP(2L, C). If HN is, moreover, real
or self-dual, then the transfer matrices are in the subgroups SP(2L, R) and SP(2L, H) respectively.
The Schrödinger equation (29) is satisfied if and only if

(

Tn+1φn+1

φn

)

= T E
n

(

Tnφn

φn−1

)

, n = 1, . . . , N ,

and the boundary conditions (28) hold, namely
(

T1φ1

φ0

)

∈ Φζ C
L ,

(

TN+1φN+1

φN

)

∈ Ψξ C
L , (30)

where we introduced for later convenience the notations

Φζ =

(

1
ζ

)

, Ψξ =

(

ξ
1

)
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Both of the two L-dimensional subspaces of C2L appearing in the conditions (30) are Lagrangian.
One way to search for eigenvalues is to consider the whole subspace in the left equation of (30),
then to follow its evolution under application of the transfer matrices, and finally to check whether
at N the resulting subspace has a non-trivial intersection with the subspace on the r.h.s. of
(30). For perturbation theory in Section 4, it is useful to incorporate a symplectic basis change
M ∈ SP(2L, C) which can be conveniently chosen later on. In the one-dimensional situation
this corresponds to pass to modified Prüfer variables. If HN is real or self-dual, one chooses
M ∈ SP(2L, R) or M ∈ SP(2L, H). As above, half-dimensional subspaces will be described by
2L × L matrices ΦE

n of rank L composed of column vectors spanning it. Then their dynamics
under application of the M-transformed transfer matrices is

ΦE
n = MT E

n M−1 ΦE
n−1 , ΦE

0 = MΦζ . (31)

If E ∈ R, these planes are Lagrangian. As the boundary condition on the left boundary is satisfied
automatically (it is chosen as the initial condition), the second condition in (30) multiplied by
M together with the Wronski test (17) leads to

multiplicity of E as eigenvalue of HN
ξ = L − rank

(

(MΨξ)
∗ J ΦE

N

)

. (32)

This implies also

Proposition 5 Let Γ = ([ΦE
N ]∼)E∈R

. For every ξ ∈ Sym(L, R) ∩ Self(L, C), the set {E ∈
R | Γ(E) ∈ L

C,ξ
L } of intersections with the singular cycle L

C,ξ
L is finite.

The dynamics (31) is more easily controlled under the stereographic projection. Let us first
consider the case =m(E) > 0. In this situation the stereographic projection π of (31) gives a
dynamics in the upper half-plane UC

L, or UR

L if HN is real and UH

L if HN is self-dual. In fact,
ZE

1 = π(ΦE
1 ) = M· (E 1−V1 − ζ) is in UC

L and, moreover, the transfer matrices factor as follows:

T E
n =

(

1 ı=m(E) 1
0 1

) (

(<e(E) 1 − Vn) T−1
n −Tn

T−1
n 0

)

.

The matrix on the right is in the symplectic group SP(2L, C) acting on UC

L, the one on the left
also sends UC

L to UC

L because of (16). The same applies for real and self-dual HN . Hence the
following Möbius action is well-defined:

ZE
n = MT E

n M−1 · ZE
n−1 , ZE

1 = M · (E 1 − V1 − ζ) , (33)

In the case M = 1, this is a matricial Ricatti equation ZE
n = E−Vn +Tn(ZE

n−1)
−1Tn. Comparing

with (31),
ZE

n = π([ΦE
n ]∼) , n = 1, . . . , N .
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In particular, [ΦE
n ]∼ is in the domain Ginv

L of π whenever =m(E) > 0. If the boundary condition
ζ is invertible, one may also set ZE

0 = M· ζ−1 and then ZE
1 = MT E

1 M−1 · ZE
0 , even though ZE

0

is not in UC

L. Furthermore, the map E ∈ UC
1 7→ ZE

N ∈ UC

L is analytic (Herglotz). The map has
poles on the real axis as can be read off the Dean-Martin identity (46) proven below, but will
not be used in the sequel.

As real energies are not always permitted, the ZE
n are not convenient for the calculation of

the eigenvalues. For any E with =m(E) ≥ 0, let us rather use

UE
n = Π([ΦE

n ]∼) , n = 0, . . . , N .

For real E, this is well-defined and UE
n is a unitary because of Theorem 4. This unitary is

symmetric or self-dual if HN is real or self-dual. Iterating (31) and recalling the definition of
the stereographic projection shows that UE

n is actually of the explicit form given in (3) if one
chooses M = 1. Hence this proves Theorem 1(i) and part of (ii). For =m(E) > 0, the above
arguments imply ZE

n is well-defined and hence also UE
n = C · ZE

n . One, moreover, concludes that
UE

n = C · ZE
n is in the generalized unit disc DC

L (for n 6= 0). The dynamics is given by

UE
n = CMT E

n M−1 C∗ · UE
n−1 , UE

0 = M· (1 − ı ζ) (1 + ı ζ)−1 . (34)

For =m(E) > 0, this is just the Cayley transform of (33), while for E ∈ R, it is the dynamics of
Theorem 5. The following lemma proves Theorem 1(ii) and the first part of (iii).

Lemma 6 The map E 7→ UE
N is analytic in a neighborhood of UC

1 = UC
1 ∪ ∂UC

1 . At level

crossings, the eigenvalues and eigenvectors can be enumerated such that they are analytic in a

neighborhood of UC
1 as well.

