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The Shape of a Typical Boxed Plane Partition

Henry Cohn, Michael Larsen, and James Propp

ABSTRACT. Using a calculus of variations approach, we determine the shape of
a typical plane partition in a large box (i.e., a plane partition chosen at random
according to the uniform distribution on all plane partitions whose solid Young
diagrams fit inside the box). Equivalently, we describe the distribution of the
three different orientations of lozenges in a random lozenge tiling of a large
hexagon. We prove a generalization of the classical formula of MacMahon for
the number of plane partitions in a box; for each of the possible ways in which
the tilings of a region can behave when restricted to certain lines, our formula
tells the number of tilings that behave in that way. When we take a suitable
limit, this formula gives us a functional which we must maximize to determine
the asymptotic behavior of a plane partition in a box. Once the variational
problem has been set up, we analyze it using a modification of the methods
employed by Logan and Shepp and by Vershik and Kerov in their studies of
random Young tableaux.
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1. Introduction

In this paper we will show that almost all plane partitions that are constrained
to lie within an a x b X ¢ box have a certain approximate shape, if a, b, and c are
large. Moreover, this limiting shape depends only on the mutual ratios of a, b, and
c. Our proof will make use of the equivalence between such plane partitions and
tilings of hexagons by rhombuses.

Recall that plane partitions are a two-dimensional generalization of ordinary
partitions. A plane partition 7 is a collection of non-negative integers 7, indexed
by ordered pairs of non-negative integers x and y, such that only finitely many
of the integers 7, , are non-zero, and for all z and y we have 7,41, < 7, and
Tey+l < Tey. A more symmetrical way of looking at a plane partition is to
examine the union of the unit cubes [i,7 + 1] x [4, j + 1] x [k, k + 1] with 4, j, and k
non-negative integers satisfying 0 < k < m; ;. This region is called the solid Young
diagram associated with the plane partition, and its volume is the sum of the m, ,’s.

We say that a plane partition 7 fits within an a x b X ¢ box if its solid Young
diagram fits inside the rectangular box [0, a] x [0, b] X [0, ¢], or equivalently, if 7 , < ¢
for all z and y, and 7;, = 0 whenever x > a or y > b. We call such a plane
partition a bozxed plane partition. Plane partitions in an a X b X ¢ box are in
one-to-one correspondence with tilings of an equi-angular hexagon of side lengths
a,b, c,a,b,c by rhombuses whose sides have length 1 and whose angles measure /3
and 27 /3. It is not hard to write down a bijection between the plane partitions and
the tilings, but the correspondence is best understood informally, as follows. The
faces of the unit cubes that constitute the solid Young diagram are unit squares.
Imagine now that we augment the solid Young diagram by adjoining the three
“lower walls” of the a x b x ¢ box that contains it (namely {0} x [0,b] x [0,¢],
[0,a] x {0} x [0,c], and [0,a] x [0,b] x {0}); imagine as well that each of these
walls is divided into unit squares. If we look at this augmented Young diagram
from a point on the line x = y = z, certain of the unit squares are visible (that
is, unobstructed by cubes). These unit squares form a surface whose boundary
is the non-planar hexagon whose vertices are the points (a,0,c), (0,0,c), (0,b,c),
(0,b,0), (a,b,0), (a,0,0), and (a,0,c), respectively. Moreover, these same unit
squares, projected onto the plane = + y + z = 0 and scaled, become rhombuses
which tile the aforementioned planar hexagon. For example, the plane partition m
in a 2 x 2 x 2 box defined by mp o = mp,1 = m1,0 = 1 and 7,1 = 0 corresponds to the
tiling in Figure 1, where the points (2,0, 0), (0,2,0), and (0,0,2) are at the lower
left, extreme right, and upper left corners of the hexagon. (The shading is meant
as an aid for three-dimensional visualization, and is not necessary mathematically.
The unshaded rhombuses represent part of the walls.)

We will use the term a, b, ¢ hexagon to refer to an equi-angular hexagon of side
lengths a,b,c,a,b,c (in clockwise order, with the horizontal sides having length
b), and the term lozenge to refer to a unit rhombus with angles of 7/3 and 27/3.
We will focus, without loss of generality, on those lozenges whose major axes are
vertical, which we call vertical lozenges. Although our method in this article is
to reduce facts about plane partitions to facts about tilings, one can also go in
the reverse direction. For example, one can see from the three-dimensional picture
that in every lozenge tiling of an a, b, ¢ hexagon, the number of vertical lozenges
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FIGURE 1. The tiling corresponding to a plane partition.

is exactly ac (with similar formulas for the other two orientations of lozenge); see
[DT] for further discussion.
A classical formula of MacMahon [M] asserts that there are exactly
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plane partitions that fit in an a x b x ¢ box, or (equivalently) lozenge tilings of an
a,b, c hexagon. In Theorem 2.2 of this article, we give a generalization that counts
lozenge tilings with prescribed behavior on a given horizontal line.

Using Theorem 2.2, we will determine the shape of a typical plane partition in an
axbxcbox (Theorem 1.2). Specifically, that theorem implies that if a, b, ¢ are large,
then the solid Young diagram of a random plane partition in an axbx ¢ box is almost
certain to differ from a particular, “typical” shape by an amount that is negligible
compared to abc (the total volume of the box). Equivalently, the visible squares in
the augmented Young diagram of the random boxed plane partition form a surface
whose maximum deviation from a particular, typical surface is almost certain to be
o(min(a, b, c)). Moreover, scaling a, b, ¢ by some factor causes the typical shape of
this bounding surface to scale by the same factor.

Before we say what the true state of affairs is, we invite the reader to come
up with a guess for what this typical shape should be. One natural way to arrive
at a guess is to consider the analogous problem for ordinary (rather than plane)
partitions. If one considers all ordinary partitions that fit inside an a x b rectangle
(in the sense that their Young diagrams fit inside [0, a] x [0, b]), then it is not hard
to show that the typical boundary of the diagram is the line z/a + y/b = 1. That
is, almost all such partitions have roughly triangular Young diagrams. (One way to
prove this is to apply Stirling’s formula to binomial coefficients and employ direct
counting. Another is to use probabilistic methods, aided by a verification that if we
look at the boundary of the Young diagram of the partition as a lattice path, then
the directions of different steps in the path are negatively correlated.) It therefore
might seem plausible that the typical bounding surface for plane partitions would
be a plane (except where it coincided with the sides of the box), as when a box
is tilted on its corner and half-filled with fluid. However, Theorem 1.1 shows that
that is in fact not the case.

To see what a typical boxed plane partition does look like, see Figure 2. This
tiling was generated using the methods of [PW] and is truly random, to the extent
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FIGURE 2. A random lozenge tiling of a 32,32, 32 hexagon.

that pseudo-random number generators can be trusted. Notice that near the corners
of the hexagon, the lozenges are aligned with each other, while in the middle,
lozenges of different orientations are mixed together. If the bounding surface of
the Young diagram tended to be flat, then the central zone of mixed orientations
would be an inscribed hexagon, and the densities of the three orientations of tiles
would change discontinuously as one crossed into this central zone. In fact, what
one observes is that the central zone is roughly circular, and that the tile densities
vary continuously except near the midpoints of the sides of the original hexagon.

One can in theory use our results to obtain an explicit formula for the typical
shape of the bounding surface, in which one specifies the distance from a point P
on the surface to its image P’ under projection onto the x + y + z = 0 plane, as a
function of P’. However, the integral that turns up is quite messy (albeit evaluable
in closed form), with the result that the explicit formula is extremely lengthy and
unenlightening. Nevertheless, we can and do give a fairly simple formula for the
tilt of the tangent plane at P as a function of the projection P’, which would
allow one to reconstruct the surface itself. In view of the correspondence between
plane partitions and tilings, specifying the tilt of the tangent plane is equivalent
to specifying the local densities of the three different orientations of lozenges for
random tilings of an a, b, ¢ hexagon.

Our result on local densities has as a particular corollary the assertion that, in
an asymptotic sense, the zone of mixed orientation (defined as the region in which
all three orientations of lozenge occur with positive density) is precisely the interior
of the ellipse inscribed in the hexagon. This behavior is analogous to what has
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been proved concerning domino tilings of regions called Aztec diamonds (see [JPS]
and [CEP]). These are roughly square regions, and if one tiles them randomly with
dominos (1 x 2 rectangles), then the zone of mixed orientation tends in the limit
to the inscribed disk. However, the known results for Aztec diamonds are stronger
than the corresponding best known results for hexagons (see Conjecture 6.2 in
Section 6).

