MATEMATNYKN BECHUK UDC 512.64
46 (1994), 41-50 OPUTMHAJTHN HAYYHU DA

research paper

DETERMINANTAL REPRESENTATION OF
WEIGHTED MOORE-PENROSE INVERSE

Predrag Stanimirovié¢ and Miomir Stankovié

Abstract. In this paper we introduce determinantal representation of weighted Moore-
Penrose inverse of a rectangular matrix.

We generalize concept of generalized algebraic complement, introduced by Moore, Arghiri-
ade, Dragomir and Gabriel. This extension is denoted as weighted generalized algebraic comple-
ment.

Moreover, we derive an explicit determinantal representation for the weighted least-squares
minimum norm solution of a linear system and prove that this solution lies in the convex hull of
the solutions to the square subsystems of the original system.

1. Introduction

Let C™ be the n-dimensional complex vector space, C™*" the set of m x n
complex matrices, and C**" = {X € C™*" : rank(X) = r}. We suppose that
A € C"*™ unless indicated otherwise. The adjungate matrix of a square matrix B
will be denoted as adj(B), and its determinant as |B|. Conjugate, transponsed and
conjugate-transponsed matrix of A will be denoted as A, AT and A* respectively.

Submatrix of A containing rows aq,...,0; and columns fBy,..., 05 is denoted as
A [Oﬂéll g:] . Also, minor of a rectangular matrix A € C™*" containing rows
Qai, ... o and columns fy,... , B is denoted as A (%11 %:) an its algebraic com-

plement is defined as
. A1 .. Qp—1 i« +1 ... Qg _(_ ~+- a1 ... Op—1 Ap41 ... Ot
Aij (51 5:_1 j ﬁ:+1 gt) =(-1)""A (ﬁl v Bac1 Bat1 - gt) -
For any A € C™*", z € C™, je {l,...,n}, A(j — =) denotes the

matrix obtained by replacing the jth column of A with z, and |A|(j — z) =
|[A(G = z)].

Penrose [16] has shown the existence and uniqueness of a solution X € C™*™
to the equations

(1) AXA=A, (2) XAX =X, (3) (AX)*=AX, (4) (XA*=XA
AMS Subject Classification (1991): 15A09, 15A60, 65F35
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For a subset S of the set {1,2,3,4} the set of matrices G obeying the conditions
represented in S will be denoted by A{S}. A matrix G in A{S} is called an S-
inverse of A and is denoted by A(S). In particular for any A € C™*" the set
A{1,2,3,4} consists of a single element, the Moore-Penrose inverse of A, denoted
by At [2], [17].

In the following theorem general forms of the sets A{S} are described.

THEOREM 1.1 [18] If A € C**" has a full-rank factorization A= PQ, P €
C", Qe C", Wy € C™" and Wy € C™*™ are some matrices such that
rank(QW;) = rank(W, P) = rank(A), then

At = QP! = Q*(QQ") '(P*P)'P"
A{1,2} = (W1 (QW1) " (WoP) ' Wa}
A{1,2,3} = {W(QW1) " (P*P)"'P*}
A{1,2,4} = {Q*(QQ") ' (W2P) 'Wa}.

Concept of determinant i.e. algebraic complement is intimately related to
the concept of generalized inversion of matrices. Determinantal representation of
Moore-Penrose inverse is studied in [1], [3], [7], [8], [9], [15]- The main result is
contained in the following theorem.

THEOREM 1.2 Element lying on the i-row and j-column of the Moore-Penrose
inverse of a given matriz A € C"*™ can be represented in terms of determinants
of square matrices, as follows:

> A(GE g ) Ay (5 i)
A(T,r) 1<B1<...<Br<n
a("l:"r) — ji — 1< <...<ar<m _ ’ (11<SZ§TL )
i 1Al > A o)A o) ==

1<4:1<...<8-<n
1<m<.<y»<m

The numerator of this expression represents generalized algebraic complement
of the order r corresponding to a;;, while the denominator expresses determinantal
representation of the norm of A.