Proof. Analyticity of UE
N away from the real axis follows from the analyticity of ZE

N because
UE

n = C · ZE
n and the inverse in the Möbius transformation is also well-defined, cf. Section 2.4.

Moreover, the characteristic polynomial is a Weierstrass polynomial that has a global Puiseux
expansion which is analytic in the Lth root of E. Hence the eigenvalues and eigenvectors can be
chosen (at level crossings) such that they are analytic in the Lth root of E (e.g. [Kat, Chapter
II]). It will follow from the arguments below that the Puiseux expansion actually reduces to a
power series expansion in E.

Now we analyze in more detail the situation in a neighborhood of the real axis. The plane

ΦE
N is a polynomial in E. Let us use the notations ΦE

N =

(

aE

bE

)

. It follows from the argument

in (10) that aE + ı bE has maximal rank for E ∈ R so that E ∈ R 7→ det(aE + ı bE) has no zero.
Moreover, one has the large E asymptotics

ΦE
N = ENL M

(
∏N

n=1 T−1
n

0

)

+ O(ENL−1) . (35)
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which implies

det(aE + ı bE) = ENL det

(

(

1
ı1

)t

M
(

1
0

)

)

N
∏

n=1

det(Tn)−1 + O(ENL−1) .

Therefore infE∈R | det(aE +ı bE)| > 0 and the infimum is realized at some finite E. A perturbative
argument shows that also infE∈Sδ

| det(aE+ı bE)| > 0 where Sδ = {E ∈ C | |=m(E)| < δ} is a strip
of some width δ > 0. Calculating the inverse with the Laplace formula shows that (aE + ı bE)−1

is also analytic in Sδ. Thus also UE
N = (aE − ı bE)(aE + ı bE)−1 is analytic in Sδ and thus analytic

in a neighborhood of UC
1 due to the above.

Finally one can appeal to degenerate perturbation theory [Kat, Theorem II.1.10] in order to
deduce that the eigenvalues and eigenvectors of the unitary matrix UE

N (hence E real) are also
analytic in a neighborhood of the real axis, that is are given by an analytic Puiseux expansion.
As this neighborhood has an open intersection with the upper half-plane, the above Puiseux
expansion is therefore also analytic, namely only contains powers of E. 2

It follows from (35) that

UE
N = CMC∗ · 1 + O(E−1) . (36)

Let 0 ≤ θMl < 2π be the eigenphases of the symmetric unitary CMC∗ · 1. The eigenvalues of

UE
N , chosen to be real analytic in E ∈ R as in Lemma 6, are denoted by eıθE

N,l , l = 1, . . . , L. The
eigenphases are chosen such that θE

N,l → θMl for E → −∞. In the case M = 1, one hence has
θE

N,l → 0 for E → −∞ as in Theorem 1.

Let us conclude this section by choosing particular right boundary conditions, namely, for
ϕ ∈ (0, 2π),

ξ = − cot(
ϕ

2
) M−1 · 1 =⇒

[

MΨξ

]

∼
=

[

Ψ− cot(ϕ
2
)1

]

∼
.

The corresponding Hamiltonian will be denoted by HN
ϕ . If M = 1 and ϕ = π, these are Dirichlet

boundary conditions on the right boundary. Due to Proposition 3 and (18), the eigenvalue
condition (32) becomes

multiplicity of E as eigenvalue of HN
ϕ = multiplicity of eıϕ as eigenvalue of UE

N . (37)

Setting M = 1 and ϕ = π, this proves Theorem 1(iv).
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3.2 Monotonicity and transversality

This section provides the proof of Theorem 1(v) (just set M = 1 in the below). Of course,
the second statement of Theorem 1(v) follows immediately from the first one upon evaluation in
the eigenspaces of UE

N . The following proposition also shows that the curve Γ = ([ΦE
N ]∼)E∈R

is
transversal to the singular cycle L

ϕ
L and always crosses it from the negative to the positive side.

Proposition 6 For E ∈ R and N ≥ 2, one has

1

ı
(UE

N )∗ ∂E UE
N > 0 .

Proof. As in the proof of Lemma 4, let us introduce φE
± = ( 1 ±ı1 ) ΦE

N . These are invertible
L × L matrices and one has UE

N = φE
−(φE

+)−1 = ((φE
−)−1)∗(φE

+)∗. Now

(UE
N )∗ ∂E UE

N = ((φE
+)−1)∗

[

(φE
−)∗∂EφE

− − (φE
+)∗∂EφE

+

]

(φE
+)−1 .

Thus it is sufficient to verify positive definiteness of

1

ı

[

(φE
−)∗∂EφE

− − (φE
+)∗∂EφE

+

]

= 2 (ΦE
N)∗ J ∂EΦE

N .

¿From the product rule follows that

∂EΦE
N =

N
∑

n=1

M
(

N
∏

l=n+1

T E
l

)

(

∂ET E
n

)

(

n−1
∏

l=1

T E
l

)

Φζ .