To state our main theorem, we begin by setting up normalized coordinates.
Suppose that we are dealing with an a, b, c hexagon, so that the side lengths are
a,b,c,a,b,cin clockwise order (with the sides of length b horizontal). We let a, b, c
tend to infinity together, in such a way that the three-term ratio a : b : ¢ (i.e.,
element of the projective plane P2(R)) converges to a : 3 : v for some fixed positive
numbers «, 8, v. Say a+ b+ ¢ = o(a+ S + ) for some scaling factor . Then we
choose re-scaled coordinates for the a, b, ¢ hexagon so that its sides are o' = a/o,
b' = b/o, and ¢ = ¢/o (which by the hypothesis of our main theorem will be
required to converge to «, 3, and 7y as a, b, and c get large). Note that a',0,c
in general are not integers. The origin of our coordinate system lies at the center
of the hexagon. Omne can check that the sides of the hexagon lie on the lines
y=L2r+V +),y=Ld+¢),y=L(2+a +V),y=L2 -V ),
y = %(—a’ —c), and y = @(—233 —a' — V'), and that the inscribed ellipse is
described by

3(a'+¢') 2% —2V/3(a' +20'+¢') (o' — ¢ )xy+((a' +20'+c') 2 —4a'c)y? = 3a'b'c/(a' +b'+¢').
Define E, g,(z,y) to be the polynomial
3afy(a+f+7) - (B(a+)’e® ~2v3(a+28+7) (@ —)ey+((a+26+7)* ~day)y?),

whose zero-set is the ellipse inscribed in the «, 3,7 hexagon. Also define Q4 5, (2, )
to be the polynomial

3/4 . . .
g <§y2 — 4a® + +aﬂ+ﬂ7—a7> :

which will be useful shortly.

There are six points at which the ellipse inscribed in the «, 8, hexagon meets
the boundary of the hexagon. The four that occur on sides of length a or v will be
called singular points, for reasons that will be clear shortly. (Recall that we have
already broken the underlying symmetry of the situation by agreeing to focus on
vertical lozenges.) The points of the hexagon that lie outside the inscribed ellipse
form six connected components. Let R; be the closure of the union of the two
components containing the leftmost and rightmost points of the hexagon, minus
the four singular points, and let Ry be the closure of the union of the other four
components, again minus the four singular points.

Finally, define the (normalized) coordinates of a vertical lozenge to be the (nor-
malized) coordinates of its center. Then the following theorem holds:

Theorem 1.1. Let U be the interior of a smooth simple closed curve contained
inside the a, 3,7 hexagon, with a, B,y > 0. In a random tiling of an a,b, ¢ hexagon,
as a,b,c = oo with a : b:c — a: B :, the expected number of vertical lozenges
whose normalized coordinates lie in U is ab+ bc + ac times

1
- // ,Pa,ﬁﬂ(x:y) dx dy + 0(1)7
Allu
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where A = (aff + By + ay)V/3/2 is the area of the a, 3,7 hevagon and

Ean@ﬂ(w:y)
0 if (z,y) € Ry, and
1 if (z,y) € R.

1
_ COt_1< Q117B77($7y) ) if Ea7ﬁ77($,y) > 0,
™

,Pa,ﬁ,’}’(xay) =

In fact, our proof will give an even stronger version of Theorem 1.1, in which
U is a horizontal line segment rather than an open set (and the double integral is
replaced by a single integral). Since we can derive the expected number of vertical
lozenges whose normalized coordinates lie in U by integrating over all horizontal
cross sections (provided that the error term is uniform for all cross sections, as
we will prove in Section 4), this variant of the claim implies the one stated above,
though it is not obviously implied by it. We have stated the result in terms of open
sets because that formulation seems more natural; the proof just happens to tell us
more.

The intuition behind Theorem 1.1 is that Py 3.4 (x,y) gives the density of vertical
lozenges in the normalized vicinity of (z,y); the factor of ab+ bc + ac arises simply
because there are that many lozenges in a tiling of an a, b, ¢ hexagon. One might be
tempted to go farther and think of P, g (x,y) as the asymptotic probability that
a random tiling of the a, b, ¢ hexagon will have a vertical lozenge at any particular
location in the normalized vicinity of (z,y) (see Conjecture 6.1 in Section 6). How-
ever, we cannot justify this interpretation rigorously, because it is conceivable that
there are small-scale fluctuations in the probabilities that disappear in the double
integral. (In Subsection 1.3 of [CEP], it is shown that the analogous probabilities
for random domino tilings do exhibit such fluctuations, although the fluctuations
disappear if one distinguishes between four classes of dominos, rather than just
horizontal and vertical dominos.)

The formula for P, g, is more natural than it might appear. Examination of
random tilings such as the one shown in Figure 2 leads one to conjecture that
the region in which all three orientations of lozenges occur with positive density is
(asymptotically) the interior of the ellipse inscribed in the hexagon, and the known
fact that an analogous claim holds for random domino tilings of Aztec diamonds
(see [CEP]) lends further support to this hypothesis. This leads one to predict that
Pa,s,y Will be 0 in Ry and 1 in R;, and strictly between 0 and 1 in the interior of
the ellipse. Comparison with the analogous theorem for domino tilings (Theorem 1
of [CEP]) suggests that within the inscribed ellipse, P, g,~(z,y) should be of the

form

1

- Cotfl Q(:I": y)

T Ean@ﬂ(w: y)
for some quadratic polynomial Q(z,y), and the only problem is actually finding
Q(z,y) in terms of «,[,v. A simple description of the polynomial Q(z,y) that
actually works is that its zero-set is the unique hyperbola whose asymptotes are
parallel to the non-horizontal sides of the hexagon and which goes through the

four points on the boundary of R; where the inscribed ellipse is tangent to the
hexagon. This determines Q(z,y) up to a constant factor, and that constant factor
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F1GURE 3. The height function corresponding to a tiling.

is determined (at least in theory—in practice the calculations would be cumber-
some) by requiring that the average of P, g ~(x,y) over the entire hexagon must
be ay/(aB + By + av).

An alternative way to phrase Theorem 1.1 is in terms of height functions, which
were introduced by Thurston in [Th] as a geometrical tool for understanding tilings
of regions by lozenges or dominos. A height function is a numerical representation
of an individual tiling of a specified region. In the case of lozenge tilings of a
hexagon, the vertices of the lozenges occur at points of a certain triangular lattice
that is independent of the particular tiling chosen, and the height function simply
associates a certain integer to each such vertex so as to describe the shape of the
plane partition that corresponds to the tiling. Given any lozenge tiling, one can
assign heights h(u) to the points w of the triangular lattice as follows. Give the
leftmost vertex of the hexagon height a + ¢. (We choose this height so that the
vertex of the bounding box farthest from the viewer, which is usually obscured from
view, will have height 0.) Suppose that v and v are adjacent lattice points, such
that the edge connecting them does not bisect a lozenge. If the edge from u to
v points directly to the right, set h(v) = h(u) + 1, and if it points up and to the
right, or down and to the right, set h(v) = h(u) — 1. (If it points left, change +1 to
—1 and vice versa.) If one traces around each lozenge in the tiling and follows this
rule, then every vertex is assigned a height. It is not hard to check that the heights
are well-defined, so there is a unique height function associated to the tiling. For
an example, see Figure 3. Conversely, every way of assigning integer heights to the
vertices of the triangular grid that assigns height a + ¢ to the leftmost vertex of the
hexagon and that satisfies the edge relation must be the height function associated
to some unique tiling. If one views the tiling as a three-dimensional picture of the
solid Young diagram of a plane partition, then the height function tells how far
above a reference plane (of the form = + y + z = constant) each vertex lies. The
values of the height function on the boundary of the hexagon are constrained, but
all the values in the interior genuinely depend on the tiling. (It should be mentioned
that height functions for lozenge tilings are implicit in the work of physicists Bl&te
and Hilhorst, in the context of the two-dimensional dimer model on a hexagonal
lattice; see [BH].)

When dealing with normalized coordinates, it is convenient to use a normalized
height function: if we scale the coordinates by dividing them by o (as described
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above), then we also divide the height function values by o. Also, we define the
average height function to be the average of the height functions associated with
all possible tilings. (Of course, it is not a height function itself.) We will show
that almost every height function closely approximates the average height function,
asymptotically:

Theorem 1.2. Fix o, 3,7 > 0. As a,b,c - oo witha : b:¢c — «a: [ :~, the
normalized average height function of the a, b, c hexagon converges uniformly to the
function Ha g, with the appropriate (piecewise linear) boundary conditions such

that o3 (1)
a8\ Y) _
ax =1 37)0476&’(337:[/)'

For fized € > 0, the probability that the normalized height function of a random
tiling will differ anywhere by more than ¢ from Mo g, is exponentially small in o2,

where 0 = (a+b+c¢)/(a+ B+ 7).

It is not hard to deduce Theorem 1.2 (with the exception of the claim made in
the last sentence) from Theorem 1.1. In particular, the differential equation simply
results from considering how the height changes as one crosses lozenges of each
orientation. We will give the proof in detail in Section 4.

Unfortunately, although one can recover an explicit formula for Hq g~ (2, y) from
the boundary values and the knowledge of 0Hq g, (2, y)/Ox, we cannot find any
simple formula for it. By contrast, Proposition 17 of [CEP] gives a comparatively
simple asymptotic formula for the average height function for domino tilings of an
Aztec diamond.