Weighted Moore-Penrose inverse is investaged in [2], [6], [12]. The main results
are contained in the following three theorems.

THEOREM 1.3 Let positive-definite (and hermitian) matrices M € C™*™ and
N € C™" be given. For any matriz A € C™*" there exists a unique solution
X = AL.’.N € A{1,2} satisfying
(5) (MAX)* = MAX (6) (XAN)* = XAN.

Similarly, we use the following notations:

A;rv[., N represents unique solution of the equations (1), (2), and
(7) (MAX)* = MAX (8) (NXA)* = NX 4;
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Al M.Ne 18 unique solution of the equations (1), (2), and
9) (AXM)* = AXM (10) (NXA)*=NXA,

while Al M,en 15 unique solution of the equations (1), (2), and
(11) (AXM)* = AXM (12) (XAN)* = XAN.

THEOREM 1.4 [6] An equivalent of condition (5) is (AXM')* = AXM™,
while the condition (6) can be expressed in the form (N 'XA)* = N 1XA.

THEOREM 1.5 [6] If A = PQ is a full rank factorization of A, then:
Alfeon = (@N)*(Q@QN)*)"H((MP)*P)~H(MP)*.

Using these notions, Theorem 1.4. and Theorem 1.5. the following corollary
can be proved.

= AiM_l,N—lc'

= At

COROLLARY 1.1 a) A, .\ = Al e N-1a

oM~—1 eN
b) Alye ve = @QN"H*(QQN)*)"H((MP)*P)~ (MP)* = Apre.on-1;

c) AiM,N. = QN "HY*Q@QN"H)*)T'(M~'P)*P)" (M~'P)* = Apr-14en-1;
d) Ay oy = @QN)*(Q@QN)*)~ (M~ P)*P)~ (M~' P)*.

One of indices of the form oM~ e NI=1; Al-1e e N[l e[~ Nl-e;
M[~e NI=Ue  where M~ denotes M~" or M and NI~ denotes N~' or N we
formally denote as (M, N).

In this paper weighted Moore-Penrose inverse of a rectangular matrix is pre-
sented in terms of her own square minors and square minors of matrix product
MAN. This determinantal representation is developed using two different meth-
ods. In the first method we develop the determinantal representation of {1,2}
inverse and weighted Moore-penrose inverse is treated as an {1, 2} inverse. In the
second access we generalize concept of generalized algebraic complement.

Also, we introduce and investage determinantal representation of weighted
least-squares minimum norm solution of a linear system.

2. Weighted Moore-Penrose inverse as an {1, 2} inverse

In the following two Theorems we develop determinantal representation of
class of {1, 2} inverses, and derive determinantal representation of weighted Moore-
Penrose inverse, which is treated as an {1, 2} inverse. The determinantal represen-
tation of the class of {1,2} inverses is a significant result in itself.

THEOREM 2.1 If A = PQ is a full rank factorization of A € CI'*" and
Wy € C™*", Wy € C™™ are some matrices such that rank(QW;) = rank(W,P) =

rank(W;Ws) = rank(A), then an element aﬁj*z’ e AN s given by
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Wy (5 Y (5 )
1</31<§;</3T<n( 1W2) B1 e fo B )T B1 i B
a(1,2) _ 1< <...<a.<m
11 - Y1 .- Vr Y1 .- Vr
N 2 Ay e )T (g )
1<61<...<86-<n e Or e Or
1<m<...<y»<m

Proof. Starting from A(M?) = W, (QW,)~ ' (WaP)~'Ws, it is easy to see that
agj.’” is equal to
Wi (ghg )@ (i) T owE (i) P (i)

a1<...<ap

[d

Zﬁ1<---<ﬂr
k=t S oQ(aui)ywi(ase) X WECRI) PRI

I 5 .. 8
51<..<bp 1 1 "/ i<y < <yn<r
-
T (@1 «n J e @ T 1 ...k... r
s (5 mins) [ (e e ()]
B1<...<Bp k=1
a1<...<ap