Using M∗JM = J , this implies that

(ΦE
N )∗ J ∂EΦE

N =

N
∑

n=1

Φ∗
ζ

(

n−1
∏

l=1

T E
l

)∗
(

T E
n

)∗ J
(

∂ET E
n

)

(

n−1
∏

l=1

T E
l

)

Φζ . (38)

As one checks that
(

T E
n

)∗ J
(

∂ET E
n

)

=

(

(TnT ∗
n)−1 0
0 0

)

,

each of the summands in (38) is positive semi-definite. In order to prove the strict inequality, it
is sufficient that the first two terms n = 1, 2 in (38) give a strictly positive contribution. Hence
let us verify that

(

T E
2

)∗
(

(T1T
∗
1 )−1 0
0 0

)

T E
2 +

(

(T2T
∗
2 )−1 0
0 0

)

> 0 .
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For this purpose let us show that the kernel of the matrix on the l.h.s. is empty. As
(

(T E
2 )∗

)−1
=

−J T E
2 J , we thus have to show that a vector

(

v
w

)

∈ C2L satisfying

J
(

(T1T
∗
1 )−1 0
0 0

)

T E
2

(

v
w

)

= T E
2 J

(

(T2T
∗
2 )−1 0
0 0

) (

v
w

)

,

actually vanishes. Carrying out the matrix multiplications, one readily checks that this is the
case. 2

Of course, one can regroup the terms in (38) into packages of two successive contributions and
each of them is positive by the same argument. If this bound is uniform for the packages (e.g.
the spectrum of the Tn is uniformly bounded away from 0), one actually deduces an improved
lower bound by CEN for some CE > 0.

3.3 The total rotation number

In this section, we complete the proof of Theorem 1, in particular the second part of item (iii).
Throughout E ∈ R. The total rotation number is defined by

ΘE
N =

∫ E

−∞

de =m ∂e log(det(Ue
N))) . (39)

It will be shown shortly that the integral converges. Using the notations of Section 2.8, ΘE
N =

∫ E

Γ
ω for Γ = ([ΦE

N ]∼)E∈R
. Let θE

N,l be the analytic eigenphases of UE
N as introduced after (36).

We deduce after integration of (39) that

ΘE
N =

L
∑

l=1

(

θE
N,l − θMl

)

. (40)

This justifies the term total rotation number. The following result could also be deduced from
the results of the previous section, but its proof (a homotopy argument) directly completes the
proof of Theorem 1(iii).

Proposition 7 The total rotation number ΘE
N is well-defined and satisfies

lim
E→−∞

ΘE
N = 0 , lim

E→∞
ΘE

N = 2π N L .
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Proof. Expanding ΦE
N = M∏N

n=1 T E
n Φζ shows

(

(ΦE
N )∗ΦE

N

)−1
=

(

Φ∗
ζ E2N

(

1 0
0 0

)N

M∗M
(

1 0
0 0

)N

Φζ + O(E2N−1)

)−1

= E−2N

(

1
0

)∗

M∗M
(

1
0

)

+ O(E−2N−1) .

Similarly one verifies
(ΦE

N )∗ J ∂EΦE
N = O(E2N−2) .

Hence follows
(

(ΦE
N )∗ΦE

N

)−1
(ΦE

N )∗ J ∂EΦE
N = O(E−2) ,

so that the integral in (39) exists due to (24), which can alternatively be derived from Lemma 5.
Furthermore, one deduces from (36) that Γ = ([ΦE

N ]∼)E∈R
is a closed path in LC

L and its winding
number is given by

〈ω |Γ 〉 =
1

2π
lim

E→∞
ΘE

N .

In order to calculate the winding number and prove the last statement of the proposition, one
applies Proposition 4 and Lemma 5 iteratively to the path Γ = ([M∏N

n=1 T E
n Φζ ]∼)E∈R

. Alter-
natively one can use a homotopy HN(λ) from HN(1) = HN

ϕ to HN(0) which is the sum of L
un-coupled one-dimensional discrete Laplacians (using the homotopy of the proof of Lemma 5 on
every site n). For each of the one-dimensional discrete Laplacians the winding number is again
easy to calculate and equal to N . 2

Proof of the last statement of Theorem 1(iii). The homotopy discussed at the end of the proof
of Proposition 7 is analytic and hence one deduces θE

N,l − θMl → 2πN for E → ∞ for each l as
this is the case for the one-dimensional discrete Laplacian. 2

Remark Using Proposition 7 one can also give a nice alternative proof of ∂EθE
N,l ≥ 0. Indeed,

according to (37), the unitary UE
N can be used in order to calculate the spectrum of HN

ϕ for every
ϕ ∈ (0, 2π). Counting multiplicities, this spectrum consists of NL eigenvalues. By Proposition 7
and Theorem 6, the total number of passages of eigenvalues θE

N,l by ϕ (intersections with the
singular cycle L

ϕ
L) is bounded below by NL. As there cannot be more than NL, all these

passages have to be in the positive sense because a passage in the negative sense would lead to
at least two more eigenvalues of HN

ϕ .
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3.4 Telescoping the total rotation number

By the results of the last section and due to the fact that a change of right boundary condition
can change the number of eigenvalues by at most L, one has

∣

∣

∣

∣

1

2π
ΘE

N − #
{

eigenvalues of HN
ξ ≤ E

}

∣

∣

∣

∣

≤ 2 L . (41)

Hence ΘE
N allows to count the eigenvalues of HN up to boundary terms. For this purpose it is

useful to telescope ΘE
N into N contributions stemming from the L-dimensional slices:

ΘE
N =

N
∑

n=1

∫ E

−∞

de =m ∂e log

(

det(Ue
n)

det(Ue
n−1)

)

.