Our methods also apply to the case of random domino tilings of Aztec diamonds.
Formula (7) of Section 4 of [EKLP] is analogous to our Theorem 2.2, and can be
used in the same way. It turns out that the functional arrived at by applying the
methods of Section 3 of this paper to that formula is very similar to the one we will
find in Section 3. After a simple change of variables, one ends up with essentially
the same functional, but maximized over a slightly different class of functions. The
methods of Section 4 apply almost without change, and the methods of Section 5
can be adapted to prove Proposition 17 of [CEP]. This proof is shorter than the
one given in [CEP]. However, in [CEP], Proposition 17 comes as a corollary of a
much stronger result (Theorem 1), which the methods of this paper do not prove.

2. The Product Formula

In this section, we will prove a refinement of MacMahon’s formula, following
methods first used by Elkies et al. in [EKLP]. This refinement (Proposition 2.1) is
not strictly speaking new, since it is really nothing more than the Weyl dimension
formula for finite-dimensional representations of SL(n) (we say a few words more
about this connection below). However, we give our own proof of this result for two
reasons: first, to make this part of the proof self-contained; and second, to illustrate
an expeditious method of proof that has found applications elsewhere (see [JP] for
related formulas derived by the same method).

Proposition 2.1 is stated in terms of Gelfand patterns, so we must first explain
what Gelfand patterns are and what they have to do with lozenge tilings. It is
not hard to see that a lozenge tiling of a hexagon is determined by the locations
of its vertical lozenges. A semi-strict Gelfand pattern is a way to keep track of
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FIGURE 4. The semi-strict Gelfand pattern corresponding to a tiling.

these locations. Specifically, one augments the a, b, ¢ hexagon by adding a(a+1)/2
vertical lozenges on the left and ¢(c + 1)/2 vertical lozenges on the right, forming
an approximate trapezoid of upper base a + b + ¢ and lower base b, with some
triangular protrusions along its upper border, as in Figure 4. One then associates
with each vertical lozenge in the tiling the horizontal distance from its right corner
to the left border of the trapezoid, which we call its ¢rapezoidal position. (When we
want to use the left boundary of the hexagon instead of the left boundary of the
approximate trapezoid as our bench mark, we will speak of the hexagonal position
of a vertical lozenge.) For example, consider the tiling shown in Figure 1. We
augment it by adding 6 vertical lozenges to form the tiling shown in Figure 4.
The vertical lozenges form rows, and the only restriction on their placement is that
given any two adjacent vertical lozenges in the same row, there must be exactly one
vertical lozenge between them in the row immediately beneath them. If we index
the locations of the vertical lozenges with their trapezoidal positions (the numbers
shown in Figure 4), we arrive at the following semi-strict Gelfand pattern:

1 2 ) 6

In general, a semi-strict Gelfand pattern is a triangular array of integers (such as
this one), with the property that the entries increase weakly along diagonals running
down and to the right, and the entries increase strictly along diagonals running up
and to the right. As discussed above, there is a simple bijection between semi-strict
Gelfand patterns with top row 1,2,...,a,a+b+1,a+b+2,...,a+b+c and lozenge
tilings of an equi-angular hexagon with side lengths a, b, ¢, a, b, c.

Moreover, consider the k-th horizontal line from the top in an a, b, ¢ hexagon,
where the top edge of the hexagon corresponds to k£ = 0, so that the trapezoidal
positions of the vertical lozenges on the k-th line are precisely the entries in the
(k+1)-st row of the associated semi-strict Gelfand pattern. If we discard all lozenges
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that lie above the line (but retain all vertical lozenges that are bisected by it and all
lozenges that lie below it), then we get a tiling of a smaller approximate trapezoid,
whose upper border as before consists of triangular protrusions alternating with
straight edges, except that now the protrusions need not be concentrated at the
left and right portions of the border. The trapezoidal positions of the vertical
lozenges in this tiling are given by the entries in the semi-strict Gelfand pattern
obtained from the original semi-strict Gelfand pattern by deleting the first k rows.
In fact, if we limit ourselves to tilings of the a, b, ¢ hexagon in which the locations
of the vertical lozenges that are bisected by the k-th horizontal line are specified,
then each individual tiling of this kind corresponds to a pair of semi-strict Gelfand
patterns. We have already described one of these Gelfand patterns, which gives the
behavior of the tiling below the cutting line; the other, which describes the tilings
above the line, comes from reflecting the hexagon through the horizontal axis (and
of course adjoining additional lozenges, as above). If 0 < k < min(a,c), then
one of the Gelfand patterns will include some of the augmenting vertical lozenges
described above on both sides (a row of length a — k on one side of the top of the
pattern, and a row of length ¢ — k on the other) and the other pattern will contain
augmenting vertical lozenges on neither side; if min(a,c¢) < k < (a + ¢)/2, then
one of the Gelfand patterns will contain a row of |a — k| augmenting lozenges on
one side and the other Gelfand pattern will contain |c — k| on the other side. (The
case k > (a + ¢)/2 is symmetric to the case k < (a + ¢)/2, so we do not treat it
explicitly.)

In Theorem 2.2, we will use the following formula to determine how many tilings
have a specified distribution of vertical lozenges along a horizontal line.

Proposition 2.1. There are exactly

i
1<i<j<n J

semi-strict Gelfand patterns with top row consisting of integers xy,xs,..., T, such
that 1 < x5 < -+ < Typ,.

Proposition 2.1 has an explanation in terms of representation theory. Gelfand
and Tsetlin [GT] show that semi-strict Gelfand patterns form bases of representa-
tions of SL(n), and one can deduce Proposition 2.1 from this fact using the Weyl
dimension formula. (The Gelfand patterns in [GT] are not semi-strict, but there is
an easy transformation that makes them so: Replace m, , in equation (3) of [GT]
with m, 4 + (¢ — p) and then reflect the triangle through its vertical axis.) Thus,
the novelty of our approach is not that one can count semi-strict Gelfand patterns,
but rather that one can count tilings with prescribed behavior on a horizontal line
(as in Theorem 2.2). Another proof of Proposition 2.1, and one that bypasses
its representation-theoretic significance, is the article of Carlitz and Stanley [CS].
(That article does not deal directly with semi-strict Gelfand patterns, but it is easy
to deduce Proposition 2.1 from the theorem proved there.)

Proof. Let V(zy,...,x,) be the number of semi-strict Gelfand patterns with top
TOW Z1,...,Z,. Given any such pattern, the second row must be of the form
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Yy .-« Yn—1 With x; <y; < x4 for all i. Therefore,

T2 T3 Tn
(2.1) Vizn,.za) =3 3 e Y Vs, ),

Y1=T1y2=2r2 Yn—-1=Tn—1

where the modified summation operator > " is defined by

> =3 16

The advantage to writing it this way is that

(22) D16+ D16 =30 f6)

whenever r < s < t. There is a unique way to extend the the definition of
¢ L
> fO
i=8

to the case s > t, if we require that (2.2) be true for all r,s,t. Then starting from

the base relation V(z1) = 1, we can use (2.1) to define V(z4,...,,) for arbitrary
integers , ..., T, (not necessarily satisfying z; < --- < z,,).
We will prove the formula for V(z1,...,x,) by induction on n. It is clearly true
for n = 1. Suppose that for all y1,...,yp-1,
(2.3) Vg, =[] y;,_i,”.
1<i<j<n—1

Then V (y1,...,Yn—1) is a polynomial of total degree (n—1)(n—2)/2iny1,...,Yn—1.
When we put (2.3) into (2.1), we find that after each of the n summations in (2.1),
the result is still a polynomial, and the degree increases by 1 each time. It is easy
to check from (2.3) that the coefficient of y3y2...y" 7 in V(yi,...,Yn—1) is

1
12l (n=2)
From this and (2.1) it follows that the coefficient of zz% ...z 1 in V(z1,...,z,)
is
1
TIRNCES

We have therefore shown that V(z1,...,z,) and

2.4 L%

. 1SESn S

are polynomials in z1, . .., z,, of the same total degree, and with the same coefficient
of w3a? ... a"~!. If we can show that V(z1,...,,) is divisible by (2.4), then they
must be equal. Equivalently, we just need to show that V(zi,...,x,) is skew-
symmetric in x1,...,Ty.

For convenience, let (s1,t1;s2,t2;...58,—1,t,—1) denote
t1 ts

tn—1
ZL ZL ZL V(ylay%"';ynfl)-

Y1=81 Yy2=s2 Yn—-1=8n—1
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We want to show that (z1,x2;xs, x3;...; Tp—1,T,) is skew-symmetric in x1, ..., xy,.
To start off, notice that for all 7,
(2.5) (coossiugs o) = (oassiy o)+ (ot ug; .0 ).