1<61<...<8p <
1<71<-.<yr<m

Using the Cauchy-Binet formula, we can show
T .
. ar .. J o Qp . 1 .. k... 7 _ o1 g ar
kz::lpfk ( 1ok T )Q’“ (61 i .A.ﬂr) = Aji (ﬂl - ﬁr)
and the proof is completed. m

THEOREM 2.2 Let M € C™™_, N € C™*" be positive definite, and sup-
pose that A = PQ is a full rank factorization of A, such that rank(P*MP) =

rank(QNQ*) = rank(M AN) = r. Element of the weighted Moore-Penrose inverse
A;‘VI.’. N Wying on the ith row and jth column, can be represented in terms of square
minors as follows:
————f a1 ... ] . Qp o1 .. 7o an
1§61<§:<6r§n (MAN)(Bl e b BT)A“ (51 SRS 5r)
(af ) _ 1<ai<...<ar<m
Me,e N/t — A Y1 - r TMAN) Y1 - Yr
ren e n Mo L5 )JOIAN (5 )
1<y <y <m

Proof. According to Theorem 1.1 and Theorem 1.5, weighted Moore-Penrose
inverse of a matrix A can be obtained as an element from the class of A{1,2}
inverses satisfying relations Wy, = (QN)*, W, = (MP)*. Applying these sub-
stitutions in formula which represent determinantal representation of the class of
{1, 2} inverses, the proof can be elementary obtained. m

From Theorem 2.2., and Corollary 1.1. it follows:

COROLLARY 2.1 Let M € C™*™, N € C™" be positive definite and A =
PQ is a full rank factorization of A. Then
— (a1 ... J ... A Q1 e J o Qg
1551<§:<Br5n (M(M’N))(Bl e 5r> “(B1 e Br)
_ 1I<ai<..<ar<m

(AL(M,N))ij = > YACES %)W(% Y- ,
1<y <o <n N0t 80 )T,

1<y <...<¥n <1
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where the expression w(M,N) represents a matriz such that rank(w(M,N)) =
rank(A) and

MAN, p(M,N)= Me, o N

(M, N) = MAN™1, p(M,N)=Me Ne
’ M-1AN, p(M,N) =eM,eN
M~1AN-!, o(M,N)=eM,Ne

3. Weighted generalized algebraic complement
and weighted matrix norm

In this section we define weighted generalized algebraic complement and weight-
ed norm of rectangular complex matrices, and using these notions we find the known
determinantal representation of the weighted Moore-Penrose inverse.

DEFINITION 3.1 Weighted norm of A € C;**", denoted as ||A||;(M’N) is equal
to
| (MP)"P|[Q(QN)" |

while the weighted adjoint matrix of A, denoted as adj (AS\T/I:). N), is
(QN)* adj(Q(QN)*) - adj((M P)* P)(M P)*.

THEOREM 3.1 Weighted norm of A has the following determinantal represen-
tation

Ml = 5 4 (3 ) @on Ny (27).
1251 <) Zn

Proof. Suppose that (M, N) = Me,eN and A = P(Q) is a full rank factoriza-
tion of A.

1Al s s on = | (MP)*P||Q(QN)* |

= > P(if:::";)(MP)("f:::";)] > e(in)@ew ()
1< g

= > ARur)MAN)(Rok). =

15’i1<.4.<’i7~S7'

1<51<...<jr <5

THEOREM 3.2 Element lying on ith row and jth column of the weighted adjoint
matriz of A, denoted as adj (AS\E’:). N) can be represented in terms of square
oN )i

minors as follows:

. (1,7) _ T a7 Ay [ @1 e J o an e J e Qp
adJ (AGD(M’N))ij - 1<a1<§:<ar<m (W(M, N)) (51 i Br) Ajz (51 o 5r) .
1<B1<...<Br X0
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Proof. Let o(M,N) = Me eN and consider a full rank factorization A = P(Q).
Element on ¢th row and jth column of (QN)* adj(Q(QN)*) is equal to

[d

> QN5 (adi(QQN)*))x;