Here we have used (34) and the fact that Ue
0 is independent of e. This is indeed a good way to

telescope because Ue
n = CMT e

n M−1 C∗ · Ue
n−1 so that Proposition 4 and Lemma 5 imply that

each summand satisfies
∣

∣

∣

∣

∫ E

−∞

de =m ∂e log

(

det(CMT e
n M−1 C∗ · Ue

n−1)

det(Ue
n−1)

) ∣

∣

∣

∣

≤ 2 L .

Moreover, with the notation

CMT E
n M−1 C∗ =

(

AE
n BE

n

CE
n DE

n

)

, (42)

the same calculation as in Proposition 4 implies that

ΘE
N =

N
∑

n=1

∫ E

−∞

de =m ∂e log
(

det
(

(Ae
n + Be

n (Ue
n−1)

∗)(De
n + Ce

n Ue
n−1)

−1
) )

. (43)

Now it is actually possible to apply the fundamental theorem in every summand by determining
the branch of the logarithm uniquely from the transfer matrix T E

n , and independent of the prior
transfer matrices. Indeed, one can factor out det(Ae

n(De
n)−1) and use the fact that (Ae

n)−1Be
n and

(De
n)−1Ce

n have norm less than 1 by Lemma 2, so that as in the proof of Proposition 4:

ΘE
N =

N
∑

n=1

=m
[

∫ E

−∞

de ∂e log
(

det( Ae
n(De

n)−1 )
)

(44)

+ Tr
(

log
(

1 + (AE
n )−1 BE

n (UE
n−1)

∗
))

− Tr
(

log
(

1 + (DE
n )−1 CE

n UE
n−1

))

]

.

A refined version of this formula is exploited in Section 4.
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3.5 The Dean-Martin identity

In this and the next two sections, M = 1 and ξ = 0 (Dirichlet boundary conditions on the right
boundary). The Hamiltonian will be denoted by HN without a further index. According to (32),
E is an eigenvalue of HN if and only if

det
((

0 1
)

J ΦE
N

)

= det

(

(

1 0
)

N
∏

n=1

T E
n Φζ

)

= 0 .

Due to (32), the multiplicity of the zero is the multiplicity of the eigenvalue. Therefore the l.h.s.
of this equation is a polynomial of degree NL in E with zeros exactly at the NL eigenvalues
of HN . Comparing the leading order coefficient, one deduces a formula for the characteristic
polynomial:

det(E 1 − HN) = det
((

1 0
)

ΦE
N

)

N
∏

n=1

det(T−1
n ) . (45)

In order to find a recurrence relation for the characteristic polynomials, let us suppose that

=m(E) > 0 and note that ZE
N =

(

1 0
)

ΦE
N

((

1 0
)

ΦE
N−1

)−1
TN . Taking the determinant of this

formula, the identity (45) applied twice gives

det(ZE
N) =

det
(

E 1 − HN
)

det
(

E 1 − HN−1
) . (46)

Let us call this the Dean-Martin identity, due to the contribution [DM]. These authors then used
the identity (46) at real energies in order to calculate the spectrum of HN−1

π by counting the
singularities of det(ZE

N). This can be made more explicit by adding a small imaginary part δ > 0
to the energy. Then consider the path E ∈ R 7→ det(ZE+ıδ

N ) ∈ C. Even though ZE+ıδ
N is in the

upper half-plane, its determinant may well have a negative imaginary part. However, it never
takes the values ± ı. Now each passage of the path (near) by an eigenvalue of HN−1 leads to an
arc in either the upper or lower half-plane with passage by either ı/δ or −ı/δ, pending on the
sign of the numerator in (46). Both arcs turn out to be in the positive orientation. A multiple
eigenvalue leads to a multiple arc. The topologically interesting quantity is the winding numbers
of the path around ı and −ı. Calculating the sum of the corresponding phase integrals gives a
total rotation number which in the limit δ → 0 coincides with ΘE

N . This allows to give a nice
alternative, but considerably more complicated proof of Proposition 7. In the case L = 1, all the
arcs are in the upper half-plane and the argument just sketched is particularly simple.
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3.6 Green’s function and continued fraction expansion

The aim of this short section is to illustrate the use of the dynamics in the upper half-plane. For
=m(E) > 0, the L × L Green’s matrix GE,N

n,m for 1 ≤ n, m ≤ N is defined by

GE,N
n,m (k, l) = 〈n, k| (HN − E 1)−1 |m, l〉 , k, l = 1, . . . , L .

It follows from the Schur complement formula that

GE,N
N,N =

(

VN − E 1 − TNGE,N−1
N−1,N−1TN

)−1

.

Iteration of this formula gives a matricial continued fraction expansion:

GE,N
N,N =

(

VN − E 1 − TN

(

· · ·
(

V2 − E 1 − T2(V1 − E 1 + ζ)−1T2

)−1 · · ·
)−1

TN

)−1

.

As ZE
1 = E 1− V1 − ζ , one sees that this is just the iteration of the Ricatti equation. Hence one

deduces
GE,N

N,N = − (ZE
N)−1 = −π(ΦE

N )−1 ,

where the inverse (ZE
N)−1 exists because it is given by the Möbius transformation of ZE

N ∈ UC

L

with ıJ ∈ SP(2L, C). Hence GE,N
N,N ∈ U

C

L. Furthermore the geometric resolvent identity shows

GE,N
1,N = −GE,N−1

1,N−1 TN GE,N
N,N .