Also, since V(y1,...,Yn—1) is a skew-symmetric function of y1,...,y,—1 by (2.3),
for i < j we must have

(...;Si,ti;...;Sj,tj;...) = —(...;sj,tj;...;si,ti;...).
The relation (...;s;,t;...) = —(...;t;,84;...) follows easily from the definition of
(...584,t35...). From the last two relations, we see that (...;s;,¢5...;8;5,t5;...)
vanishes if s; = s; and t; = ¢;, or if s; = ¢; and s; = ¢;.

To verify that (z1,22;...;Tn—1,Ty) is skew-symmetric in z1, ..., z,, it suffices
to check that it changes sign under transpositions of adjacent x;’s. We check the
effect of exchanging x; 11 with 2;,» as follows. If we write &}, = 2;44 (to simplify
the subscripts), we have

(...;xp, xh;xh, a2, 2h;...) = (..ymp, o xh, ol 2l xh; L)
+ (o520, @) 2, 75 05, @55 )
+ (., ahyah, aal, xh; )
+ (o2, T @y, T T, ;).
by several applications of (2.5). All terms on the right except the second are 0, so

(om0, ah; @y, @32y, 255 ) = (@, Ty @, X5y, 7G5 )

—(o @, @t why k).

Thus, exchanging z;11 with x;;12 introduces a minus sign whenever ¢ > 1 and
i+3 < n. The other cases (exchanging z; with z, or z,,_; with z,,) are easily dealt
with in a similar way. Therefore, V(z1,...,z,) is skew-symmetric in 1, ..., Z,, so
as discussed above we must have

V(:Ul,...,.’l,'n): H u,

| — 1
1<i<j<n J
as desired. 0

Notice that after some manipulation of the product
V(,2,...,a,a+b+1,a+b+2,...,a+b+c),

Proposition 2.1 implies MacMahon’s formula. However, our main application will
be to counting tilings with prescribed behavior on horizontal lines.

Consider the k-th horizontal line from the top in an a,b,c hexagon. If k <
min(a, ¢), then in every tiling there must be k vertical lozenges on the k-th line; if
min(a,c) < k < (a+¢)/2, then there must be min(a,c) vertical lozenges on it. (As
mentioned earlier, symmetry frees us from needing to treat the case k > (a + ¢)/2,
so we will routinely assume k < (a + ¢)/2.) In either case, note that the number of
vertical lozenges on the k-th row is min(k, a, c).

Define the function

Ti— s
_ j i

Vizy,...,x,) = H T
1<i<j<n J

as in the proof of Proposition 2.1. Then we have the following formulas:
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Theorem 2.2. Suppose we require that the vertical lozenges bisected by the k-th
horizontal line from the top in an a,b, c hexagon occur at hexagonal positions 1 <
a; < az < -+ < ag < b+ min(k,a) (and nowhere else), with ¢ = min(k,a,c). If
k < min(a,c), there are

Viar,az,...,a0)V(1,2,...,a—k,a—k+a1,...,a—k+ag,a+b+1,...;a+b+c—k)
such tilings. If a < c and a < k < (a+ ¢)/2, there are
V(,2,....k—a,k—a+ai,....,k—a+a;)V(ai,as,...,a0,a+b+1,...;a+b+c—k)
such tilings (and a similar formula applies if c < a and ¢ < k < (a+¢)/2).

For the proof, simply notice that tilings of the parts of the hexagon above and
below the k-th line correspond naturally to semi-strict Gelfand patterns with certain
top rows, and then apply Proposition 2.1 to count them. In both cases, the two
factors correspond to the parts of the tiling that lie above and below the cutting
line.

3. Setting up the Functional

We now turn to the proofs of our main theorems. As is usually done in situations
such as ours, where one seeks to establish a law of large numbers for some class of
combinatorial objects, we approach the problem by trying to find the individually
most likely outcome (in this case, the individually most likely behavior of the height
function on a fixed horizontal line), and showing that outcomes that differ substan-
tially from it are very unlikely, even considered in aggregate. We will begin in this
section by setting up a functional to be maximized; the function that maximizes it
will be a simple transformation of the average height function.

Our method is to focus on the locations of the vertical lozenges rather than the
height function per se. The two are intimately related, because, as we move across
the tiling from left to right, the (unnormalized) height decreases by 2 when we cross
a vertical lozenge and increases by 1 when we fail to cross a vertical lozenge. Thus,
in determining the likely locations of vertical lozenges, we will in effect be solving
for the average height function. Theorem 2.2 tells us that we can count tilings with
prescribed behavior on horizontal lines, so we will start off by taking the logarithm
of the product formula in Theorem 2.2 and interpreting it as a Riemann sum for a
double integral.

In fact, it will be convenient to look first at a more general product, and then
apply our analysis of it to the product appearing in Theorem 2.2. Fix positive
integers £ and n satisfying ¢ < n, and non-negative integers ny and ng. We will
try to determine the distribution of (aj,as,...,ay) satisfying 1 < a1 < as < -+ <
a; < n that maximizes

V(1,2,...,np,np+a1,ng+as,...,nL+ag,np+n+1Ln,+n+2,...,np+n+ng).

For convenience, let b; denote the i-th element of the sequence 1,2,...,np,n; +
a,...,np+ag,ng+n+1,...,ny +n+ng.

Set pr, = ng/n, A=1~{/n, and pr = ng/n. We will work in the limit as n — oo,
with pr, A, and pgr tending toward definite limits. For a more convenient way
to keep track of ai,...,a; as we pass to the continuum limit, we define a weakly
increasing function A : [0,1] — [0,1] as follows. Set A(i/n) = #{j : a; < i}/n for
0 < i < n, and then interpolate by straight lines between these points. Similarly,
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set B(i/N) = #{j : b; <i}/N for 0 <i < N, where N CnL +n+ ng, and then
interpolate by straight lines. To simplify the notation later, set p = pr + pr, so
that N = (1 + p)n, A(0) =0, A(1) = A, B(0) =0, and B(1) = (A + p)/(1 + p).

The functions A and B satisfy the Lipschitz condition with constant 1; that is,
|A(s) — A(t)| and |B(s) — B(t)| are bounded by |s —t|. Note that the derivatives A’
and B’ are not defined everywhere, but they are undefined only at isolated points,
and where they are defined they equal either 0 or 1; when we make statements
about A’ and B’, we will typically ignore the points of non-differentiability. We can
also derive a simple relation between A’ and B’. To do so, notice that for 0 < ¢ < n,
we have

B(“”“):#{j:bﬁ'fi"‘”L}:#{j:aﬁ'ﬁi}Jr”_L:A(i N>% HWL;

N N N N N n

if we set t = i/N, we find that this equation becomes

A((1 t
p(oe ) - A o
14+p 14+p 1+p
For 0 <t < 1/(1+ p), the values of A and B occurring in (3.1) are defined by
interpolating linearly between points at which we have just shown that (3.1) holds,
so it must hold for all such ¢. Therefore, for 0 < ¢ < 1/(1 + p), we have

B <t+ 1’:fp) — A'((1+ p)b),

except at isolated points of non-differentiability. All other values of B’ are 1, since
it follows immediately from the definition of B that for 0 < t < pr/(1 + p) or
1>t>(1+pr)/(1+p), we have B'(t) = 1.

We have a; = nA=1(i/n), b = NB~1(i/N). (Whenever we refer to A71(t), we
consider it to take the smallest value possible, to avoid ambiguity, and we interpret
B~1(t) analogously.) When we take the logarithm and then multiply by n=2, the
double product

(3.1)

bj — b
j—i

Vb1, bnptting) = H

1<i<j<nr+t+nr
ought to approach an integral like

B~1(t) - B!
e [ 0SB0,
0<s<t<yte

t—s
(The factor of (1 + p)? appears because N = (1 + p)n and we rescaled by n 2
instead of N~2.) In the appendix, we will justify this claim rigorously, except
with the function B replaced by a nicer function C. (The justification is not very
difficult, but it is long enough that here it would be a distraction.)
The conclusion from the appendix is that

N
logv(bla .- ';an+Z+nR) — (1+p)2 // lOg C (t) C (S) ds dt+0(1),
n 0<s<t< 2fe t—s

where C' is a certain strictly increasing, continuous, piecewise linear function satis-
fying C(0) =0, C(1) = (A +p)/(1 + p), and |B' — C'| = O(1/N). Note that C has
a continuous inverse (unlike B, which is only weakly increasing and thus may not
even have an inverse).
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By symmetry, the integral equals

1+p / /HP — O =C7) 4 g
t—s '
We can write the 1ntegral as
(1 T+p - —C!
+p / /+ O -C G
|t — s
]_+ 115
d+p) / / log |C~1(t) — C~1(s)| ds dt

Atp

]_ o
+p / /+ log |t — 5| ds dt;

since the integral being subtracted is a constant, we can ignore it. (The individual
integrands are unbounded, but since the singularities are merely logarithmic they
do not interfere with integrability.) Letting u = C~'(s) and v = C~!(¢), we can
rewrite the part that matters as

a+p° //C’ )C' () log |u — v du do.