If ¢ is contained in combination ji,...,j-_1, then

T

S DN L@N) (4 ) =

r
k=1

If the set {j1,...,jr—1} does not contain i, then ¢ = j, and the system is de-
noted as ji,...,Jp—1; Jp+is---,Jr- Now we get the following representation for

r

> (QN)5, (adj(Q(QN)*));j:

k=1
> (17 Q (3 it It it ) (C0P@N) (S )
J1<<ip—1<ip41<...<ir

— Z (QN)(Jll e i J:)Qﬂ(gll e i ]:)

J1<...<i<...<jr

Similarly, element on ith row and jth column of adj((M P)*P)(M P)*) is equal to

> wE (L) e (L),

1< <...<ar.<m ! J "

Now, element lying on the ith row an jth column of weighted adjoint matriz,

denoted as ad] (Ag&’:’). N)ij is equal to

k=1 |1<B1<...<Br<n

Zl > W(,‘i}:::i:::g:)%(;iii"-'iiiT)}

x [ > WP ) Py ---a:)]

1<a;<...<ap<m

TAMANY (21 - F —-ar Y| [N P, (1 i ier s TA] e J . O 1o r
=| X aam (i) [Zm(} ......... s o) Qui () B)]
lay<...<ap<m

1<B1<...<Br<n

B
hS
3
PN
W R
i
e
wR
ki
—
B
f
S
—
w R
[l
ws
w R
k]
—
|

1<a;<...<ap<m
1<B1<...<Br<n

THEOREM 3.3 Element on the ith row and jth column of the weighted Moore-
Penrose inverse is equal to

seAEm)
(A(T,T) )ij = adi(Agn, n))ii
¢(M,N)/% NANT vy
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Proof. Follows from A}L\,[.v.N = (QN)*(Q(QN)*)~L-((MP)*P)~1(MP)* and
Corollary 1.1. m

Theorem 3.3 is an equivalent of Theorem 2.2.

4. Representation of the weighted Moore-Penrose solution
of a system of linear equations

In [5] an explicit determinanatal representation of the Moore-Penrose solution
of an arbitrary system of linear equations is derived. Using this representation it
is proved that the Moore-Penrose solution is a convex combination of all uniquely
solvable partial subsystems. In [4] an equivalent determinantal representation for
the least-squares solution of an overdetermined linear system is derived. From
this fromula it is proved that the least-squares solution lies in the convex hull of
the solutions to the square subsystems of the original system. Also, in [4] this
result is extended, and it is proved that this geometric property holds for a more
general class of problems which includes the weighted least-squares and I, norm
ninimization problems.

In the following theorem we derive determinantal representation of the weighted
Moore-Penrose solution of a system of linear equations.

THEOREM 4.1 The ith component of the weighted Moore-Penrose solution
wL(M’N) = AL(M,N)z of a linear system Az =z, AeC™" zeC", 2e€C™
can be represented in the following determinant representation:

e /P1 e eee e Pr P1 «ov vev ooi Ppe .
reanEeqan O (g T ) AC T )
1<p1<...<pr<m

t .
(@g(ar,m))i = TAT o, )

where pz denotes the vector {zp,,... ,2p, }.

Proof. If o(M,N) = Me,eN and A = BC is a full-rank factorization of A,
then

Theen = (CN)*(C(CN)*)"H((MB)*B)~"Y(MB)*z = Cl;, un Blra an?-

In this manner, the starting system splits up into two equivalent systems.
First we calculate yL.’.N = Bljeen? ;. Yy € C". In view of B}L\,I.’.N =
((MB)*B)™" (MB)*, we get ((MB)*B)yL.’.N = (MB)*z. The ith component

of yL.i.N is

t _ |((MB)*B)(i = (MB)*z)| _ |(MB)*-B(i - 2)| -
(yM-,oN)l_ [(MB)*B] = [(MB)*B| , 1<i<r
Applying Cauchy-Binet Theorem, we obtain
W(?l soe Pr )B(Pl wes Pr )(i—),,z)
(Whre,an)i = ZATIED e 1<i<r

|(MB)*B| ’

Also, using x}L\,I.,.N = CJTV[.’.NyL.,.N = (C’N)*(C’(C’N)*)*1‘1/;'\,1.,.1\[7 it is easy to
see that
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1 _ 1 u * . * T
x R verresvarait CN)*adj(C(CN)*)); .o .
(@heeons = Ty - ( 2OV adi(CCM) iyl an
Element on the ith row and jth column of the matrix (CN)* adj(C(CN)*) is (see
Theorem 3.2.):

(©NyadiceN )=y @ (L) (L.