These identities allow us to note a few useful identities linking the entries of the transfer matrix

T E
N · . . . · T E

1 =

(

A B
C D

)

,

to the Green’s function:

A−1 = −GE,N
1,N , C−1 = −GE,N−1

1,N−1 TN , CA−1 = −GE,N
N,N , A−1B = GE,N

1,1 .

It is also possible to express B−1, D−1, DB−1 and C−1D in terms of Green’s functions.

3.7 Eigenvalue interlacing

In this section, the above information on the spectrum of Jacobi matrices with matrix entries is
complemented by a simple consequence of the min-max principle. In the case L = 1 of a Jacobi
matrix, this is the theorem on alternation of zeros of the associated orthogonal polynomials. It
also implies that the bottom (resp. top) of the spectrum of HN is less (resp. larger) than or
equal the bottom (resp. top) of the spectrum of HN−1.
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Proposition 8 Let HN and HN−1 be defined with Dirichlet boundary conditions on the right

boundary. Then the eigenvalues of HN and HN−1 satisfy the following interlacing property:

EN
j ≤ EN−1

j ≤ EN
j+L , j = 1, . . . , (N − 1)L .

Proof. Let HN = `2(1, . . . , N) ⊗ CL and ΠN the projection in HN on the states on the right
boundary, namely, in Dirac notation, on the span of (|N, l〉)l=1,...,L. Hence HN−1

∼= (1−ΠN )HN

and HN−1 ⊂ HN with the natural embedding. Also HN−1|ψ〉 = HN |ψ〉 for ψ ∈ HN−1, i.e.

ΠNψ = 0 (the natural embedding is suppressed in this notation). The min-max principle states:

EN
j = sup

U⊂HN , dim(U)≤j

inf
ψ∈U⊥ , ‖ψ‖=1

〈ψ |HN |ψ〉 ,

where the supremum is over subspaces U of HN , and the infimum over unit vectors in their
orthogonal complement. For HN−1, the above facts imply

EN−1
j = sup

U⊂HN , dim(U)≤j , ΠN U=0

inf
ψ∈U⊥ , ‖ψ‖=1 , ΠNψ=0

〈ψ |HN |ψ〉 ,

where the orthogonal complement is calculated in HN . Hence the inequality EN−1
j ≥ EN

j follows
because the condition ΠNU = 0 is redundant and then one obtains a lower bound by dropping
the constraint ΠNψ = 0. Next, for a subspace U ⊂ HN with ΠNU = 0, let Ũ = U ⊕ ΠNHN .
Then dim(Ũ) = dim(U) + L. Furthermore, the conditions ψ ∈ U⊥ and ΠNψ = 0 are equivalent
to ψ ∈ Ũ⊥. Therefore, upon relaxing the constraints on the supremum:

EN−1
j ≥ sup

Ũ⊂HN , dim(Ũ)≤j+L

inf
ψ∈Ũ⊥ , ‖ψ‖=1

〈ψ |HN |ψ〉 = EN
j+L ,

which is the second inequality. 2

4 Jacobi matrices with random matrix entries

In this section we consider Jacobi matrices HN(ω) with matrix entries ω = (Vn, Tn)n≥1 which
are independent and identically distributed random variables drawn from a bounded ensemble
(Vσ, Tσ)σ∈Σ of symmetric and positive real matrices. Expectation w.r.t. to their distribution will
be denoted by Eσ or simply by E. All formulas in Section 4.1 also hold for more general covariant
operator families and systems without time-reversal symmetry. Associated to each ω are transfer
matrices T E

n (ω), Lagrangian planes ΦE
n (ω), their parametrizations ZE

n (ω) and UE
n (ω), matrix

entries AE
n (ω) and BE

n (ω) as in (42), total rotations, etc. In order not to overload notation, the
index ω is suppressed throughout. The basis change M will be taken independent of ω though.
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4.1 Integrated density of states and sum of Lyapunov exponents

The integrated density of states of a random family of Jacobi matrices with matrix entries is
defined by [CS, BL, CL]

N (E) = lim
N→∞

1

N L
E #

{

eigenvalues of HN ≤ E
}

.

According to (41), (43) and the fact that Ce = Be and De = Ae, one has

N (E) = lim
N→∞

1

N L

N
∑

n=1

∫ E

−∞

de

π
=m ∂e E log

(

det
(

Ae
n + Be

n (Ue
n−1)

∗
) )

. (47)

For a fixed energy, this quantity can also be understood as a rotation number in the sense of
Ruelle [Rue]. The second ergodic quantity considered here is the averaged sum of the positive
Lyapunov exponents, denoted shortly by γ(E) here. For any complex energy E ∈ C, it can be
defined by [CS, BL, KS, CL, SB]

γ(E) = lim
N→∞

1

N L
E log

( ∥

∥

∥

∥

∥

ΛL

(

N
∏

n=1

T E
n

)∥

∥

∥

∥

∥

)

, (48)

where ΛLT is the L-fold exterior product (second quantization as for evolution group) of the
symplectic matrix T , and the norm denotes the operator norm on the fermionic Fock space
ΛL

C
2L. It is well known that γ(E) is subharmonic in E [CS, CL]. Furthermore, the Thouless

formula linking N and γ holds [CS, KS]. Actually this is the integrated version of the Kramers-
Krönig relation stating that γ(E) + ı πN (E) for real E is the boundary value of a Herglotz
function (which is given by the expectation value of the trace of the logarithm of the Weyl-
Titchmarch matrix [KS], for which one has a matrix-valued Herglotz representation [GT]). This
is reflected by the following proposition showing that γ and πN can be calculated as real and
imaginary part of the Birkhoff sum associated to a single complex valued additive cocycle.