2
Since |C" — B'| = O(1/N), this integral differs by o(1) from
(1
(3.2) +p / / v)log |u — v| du dv.

We will now use our formula expressing B’ in terms of A’. Recall that

B <t + PL) — Al(t)
1+p
for 0 <t <1, and that B'(t) =1 for t € (—pr,0) U (1,1 + pr). To take advantage
of this, we change variables to s and ¢ (which are different from the s and ¢ used
earlier in the article) with u = (s + pr)/(1 + p) and v = (t + pr)/(1 + p). Then
when 0 < s,t < 1 we have B'(u) = A'(s) and B'(v) = A'(t); elsewhere B’ is 1.
Thus, (3.2) is equal to

1+pr 1+pR
I B B R OO O

where I is the characteristic function of [—pr,0] U [1,1 + pr], and where we set
A" = 0 outside [0, 1].

Removing the 1 + p from the denominator of the argument of the logarithm
simply adds

‘ ds dt,

1+pr 1+ﬂR
/ / + I(s))(A'(t) + 1(t))log |1 + p| ds dt

to the integral; this quantity is a constant because the only occurrence of A in it is
through the integral

/ e A'(s)ds = A(1) — A(0) = A

—PL
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(and the square of this integral). We can also change the range of integration in
(3.3) to the entire plane (since the integrand has support only in the rectangle
[—pL,1+ pr] X [—pL,1 + pr]). Thus, we have arrived at the result that, for some
irrelevant constant K, n=2log V (b1, ..., bn, +t+n,) equals

(3.4) %/_oo /_Oo (A'(s) + I(s))(A'(t) + I(t))log|s — t|dsdt + K + o(1).

We can now apply this to Theorem 2.2. Suppose that on the k-th line from the
top in the a,b, ¢ hexagon (with k < (a+¢)/2), the vertical lozenges have hexagonal
positions 1 < a1 < a2 < -+ < ag < n, where n def + min(k, a,c). Define the
function A as above. Then our analysis so far, combined with Theorem 2.2, shows
that if we take the logarithm of the number of tilings with the given behavior on the
k-th line, and divide by n?, then we get the sum of two terms of the form (3.4); for,
Theorem 2.2 gives us a product of two V-expressions (whose exact nature depends
on whether k lies between a and c), and when we take logarithms and divide by n?,
we get two terms, each of which is half of a double integral (plus negligibly small
terms and irrelevant constants).

To put this into an appropriately general context, define the bilinear form (,)
by

(3.5) o= [ h / " P @) () oz — o) do dy

for suitable functions f and g (for our purposes, functions such that their derivatives
exist almost everywhere, are bounded, are integrable, and have compact support).
We will now use this notation to continue the analysis begun in the previous para-
graph.

In this paragraph we will systematically omit additive constants and o(1) terms,
since they would be a distraction. If k& < min(a,c), then one of the two terms
derived from Theorem 2.2 is (A, A), and the other is (A + Jo, A + Jo), where
Jo is a continuous function with derivative equal to the characteristic function of
[—|a —k|/n,0]U[1,1+ |c — k|/n]. If min(a,c) < k < (a + ¢)/2, then one term is
$(A+ J1, A+ J1) and the other is $(A + Jo, A+ Js), where the derivative of J;
is the characteristic function of [—|a — k|/n,0] and that of .J» is the characteristic
function of [1,1+ |c — k|/n].

Now a few simple algebraic manipulations bring these results to the following
form.

Proposition 3.1. Letn = b+min(k,a,c), pr, = |a—k|/n, and pr = |c—k|/n. Then
the logarithm of the number of tilings of an a,b,c hexagon with vertical lozenges at
hexagonal positions ay,...,a; (and nowhere else) along the k-th line (where £ =
min(k,a,c) and 1 < a; < -+ < ag < n), when divided by n?, equals
(A+ J, A+ J)+ constant + o(1),

where J is any continuous function whose derivative is half the characteristic func-
tion of [—pr,0lU[1,1+4 pg|, and A is defined (as earlier) by interpolating linearly
between the values A(i/n) = #{j :a; <i}/n for 0 <i<n.

Recall that we are working in the limit as n =+ oo with pr,, pr, and A converging

towards fixed limits. It is easy to check that the unspecified constant in Proposi-
tion 3.1 converges as well. We would like everything to be stated in terms of the
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limiting values of pr, pr, and A. Replacing pr and pg in the definition of J by
their limits changes (A + J, A+ J) by only o(1), and we can increase A’ by o(1)
in such a way that A(0) remains 0, A(1) becomes the limiting value of A, and A
still satisfies the Lipschitz condition. Thus, we can let pr, pr, and A denote their
limiting values from now on.

We have now re-framed our problem. We must find a function A that maximizes

V(4) = Lef (A+ J, A+ J), subject to certain conditions. We will look at real-valued
functions A on [0, 1] that are continuous, weakly increasing, and subject to the
following constraints: A(0) =0, A(1) = A, and A must satisfy a Lipschitz condition
with constant 1 (so 0 < A’ < 1 where A’ is defined). For convenience, define
A(t) = 0fort < 0 and A(t) = A for t > 1. Call a function A that satisfies
these conditions admissible. Clearly, the functions A considered in this section are
admissible. We will show in the next section that there is a unique admissible
function A that maximizes V(A). (Notice that every admissible function A is
differentiable almost everywhere, and A’ is integrable and has compact support;
for a proof of the necessary facts from real analysis, see Theorem 7.18 of [R]. Thus,
V(A) makes sense for every admissible A.)

4. Analyzing the Functional

Let F be the set of admissible functions. We can topologize F using the sup
norm, L' norm, or L? norm on [0, 1]; it is straightforward to show that they all give
the same topology, and that F is compact. In this section, we will show that V is a
continuous function on F, so it must attain a maximum. We will show furthermore
that there is a unique function A € F such that V(A) is maximal.

The proof will use several useful formulas for the bilinear form (,) (formulas
(4.1) to (4.3)). These formulas are derived in [LS]; we repeat the derivations here
for completeness. One can find similar analysis in [VK1] and [VK2].

The formulas are stated in terms of the Fourier and Hilbert transforms. For
sufficiently well-behaved functions f, define the Fourier transform f of f by

= / f(t)e ™t at
— 00
and the Hilbert transform fby
7 L= f()
=— dt
fla)y=— | N
(which we make sense of by taking the Cauchy principal value). Note that the

Fourier transform of f is z — i(sgn :c)f( ), and that of f’is x — zxf( ); multiply-
ing by i(sgnz) and multiplying by iz commute with each other, so differentiation
commutes with the Hilbert transform.

Integration by parts with respect to y in (3.5) shows that

(4.1) () =n [ " (@)i) do

When done with respect to z, it also shows that

(42) = [ " f@0)d (@) da
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Unfortunately, Hilbert transforms are not always defined. For our purposes, it is
enough to note that (4.1) makes sense and is true when f’ and g have compact
support, and similarly that (4.2) holds when f and ¢’ have compact support.

If we set g = f and apply Parseval’s identity to (4.1), we find that when f has
compact support,

(43 0 == [\ lelde

Thus, the bilinear form (,) is negative definite (on functions of compact support).
We can now prove easily that V is a continuous function on F. To do so, notice
that the definition of V and (4.1) imply that

VD) = V() = (s + Az + 27,41 = ) = [ " @) dr,

where f; = Ay + Az +2J and fo = A1 — As. Thus, since |f](z)| < 2 for all  and
fi = 0 outside some interval I not depending on A; and A,,

- o\ 1/2 -
V) - Vo)l < 20 [ 1l < (/Iw) 1 Falle.

(The second bound follows from applying the Cauchy-Schwartz inequality to |J72 [-1.)
It is known (see Theorem 90 of [Ti]) and easy to prove (combine Parseval’s
identity with the formula for the Fourier transform of a Hilbert transform) that
Ifallz = || f2]]2 = [[f2]l2- Thus, [V(A1) = V(A2)| = O(|| A1 — Az[|2), so the function
V is continuous on F.
Because F is compact, V must attain a maximum on F. Now we apply the
identity

V(A1) +V(4y) v A+ Ay N A — Ay A — A,
2 N 2 2 ’ 2 ’
which is a form of the polarization identity for quadratic forms. Because (A; —A3)/2
has compact support, (4.3) implies that

V(A1) -; V() _, <A1 —;A2> |

with equality if and only if Ay = As. Thus, two different admissible functions
could not both maximize V), since then their average would give an even larger
value. Therefore, there is a unique admissible function that maximizes V. Let A be
that function. (Notice that A depends on A, py, and pg, and hence on «, §, and
7, although our notation does not reflect this dependence.)