1<q1<...<q-<n

Now (w;rv[.’.N)i is equal to

> v @™ (grina)oa(anin) X B (R ) BRI (6 p2)

k=1q1<...<gr pr1<...<ppr
‘C(C’N)* (MB)*B
TN [P e e e . s 1o ” P
L EAm ) S (6 L) B ()
_ 1§:11<.'.-.-<::§m B
||A||TM-,-N

By using Laplace’s development on the kth column of the square matrix
B (%P (k= p2), we get

('Z.;r\/lo,oN)i =

TATTRTY (Pl o e e P | = r 1o D
S OAN (555 [ S 5 0 (00100 B ()
1<q1<...<¢-<n =1 k=1

1<p1<...<pr<m

1Al 3re o
- r
> (MAN) (g7 0m) Xz Ap (o i )
1<q1<...<g-<n =1
1<p1<...<pr <M

[EIP
TAL ANTY [Pl cee eee ann r pP1 ... Pr .
L AN (i i) AR ) 202
ST
1§§f<...<§r§m .

1Al %0,0n

As we mentioned above, in [4] it is showed that the weighted least-squares solu-
tion lies in the convex hull of the solutions to the square subsystems of the original
system. But, this result includes positive definite diagonal weighted matrices. In
the following theorem we generalize this result and prove that arbitrary weighted
Moore-Penrose solution of a linear system lies in the convez hull of the solutions
to the square subsystems of the original system.

THEOREM 4.2 The weighted Moore-Penrose solution a:}tvf.’. ~ of system of lin-
ear equations Ax = z is the conver combination

xL.,.N = E Bp,yqx(p’q)

1<q1<...<¢»<n
1<p1<...<p-<m



Determinantal representation of weighted Moore-Penrose inverse 49

of the solutions of all uniquely solvable r-dimensional subsytems canonically imbed-
ded into C™, where
B= > (MB)(F1%)B(Y%);
1<ar<...<a.<m
TAINTY 1 .. 7 1 ... r .
7= Z (CN)(m ...BT)B(Bl ...ﬁr)7

1<81<...<Br<n
]_—
Bp = E(MB)(”f TE)BM IR
l——/1..r 1.7
’Yq = ;(CN) (q1 qr) C (q1 qr) .

Proof. According to Theorem 4.1. (z1,, on)i has the following determinantal
representation

1<q1<...<qr<n W( ( ......... ) (Z: Z:) (1= p2)
1<p1<...<pp<m
15a1<;<ar<mP("11 = e (MP)( ] [1<ﬁ1< e (511 - ;T)W(;; :ﬁ:)]
> FBCBe ) oM (i) o (d i) X
q1<...<qr

r1<...<pr

In the case A (f; 5:) #0 let (P9 be the canonical imbedding of the solution

of A [Zi 2:] z = pz into the m-dimensional space. This means that, according to

Cramer’s rule, (79 possesses the components
P1 ... Pr .
1_(1),11) _ g . qr)(z_n’z)
i - A(pl I"l‘)
q1 ... qr
for ¢ contained in combination 1 < ¢; < ... < ¢, <n, and z;

- Pr
- qr

(P9 _ () otherwise. In

the singular case A < ) = 0 we define (% to be the zero vector. Now it is

evident that

1 — P,
The,oN = > ﬂp%x( 9,
1<¢:1<...<¢gr<n
1<p1<...<p-<m

Since
Bp =1, > Vg =1

1<p1<...<pr<m 1<q1 <...<qr<n

the proof is completed. m
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