Proposition 9 For E with =m(E) ≥ 0,

γ(E) = lim
N→∞

1

N L

N
∑

n=1

<e E log
(

det
(

AE
n + BE

n (UE
n−1)

∗
) )

.

Proof. Clearly one may replace T E
n in (48) by MT E

n M−1 because the boundary contributions
drop out in the limit. Furthermore, instead of calculating the operator norm in (48), one may
insert a real Lagrangian plane Φ0 = (φ1, . . . , φL) as initial conditions

γ(E) = lim
N→∞

1

N L
E log

( ∥

∥

∥

∥

∥

ΛL

(

N
∏

n=1

MT E
n M−1

)

φ1 ∧ . . . ∧ φL

∥

∥

∥

∥

∥

)

,
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where now the norm is that of a vector in ΛLC2L [BL, A.III.3.4] (for covariant, but not necessarily
random Jacobi matrices with matrix entries, this holds as long as E contains an average over Φ0

w.r.t. some continuous measure [JSS, SB]). Recalling that the norm in ΛLC2L is calculated with
the determinant, it follows that

γ(E) = lim
N→∞

1

2 N L
E log

(

det

(

Φ∗
0

(

N
∏

n=1

MT E
n M−1

)∗ (

N
∏

n=1

MT E
n M−1

)

Φ0

) )

.

Now
(

∏N
n=1 MT E

n M−1
)

Φ0 = ΦE
N and one may telescope (boundary terms vanish in the limit)

and insert the Cayley transformation:

γ(E) = lim
N→∞

1

2 N L
E

N
∑

n=1

log

(

det
(

(CΦE
n )∗ (CΦE

n )
)

det
(

(CΦE
n−1)

∗ (CΦE
n−1)

)

)

.

In each term, one can now apply Lemma 3 for T = CMT E
n M−1C∗ and Φ = CΦE

n−1. The
hypothesis of the lemma are indeed satisfied for any E with =m(E) ≥ 0 because of the arguments
in Section 2.5. According to the definition of UE

n , it therefore follows

γ(E) = lim
N→∞

1

2 N L
E

N
∑

n=1

log

(

det
(

(UE
n )∗ UE

n + 1
)

det
(

(UE
n−1)

∗ UE
n−1 + 1

)

∣

∣ det
(

AE
n + BE

n (UE
n−1)

∗
) ∣

∣

2

)

.

The first contribution telescopes back again and the boundary term at N is bounded because
1 ≤ det(U∗U + 1) ≤ 2L for every U ∈ D

C

L ∪ ∂LD
C

L. Hence the first contribution vanishes in the
limit. The second contribution is precisely the term appearing in the proposition. 2

4.2 Random perturbations

This section gives the precise hypothesis of Theorem 2 and then provides the proof. Hence Vn

and Tn are random and depend on a coupling parameter λ ≥ 0 as described in the introduction
and they give rise to transfer matrices T E

n (λ) which depend analytically on λ (lower regularity
is actually sufficient). Throughout this section E ∈ R. The first step of the analysis consists in
the symplectic diagonalization of T E = T E

n (0) by an adequate symplectic basis change M:

MT E
n (λ)M−1 = R exp

(

λPn + O(λ2)
)

. (49)

Here (and in matrix equations below) the expression O(λ2) means that we have an operator norm
estimate on the remainder. Furthermore Pn is a (random) element of the Lie algebra sp(2L, R)
calculated from (vn, tn) and R is of the symplectic normal form of the free transfer matrix T E
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chosen as follows. The eigenvalues of T E form quadruples (λ, 1/λ, λ, 1/λ) which collapse to pairs
(λ, 1/λ) if λ ∈ S1 and λ ∈ R. If λ ∈ S1, one speaks of an elliptic channel. Let there be Le of
them, denote their eigenvalues by eıη1 , . . . , eıηLe and set η = diag(η1, . . . , ηLe). As T E is supposed
to be diagonalizable, the remaining Lh = L − Le channels are hyperbolic. The moduli of their
eigenvalues are eκl, e−κl, with κl > 0 and for l = 1, . . . , Lh. Set κ = diag(κ1, . . . , κLh

). If a
hyperbolic channel stems from a quadruple, it moreover contains a rotation by the phase of its
eigenvalue λ. This will be described by S ∈O(Lh) which is a tridiagonal orthogonal matrix
containing only either 1 or 2×2 rotation matrices on the diagonal and which satisfies [S, eκ] = 0.
The symplectic basis change M is then chosen such that

R =









S eκ 0 0 0
0 cos(η) 0 sin(η)
0 0 S e−κ 0
0 − sin(η) 0 cos(η)









,

Furthermore, let Ph and Pe denote the projections (L × L matrices) onto the hyperbolic and
elliptic channels. In particular, Ph + Pe = 1 and diag(Ph, Ph) as well as diag(Pe, Pe) commute
with R. The reader may consult [SB] where the basis change M is constructed explicitly for the
example of the Anderson model on a strip. Next let us state the precise hypothesis of Theorem 2.

Hypothesis: The expansion factors κl and rotation phases ηl satisfy

gh = min
1≤l≤Lh

(1 − e−κl) > 0 , ge = min
1≤l,k≤Le

∣

∣1 − eı(ηl+ηk)
∣

∣ > 0 .