We are now almost at the point of being able to prove that there is a function
Ha,3,~ such that Theorem 1.2 holds (except for the part relating H, g, to the
explicitly given function P, g.). First, we need to relate A to the normalized
average height function.

Assume that k/(a +¢) = K as a,b,c = oo for some & satisfying 0 < k < 1.
Choose normalized coordinates for the a,b,c hexagon so that the k-th horizontal
line from the top has normalized length 1, and in particular coordinatize that line so
that its left endpoint is 0 and its right endpoint is 1; equivalently, coordinatize the
a, 3,7 hexagon so that the horizontal line that cuts it proportionately & of the way
from its upper border has length 1. (The truth or falsity of Theorem 1.2 is clearly
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unaffected by our choice of coordinates.) We can then identify the scaling factor o
with n, to within a factor of 1+ o(1). Given a tiling of the a,b, ¢ hexagon, if we
scan to the right along this line, whenever we cross a vertical lozenge the normalized
height function decreases by 2/n, and whenever we cross a location that could hold
a vertical lozenge but does not the normalized height function increases by 1/n. It
follows that the normalized height function at location t is given by

C2A(E) + (t— A(t)) =t — 3A(t)

plus the value at ¢ = 0, since this function changes by the same amount as the
normalized height function does as one moves to the right.

Let € > 0. Then there exists a § > 0 such that |[V(A) — V(4)| < § implies
sup, |A(t)— A(t)| < e. (This claim holds for every continuous function on a compact
space that takes its maximal value at a unique point.) For n sufficiently large,
Proposition 3.1 implies that if sup, |A(t) — A(t)| > ¢, then in a random tiling, every
behavior within o(1) of A is at least e’ (0+0(1) times as likely to occur along the k-th
line as the behavior A is. Since the number of possibilities for A is only exponential
in n, the probability that sup, |A(t) — A(t)| > € is exponentially small in n? (and
hence in ¢2). In other words, the probability that a random height function differs
along this line from the height function obtained from A is exponentially small
in 2. It follows that the same is true without the restriction to the particular
horizontal line, because of the Lipschitz constraint on height functions: if we show
that large deviations are unlikely on a sufficiently dense (but finite) set of horizontal
lines, then the same holds even between them. Thus, we have proved Theorem 1.2,
except for the connection between H g4 and Py 3,-

Furthermore, the density of vertical lozenges near location ¢ along a given hori-
zontal line is almost always approximately equal to A’ (). We can make this claim
precise and justify it as follows. Given a random tiling, A(¢) gives the number of
vertical lozenges to the left of the location ¢, divided by n (plus O(n™") if ¢ is not at
a vertex of the underlying triangular lattice). Thus, the number of vertical lozenges
in an interval [a,b] is n(A(b) — A(a)) + O(1). We have seen that the probability
that this quantity will differ by more than en from n(A(b) — A(a)) is exponentially
small in n?. Therefore, as n — oo (equivalently, ¢ — 00), the expected value of
A(b) — A(a) is A(b) — A(a) + o(1). Thus, we get the expected number of vertical
lozenges in [a, b], which is also equal to the expected number of vertical lozenges in
(a,b) (up to a negligible error). Notice that the o(1) error term is uniform in the
choice of a, b, and the horizontal line, because the probability of a large deviation
in height anywhere in the hexagon is small.

If we take the result we have just proved for horizontal line segments and integrate
it over the horizontal line segments that constitute the interior of any smooth simple
closed curve, then we can conclude that Theorem 1.1 holds, except for the explicit
determination of P, g~ (which is equivalent to the explicit determination of A,
since P = A'). Also, notice that our method of proof implies that H, 3, and
Pa,3,y must satisfy

OMHap~(T,y
%(7) =1- 37)0475N(w7y)7
as desired (although it does not yet determine them explicitly). Thus, all that
remains to be done is to determine the maximizing function A explicitly. We will
do so in Section 5.
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5. The Typical Height Function

Unfortunately, it is not clear how to find the admissible function A that maxi-
mizes V(A). Ordinary calculus of variations techniques will not produce admissible
solutions. However, we will see that techniques similar to those used in [LS] and
[VK1, VK2] can be used to verify that a function A maximizes V(A), if we can
guess A. (It is not clear a priori that the techniques will work, but fortunately
everything works out just as one would hope.)

As we saw in Section 4, for the cases that are needed in the proof of Theorem 1.1,
an explicit formula for A is equivalent to one for P, g -; since we know already
what the answer should be, guessing it will not present a problem. In Section 1,
we tried to give some motivation by presenting a slightly simpler description of
Pa,3,y than the explicit formula. However, we do not know of any straightforward
way to guess the answer from scratch. We arrived at it partly by analogy with the
arctangent formula for random domino tilings of Aztec diamonds (Theorem 1 of
[CEP]), partly on the basis of symmetry and simplicity, and partly on the basis of
numerical evidence.

To avoid unnecessarily complicated notation, we will solve the problem in greater
generality than is needed simply for Theorem 1.1. We will deal with the case of
arbitrary A satisfying 0 < A < 1, and arbitrary non-negative p;, and pr (which we
assume for simplicity are strictly greater than 0). We will use the same notation
as earlier in the paper; for example, we set p = pp + pr. Of course, guessing the
admissible function that maximizes the functional in general requires additional
effort, but the symmetry and elegance of the general formulas are a helpful guide.

We will express the maximizing function A in terms of auxiliary functions f; and
f2. Define

Fi(t) =261 = 1) = (N + pA = pr)t — (A + pA — pr) (1 — 1)
and
f2(t) = (p + 2011 = t) = (W + pA = pr)*t — (A? + pA — pr)*(1 — ).

(Note that both expressions are invariant under (¢, pr,, pr) <> (1 —t,pr,pr). This
observation reduces some of the work involved in verifying the claims that follow.)
Since the discriminant of fo(t) is

L6A(L =N A+pr)(A+pr)A+p)A+p+1),

f2(t) has distinct real roots 11 < ro. We can show that both roots are in [0, 1] as
follows. Since f2(0) and f2(1) are at most 0, both roots of f» lie in [0, 1] if the point
at which f> achieves its maximum does. The maximum occurs when
(1 =XNp2 +Ap% + 222+ (2= NXpr + 2+ AN)A\pr + prer
(pL + pr + 2))? ’

and this point is easily seen to lie in [0, 1].

We will specify the function A by specifying its derivative A', which together
with the condition A(0) = 0 uniquely determines the function. (We will then check
that the newly defined A maximizes V, and is thus the same as the previous A.)

For ¢t € (ry,r2) define
! _ l —1 fl (t)
A(t) = - cot (7}02(15)) .

t =
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For t € [0,71] define A'(¢t) = lim¢,,, + A'(¢), and similarly for ¢t € [ro, 1] define
A (t) = limy_yp,— A'(t). We can show that the first limit will be 0 or 1 if r; € (0,1),
and the second will be 0 or 1 if ry € (0,1); to verify this, it suffices to check
(using resultants, for example) that f; and f» cannot have a common root in (0, 1),
from which it follows that at r; or ry the denominator of the argument of the
arccotangent vanishes without the numerator vanishing. Notice that A’(0) = 0 if
fi(r1) > 0, and A’ (0) = 1 if fi(r1) < 0. Similarly, A'(1) = 0 if fi(r2) > 0, and
A'(1) =11if fi(r2) < 0. Also, if 4 = 0, then f; and f both vanish at 0, and it
follows that lim;_,o4 A (t) = %; similarly, if 7o = 1, then lim;_,;_ A’ (t) = %

Let A : [0,1] = [0, 1] be the unique function satisfying A(0) = 0 with derivative
A'. We will show later in this section that A(1) = A, from which it follows that A is
an admissible function (since the other conditions are clearly satisfied). (We then
extend A to a function on all of R in the usual way, so that A(t) = X for ¢t > 1 and
A(t) = 0 for t < 0.) We will prove that A is the unique admissible function such
that V(A) is maximal.

Before beginning the proof, it is helpful for motivation to examine what the
calculus of variations tells us about how the maximizing function should behave.

For every admissible function A we have
V(A =(A+J A+ J),

where J is any continuous function whose derivative is half the characteristic func-
tion of [—pr,0] U[1,1+ pgr]. Suppose we perturb our function A by adding to it a
small bump centered at ¢, which we write as €d; where ¢; is a delta function. (We
should actually perturb by a bump rather than a spike, in order to try to maintain
the Lipschitz constraint as long as ¢ is small enough. However, treating J; as a
delta function gives the right answer.) Because

(A+J+ed, A+ J+ed) = (A+ J A+ J)+2e(8, A+ J)+ O(e?),
the first variation of V is 2(d;, A + J). By (4.2),

(6, A+ J) = —7 /O:o 5 () (IQ(:C) + j’(m)) de = — (K(t) + J'(t)) .

Thus, in order for the first variation to vanish, we must have A'(¢) + J'(t) = 0.
When A’ (t) € (0,1) this must be the case, assuming A maximizes V(A). However,
when A’ (t) € {0, 1}, every perturbation violates the Lipschitz constraint, and we
can conclude nothing.

Our strategy for proving that A maximizes V(A) will take advantage of the
vanishing of A’ (t) + J'(t) (which we will prove directly later in this section). To
begin, for any admissible A we write

V(A = VA) =(A—AA—-A) +2(A—A A+ J).
Because (A — A) A — A) < 0 with equality if and only if A = A, in order to prove
that V(A) < V(A), we need only show that
20A-AA+J)<0.
To show that this is the case, we start by using (4.2), which tells us that

(A=A A +J) = —r /Oo (A(t) — A (BT (8) + T/ (1)) dt.

— 00
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Thus, we want to show that

S —~ ~
(5.1) / (A() — AW®) A (1) + /(1)) dt > 0.
—00
We will prove that the integrand is everywhere non-negative, by showing that
A'(t) + J'(t) = 0 when t € (r1,r2) (the interval where A'(t) € (0,1)), and that
in the rest of (0,1) its sign is the same as that of A(t) — A(¢). (Outside (0,1),
A(t) = At).)

In order to prove these facts, we will apply the following theorem. For a proof,
see Theorem 93 of [Ti, p. 125].

Theorem 5.1. Let ® be a holomorphic function on the upper half plane, such that
the integrals

/ |®(z + iy)|* dz

exist for all y > 0 and are bounded. Then there exists a function F on the real line
such that for almost all z, ®(z + iy) — F(z) as y — 0+, and the imaginary part
of F is the Hilbert transform of the real part of F'.

We will apply this theorem to determine the Hilbert transform of A’ + J'. To
prepare for the application of the theorem, we begin by defining, for ¢ € (ry,72),

)
g(t) = 0
and
(5.2) B(1) = = cot (1),

(Of course, ®(t) = A’ (t) on (r1,72), but this new notation will help avoid confusion
soon.) Then g extends to a unique holomorphic function on the (open) upper half
plane. The function ® extends as well to a unique holomorphic function on the
upper half plane, together with all of R except the points —pp, 0, r1, r2, 1, and
1+ pg. To see why, notice that g(¢)? + 1 has only four roots, in particular, simple
roots at each of —pr, 0, 1, and 1 + pgr. There is always a holomorphic branch
of the arccotangent of a holomorphic function on a simply-connected domain, as
long as that function does not take on the values +i; this fact gives us the analytic
continuation of ®. Of course, cot 7®(t) = g(t) for all ¢ in the upper half plane.
For real t (except —pr,, 0, 71, r2, 1, and 1+ pg), define

F(t) = s£%1+¢(t +is) = D(t).

(We will use this notation to distinguish between the function F' on the real line
and the function ® on the upper half plane.) In order to apply Theorem 5.1, we
must determine the real and imaginary parts of F'(¢). Outside of (r1,r2), Re F(t) is
piecewise constant (in particular, constant between the points where F' is undefined)
since F'(t) is imaginary there. The integrability of F'(t) at t = r; and ¢t = ry implies
that F'(t) is continuous there, which implies that Re F'(t) = A’ (¢t) for all ¢t € (0,1).

To determine the behavior of Re F'(t) for ¢ ¢ (0, 1), we just have to see how much
it changes by at —pp, 0, 1, and pg, since it is constant on (—oo,—pr), (—pr,0),
(1,14 pr), and (1 4 pr,o0). To do so, notice that if &' has a pole with residue r
at a point on the real axis, then F' changes by —rmi as one moves from the left of
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that point to its right. (To see this, integrate over a small semi-circle in the upper
half plane, centered at the point.) If g(u) = i, then

= llim— (t —u)g'(t)
misu (g(t) + g(u))(g(t) — g(u))
1
T 2mg(w)

Therefore, if g(u) = +i, then Re F' changes by +1 from the left of u to its right.

To determine the precise sign of g(u) when g(u) = +i, we will need to know how
1/+/ f2(t) behaves when analytically continued through the upper half plane. We
know that it is positive on (r1,r2). If one analytically continues it along any path
through the upper half plane that starts in (r1,72) and ends on the real axis to the
left of 71, then the result is a negative imaginary number (i.e., one with argument
—mi/2). Similarly, if the path ends to the right of s, then the result is a positive
imaginary number.

Thus, g(—pr) = —isgn f1(—pr). In fact, g(—pr) = i, because

fi(=pr) = =A* = pA = pLpr — pr — p7, < 0.
It follows that Re F increases by 3 at —p. Similarly, Re F' decreases by § at 1+pg.

The analysis at 0 and 1 is slightly more subtle. We have g(0) = —isgn f1(0),
and g(1) = isgn fi(1). It turns out that sgn f1(0) = sgn fi(r1) and sgn f1(1) =
sgn f1(r2). To prove this claim, we will deal with Im F'. (The results about Im F'
will be needed later, so this approach is worthwhile even though one might wish
for a direct proof.)

It is impossible for Im F'(t) to vanish for ¢ € (0,71) U (12, 1), since Re F(t) is 0 or
1 for such ¢, but F(t) cannot be 0 or 1 (since otherwise g would have a singularity
at t, as one can see from (5.2)). Thus, the sign of Im F'(¢) is constant for ¢ in each
of (0,71) and (ra,1).

The imaginary part of the arccotangent does not depend on the branch used
(since the values of the arccotangent always differ by a multiple of 7). To determine
the sign of the imaginary part of F(t), we will use the fact that for real v with
ul > 1,

(5.3) sgnIm cot ! (ui) = —sgnu.

In order to apply this formula to F', we need to determine the sign of g on the axis.
We determined above how 1/4/f2(t) behaves. Since

[ A 1))
®(t) = —cot™! ,
Q (\/ f2(t)
we find, by combining the facts about 1/4/f2(t) with (5.3), that sgnIm F(t) =
sgn f1(t) for t € (0,r1), and sgnlm F(t) = —sgn fi1(t) for ¢t € (rq, 1).
Because sgnIm F' is constant, we can deduce two important facts. First, we
see that sgn f; must be constant on (0,71) and (rz,1). Notice that in fact it is

constant on [0,r;] and [rz,1], because we showed earlier that it cannot vanish
at one of the endpoints of one of these intervals unless the interval consists only
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of one point. Second, we see that sgnIm F'(¢) = sgn fi(r1) for t € (0,71) and
sgnlm F(t) = —sgn fi(ra) for ¢ € (ra,1).

Thus, having taken a short detour, we can see that g(0) = —isgn f1(r1), and
g(1) = isgn fi(rs). It follows that Re F' increases by % at 0 iff fi(r1) < 0, and
decreases by % at 0 iff fi(r1) > 0. Notice that these are exactly the conditions
under which A’(0) is 1 or 0, respectively. Similarly, Re F' increases by % at 1 iff
fi(rz2) > 0, and decreases by 1 at 1 iff fi(r2) < 0, and these are exactly the
conditions under which A’ (1) is 0 or 1, respectively.

The information that we have obtained determines Re F', and in fact shows that

0 ift < —py,
: if —pr <t<O0,

ReF(t) =¢A'(t) if0<t<1(and t#r,r2),
1 ifl<t<1+pg, and

0 if 14+pr <t.

In other words, Re F' = A’ + J'.

We would like to apply Theorem 5.1 to conclude that the Hilbert transform of
A" + J" must be Im F. For the hypotheses of the theorem to be satisfied, we need
some integral estimates, in particular that the integrals

o0
/ |®(r + is)|? dr
— 00
exist for all s > 0 and are bounded. To prove existence of the integral, we use the
estimate ®(t) = O(t~!) as t — oco. To verify this estimate, notice that as t — oo
in the upper half plane, g(t) = —(p/2 + A\)~tit + O(1), and for such ¢ we have
i(5+A)
mt
for some integer k depending on t and the branch of the arccotangent. For large
t, continuity implies that k& must be constant, and our knowledge of the behavior
of ® on the real axis tells us that & = 0. It follows that ®(t) = O(t™'), so
the integrals must converge. To prove boundedness, we need only show that the
integrals remain bounded as s — 0. To see that they do, notice that the limiting
integrand has singularities, but they are only logarithmic singularities (since ®' has
poles of order 1 there), so it is still integrable.