In order to develop the perturbation theory, some further notations are needed:

CMT E
n (λ)M−1 C∗ =

(

AE
n (λ) BE

n (λ)

BE
n (λ) AE

n (λ)

)

=

(

A + λan B + λbn

B + λbn A + λan

)

+ O(λ2) .

Comparing with (49), one checks that

A =

(

S cosh(κ) 0
0 eıη

)

, B =

(

S sinh(κ) 0
0 0

)

, A ± B =

(

e±κ 0
0 eıη

)

,

and

an =

(

A
B

)t

C Pn C∗

(

1
0

)

, bn =

(

A
B

)t

C Pn C∗

(

0
1

)

.

Note that both A and B commute with both Ph and Pe.
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According to Section 4.1, the averaged Lyapunov exponent and IDS at a real energy E for
the λ-dependent random operators HN(λ) are given by

γλ(E) + ı πNλ(E) = lim
N→∞

1

N L

N
∑

n=1

∫ E

−∞

de ∂e E log
(

det
(

Ae
n(λ) + Be

n(λ) (Ue
n−1(λ))∗

) )

.

Let us expand the integrand

log
(

det
(

AE
n (λ) + BE

n (λ) (UE
n−1(λ))∗

) )

= log
(

det
(

AE
n (λ) + BE

n (λ) Ph

) )

+ Jn(λ) , (50)

where

Jn(λ) = Tr
(

log
(

1 + (AE
n (λ) + BE

n (λ) Ph)
−1BE

n (λ) (UE
n−1(λ) − Ph)

∗
) )

, (51)

which is possible because AE
n (λ) + BE

n (λ) Ph = A+B +O(λ) is invertible for λ sufficiently small.
Note that only Jn(λ) depends on UE

n−1, while the first contribution gives an contribution to IDS
and Lyapunov exponent which can be readily calculated, similar as in (44). Hence we need to
focus on the control of Birkhoff averages of Jn(λ). For this purpose, one would first like to expand
the logarithm in (51). As BE

n (λ) = BPh +O(λ), one therefore has to show that PhU
E
n (λ)−Ph is

small in norm. This means that the hyperbolic part of the dynamics (at λ = 0) alines PhU
E
n (λ)

deterministically with Ph up to small corrections due to the random perturbation. The following
lemma is a strengthening of prior results [SB] on this dynamical separation of hyperbolic and
elliptic channels.

Lemma 7 Let UE
0 = 1 (choice of initial condition). Then there exist positive constants c1, c2

such that for λ <
g2

h

4c1c2
and all n ≥ 1, one has

‖PhU
E
n (λ) − Ph ‖ ≤ 2 c1 λ

gh
.

Proof. For sake of notational simplicity, let P denote Ph within this proof. Let U be a symmetric
unitary and set U ′ = CMT E

n (λ)M−1C∗ · U . We will show that uniformly in n holds

‖PU ′ − P ‖ ≤ (1 − gh) ‖PU − P ‖ + c1 λ + c2 ‖PU − P ‖2 . (52)

An elementary dynamical argument then allows to conclude the proof (the constants c1 and c2

are then the same as in the statement of the lemma). In order to prove (52), let us first note
that λ 7→ CMT E

n (λ)M−1C∗ · U is an analytic path of unitaries. Hence the eigenvalues vary
analytically in λ [Kat]. Therefore U ′ = CRC∗ · U + R1 where R1 depends on U and T E

n (λ), but
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one has the norm bound ‖R1‖ ≤ c1λ uniformly in n and U (because of the uniform bounds on
the norms of Pn and the error terms in (49)). Therefore it is sufficient to show (52) for λ = 0.

By definition of the Möbius action, U ′ = (AU + B)(BU + A)−1 so that

PU ′ = P
(

A(PU − P ) + (A + B)
)

( A + B)−1
(

1 + B (PU − P ) ( A + B)−1
)−1

.

Now one can expand the last inverse in (PU − P ) to first order, with an error term bounded by
‖PU − P‖2. Then multiplying out all the remaining factors shows that

PU ′ − P = P (A − B) (PU − P ) (A + B)−1 + R2 , (53)

with an error term that satisfies ‖R2‖ ≤ c2 ‖PU −P‖2. Now ‖(A+B)−1‖ = 1 and ‖P (A−B)‖ =
max1≤l≤Lh

e−κl = 1 − gh which implies (52) for λ = 0. 2

Now it is possible to expand the logarithm in (51) because BE
n (λ)Pe = O(λ) so that Lemma 7

implies BE
n (λ)(UE

n−1(λ) − Ph)
∗ = O(λ) (here still all error terms are norm bounded). Hence

Jn(λ) = Tr
(

(AE
n (λ) + BE

n (λ) Ph)
−1BE

n (λ) (UE
n−1(λ) − Ph)

∗
)

+ O
(Lλ2

g2
h

)

,

where the L comes from carrying out the trace after having applied the norm bound. Expanding
AE

n (λ) and BE
n (λ), using the commutativity of A and B with Ph and Pe and invoking Lemma 7

in order to show PhU
E
n (λ)Pe = O(λ/gh) now implies

Jn(λ) = Tr
(

(A + B)−1
(

(PhU
E
n−1(λ)∗Ph − Ph) + λ bn PeU

E
n−1(λ)∗Pe

)

)

+ O
(Lλ2

g2
h

)

.

Setting

Ih(N) = E
1

N L

N−1
∑

n=0

(PhU
E
n (λ)Ph − Ph) , Ie(N) = E

1

N L

N−1
∑

n=0

Pe UE
n (λ)Pe ,

one has

E
1

N L

N
∑

n=1

Jn(λ) = Tr
(

(A + B)−1Ih(N)∗
)

+ λ Tr
(

(A + B)−1Eσ(bσ) Ie(N)∗
)

+ O
(λ2

g2
h

)

.

In order to calculate and bound the two traces, we will use the Hilbert-Schmidt spaces Hh

and He of complex matrices respectively of size Lh × Lh and Le × Le, furnished with the scalar
product 〈C|D〉2 = Tr(C∗D). The corresponding norms are ‖C‖2 = Tr(C∗C)

1

2 . They satisfy
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norm the inequality ‖C‖2 ≤
√

L ‖C‖ w.r.t. to the operator norm (where one may, of course,
also use respectively Lh and Le instead of L). For a L×L matrix C, we will identify PhCPh and
PeCPe with vectors in respectively Hh and He. Let us first focus on the second trace in the last
expression. The Cauchy-Schwarz inequality implies

Tr
(

(A + B)−1 Eσ(bσ) Ie(N)∗
)

≤
√

L ‖Pe(A + B)−1 Eσ(bσ)Pe‖ ‖Ie(N)‖2 .

As the operator norm appearing on the r.h.s. is bounded, the following lemma shows that this
trace is of order O(λ/

√
L) and hence does not contribute to leading order.

Lemma 8 There exist positive constants c1 and c2 such that

‖Ie(N)‖2 ≤ 1

ge

√
L

(

c1 λ + c2
1

N

)

.

Proof. This is a matrix version of the oscillatory sum argument in [PF, SB]. First note that for
each summand in Ie(N), one has Pe UE

n (λ)Pe = eıηPe UE
n−1(λ)Pee

ıη + O(λ). Thus

Ie(N) = eıη Ie(N) eıη + R1 + R2 ,

with an average error term R1 satisfying ‖R1‖ ≤ c1 λ/L and boundary terms R2 satisfying
‖R2‖ ≤ c2/(NL). Now let us define the super-operator Dη : He → He by Dη(C) = eıηCeıη. This
operator is diagonal and the hypothesis ge > 0 implies that (1 − Dη)

−1 exists and its norm is
bounded by 1/ge. As Ie(N) = (1−Dη)

−1(R1+R2), it follows that ‖Ie(N)‖2 ≤ (‖R1‖2+‖R2‖2)/ge

which leads to the desired bound. 2

A similar argument allows to calculate the remaining trace.

Lemma 9 One has

Tr
(

(A + B)−1Ih(N)∗
)

= 2 λ <e Tr
(

(e2κ − 1)−1Ph Eσ(aσ + bσ) Ph

)

+ O
(

λ2

g3
h

,
1

gh N

)

.

Proof. One first has to refine (53) and include the O(λ) contribution. Invoking Lemma 7 at
several reprises, some lengthy but straightforward algebra shows

PhU
E
n (λ)Ph−Ph = S e−κ (PhU

E
n−1(λ)Ph−Ph) e−κ St + 2 λ <e Ph Eσ(aσ +bσ) Ph e−κ St + L R1 ,

with ‖R1‖ ≤ c1 λ2/(Lg2
h) and the formula is understood as identity for operators on Hh. Now

define the super-operator Dκ : Hh → Hh by Dκ(C) = Se−κCe−κSt. One directly checks ‖(1 −
Dκ)

−1‖ ≤ 1/gh. As above,

Ih(N) = (1 − Dκ)
−1

(2 λ

L
<e Ph Eσ(aσ + bσ) Ph e−κ St + R1 + R2

)

,
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where ‖R2‖ ≤ c2/(NL). Replacing this into the trace and bounding the error terms by the
Cauchy-Schwarz inequality just as before Lemma 8 allows to bound the error terms. The leading
order contribution can be calculated using the identity

St e−κ (1 − D∗
κ)

−1(S e−κ) = (e2κ − 1)−1 .

This completes the proof. 2

Replacing Lemma 9, it then follows that

γλ(E) + ı πNλ(E) = Eσ
1

L

∫ E

−∞

de ∂e log
(

det
(

Ae
σ(λ) + Be

σ(λ) Ph

) )

(54)

+
2 λ

L
<e Tr

(

(e2κ − 1)−1Ph Eσ(aσ + bσ) Ph

)

+ O
(

λ2

ge
,

λ2

g3
h

)

.

As this holds also for the translation invariant operator with one fixed σ at every site n (which
has non-random independent entries), one deduces

γλ(E) + ı πNλ(E) = Eσ γλ,σ(E) + ı π Eσ Nλ,σ(E) + O
(

λ2

ge
,

λ2

g3
h

)

,

where γλ,σ(E) and Nλ,σ(E) are averaged Lyapunov exponent and IDS of the translation invariant
operator (as already described in the introduction). This therefore proves Theorem 2. Expanding
the logarithm in (54), some straightforward algebra leads to more explicit perturbative formulas
for γλ(E) and Nλ(E) in terms of Eσ(Pσ). Let us note that the contribution of Lemma 9 is real
and hence only contributes to γλ(E). The lowest order contribution to Nλ(E) is given by the
first term in (50) and one can check that it is only the contribution of E(Pσ) which changes the
rotation phases of the elliptic channels of R.
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