We can now verify that A(1) = A. (This fact, which is necessary for A to be
admissible, was stated earlier, but the proof was postponed.) To determine A(1), we
need to integrate A’ from 0 to 1. If C denotes a semi-circle of radius R centered at 0,
lying in the upper half plane, and oriented clockwise, then for R > max(pyr,, 1+ pr),
Cauchy’s theorem implies that

Re/cé(t)dt = Re /R F(t)dt

—R

B(t) = %cofl(—(p/z+A)*1¢t+0(1)) _ + O 2) +k,

1+pr
= / A'(t)+ J'(t) dt

—PL

= A1)+

NI
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Since ®(t) = {/2HN 4 O(¢-2),

_ 5+ 1
/C<I>(t)dt - /Cit dt + O(R™)

™

= (o) Y oy

= A+g+0m*)
Hence, A(1) = A.
Now Theorem 5.1 tells us that because

F(t) = sl_i>%1+ O(t +is)

(except where undefined), the imaginary part of F' is the Hilbert transform of the
real part, i.e.,

A +J =ImF.
To complete the proof of (5.1), we need more information about how Im F'(¢) be-

haves for t € [0,1]. We know that Im F'(t) = 0 for t € (r1,r2), by the definition of
®, so for such t,

(A(t) — A)) (A (1) + J'(t)) = 0.
If we can ensure that
(5.4) (A(t) — A@®)) A (1) + J'(t)) > 0

for all t € (0,71) U (72, 1), then we will have proved (5.1).

We will deal first with the sign of A(t)—A(t). Recall that A’ is constant on (0,r1),
and is either 0 or 1 (assuming r; > 0). Because of the Lipschitz condition 0 < A" <
1, it follows that either A'(t) — A'(t) > 0 for all ¢ € (0,r1), or A'(¢) — A'(¢t) <0
for all such ¢, according as A’ is 0 or 1 on that interval. Integrating and using
A(0) = A(0) = 0 implies that A(t) — A(t) > 0 for t € (0,71) in the first case (where
A'(0) = 0), and A(t) — A(¢) < 0 in the second (where A'(0) = 1). Similarly, if
A'(1) =0 then A(t) —A(t) <0fort € (rs,1), and if A’(1) =1 then A(t) —A(t) >0
for ¢t € (r2,1). Therefore, to prove (5.4), we need only prove the same inequalities
as here, with A(t) — A(¢) replaced by Im F(t).

We have already shown that sgnlIm F(t) = sgn fi(ry) for t € (0,71), and that
sgnlm F(t) = —sgn fi(rs) for ¢ € (r2,1). We know as well that A'(0) = 0 if
fi(r1) > 0and A'(0) = 1if f1(r1) < 0, and that similarly, A’(1) = 0 if fi(r2) >0
and A’ (1) = 1if fi(r2) < 0. (Note that the only possible conditions under which ¢
or ry are roots of fi are r; = 0 and r2 = 1, respectively.) These conditions, when
combined with those derived in the previous paragraph, give us what we need. We
conclude that for ¢t € (0,71)U (72, 1), we have A(t) — A(¢) > 0 iff Im F'(¢) > 0. Since
Im F(t) = A (t) + J'(t), and is 0 for ¢ € (r1,72), we see that for all ¢ € (0,1) (and
trivially for ¢ ¢ (0,1) since then A(t) = A(2)),

(A(t) — A®)) (A (1) + J'(t)) > 0.

This inequality implies (5.1), which completes our proof.
Thus, A is indeed the unique admissible function such that V(A) is maximal.
We leave to the reader the task of checking that applying this result to the specific
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functional arrived at in Proposition 3.1 leads to the explicit formula for P, g given
in Theorem 1.1.

6. Conjectures and Open Questions

The theorems we have proved do not answer all the natural questions about the
typical plane partition in a box, or about random lozenge tilings of hexagons.

Given a location (z,y) in the normalized «, 3, hexagon, we can ask whether
the probability of finding a vertical lozenge near (x,y) is given by P, g.~(,y).
Theorem 1.1 tells us that this is true if we average over all (z, y) in some macroscopic
region. However, it is conceivable that there might be small-scale fluctuations in
the probabilities that would even out on a large scale. We believe that that is not
the case.

Conjecture 6.1. Let V be any open set in the «, 3, hexagon containing the four
points at which P, g, is discontinuous. As g — oo, the probability of finding a
vertical lozenge at normalized location (z,y) ¢ V is given by Py g (x,y) + o(1),
where the o(1) error bound is uniform in (z,y) for (z,y) ¢ V.

There is numerical evidence that Conjecture 6.1 is true. Also, the analogous
result for random domino tilings of Aztec diamonds has been proved in [CEP],
and it is not hard to prove that the local statistics for the one-dimensional case
described in Section 1 do in fact converge to i.i.d. statistics, so it is plausible that
Conjecture 6.1 is true. A similar result should also hold for higher-order statistics
(probabilities of finding configurations of several dominos); one can deduce explicit
hypothetical formulas for these probabilities from the theorems and conjectures in
[CKP].

Of course, we do not need to restrict our attention to hexagons, but can look at
tilings with lozenges of any regions. Hexagons do seem to involve the most elegant
combinatorics and analysis, but one can prove in general that almost all tilings of
large regions have normalized height functions that cluster around the solution to
the problem of maximizing a certain entropy functional; see [CKP] for the details.

We also conjecture an analogue of the arctic circle theorem of Jockusch, Propp,
and Shor. (See [JPS] for the original proof, or [CEP] for the proof of a stronger
version on which our conjecture is based.) Define the arctic region of a lozenge
tiling to be the set of lozenges connected to the boundary by sequences of adjacent
lozenges of the same orientation (where a lozenge is said to be adjacent to another
lozenge, or to the boundary, if they share an edge).

Conjecture 6.2 (Arctic Ellipse Conjecture). Fix ¢ > 0. The probability that the
boundary of the arctic region is more than a distance ¢ (in normalized coordinates)
from the inscribed ellipse is exponentially small in the scaling factor o.

There are also several questions for which we do not even have conjectural an-
swers.

Open Question 6.3. Is there a simple way to derive the results of Section 5 with-
out having to guess any formulas?

Such a method would be much more pleasant than our approach. A good test
case would be the following open question.
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Open Question 6.4. Is there a g-analogue of Theorem 1.17

Of course, the non-trivial situation is when ¢ — 1 as 0 — oo (although we do not
know the precise relationship between ¢ and ¢ that will lead to interesting limiting
behavior). There is a simple g-analogue of MacMahon’s enumeration of boxed plane
partitions (also due to MacMahon), and a g-analogue of Proposition 2.1 (which can
be established by a proof similar to that of Proposition 2.1). We believe that the
answer to Open Question 6.4 is yes, and that the same approach should work, but
the guess work required is likely to be tedious. We hope that further development
of these techniques will someday let one answer such questions more easily.

Open Question 6.5. Is there an analogue of Theorem 1.1 for “space partitions”
(the natural generalization of plane partitions from the plane to space)?

The answer to Open Question 6.5 may well be yes, but it is extremely unlikely
that similar techniques can be used to prove it. (For example, no analogue of
MacMahon’s formula is known, and there is no reason to believe that one exists.)

Appendix. Converting the Sum to an Integral

In Section 3, we had to convert a sum to an integral. The sum was

N Ty

1<i<j<np+Ll+ngr

and we interpreted it as a Riemann sum for the double integral

1y =1
(6.2) / / log & W =C7 ) 4o
0<s<t<ife t—s

for some function C' which we have not yet specified. In Section 3, we claimed that
the difference between the sum and the integral is o(1), and that C' can be chosen
so that B" and C' nowhere differ by more than O(1/N). In this appendix, we will
define C' and justify these claims.

The main obstacle is that (B~!)’ can be quite large (infinite, in fact, when
B’ = 0). We will now define a modification C' of B designed to keep (C~!)" from
being too large. We put C'(0) = 0 and C(b;/N) = i/N for 1 <i < np +{¢+ng
(so that C'(1) = (A + p)/(1 + p)). Between these points, we will define C' so that it
is a continuous, strictly increasing, piecewise linear function on [0, 1] such that C’
is constant on intervals (i/N, (i +1)/N), C" is never smaller than 1/N? or greater
than 1, and |C' —B’'| = O(1/N). There is no canonical way to do this; one way that
works is as follows. If b;11 > b; + 1, then set C((bj+1 —1)/N) =i/N + 1/N? (and
similarly if b; > 1 set C((by — 1)/N) = 1/N?). Then interpolate linearly to define
C' in between the points at which we have defined it so far. Notice that changing
B to C does not change the sum (6.1), since C~*(i/N) = b;/N = B=*(i/N).

To begin, for 0 < s <t < i‘T"':)’, we define

—1 —1
f(s,t) =log c’-C (S)
t—s
Because (C71)" = O(N?), the mean value theorem implies that f(s,t) = O(log N).

Consider small squares of side length N !, with their sides aligned with the

s- and t-axes and their upper right corners at (s,t) = (i/N,j/N),for 1 <i < j <
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nr + £+ ng. Each square has area N~2, and f is bounded by O(log V), so we can
safely remove up to o(N?/log N) squares from the domain of integration and the
corresponding terms from the sum without changing either by more than o(1). We
will do so in order to restrict our attention to squares on which we can bound the
partial derivatives of f.

We first remove the O(N?/2) squares containing some point (s,t) with |s — t| <
N7,

Next, we remove all squares containing some point (s, t) satisfying (C~1)'(s) >
N3 or (C1Y(t) > NY/3. We can check as follows that there are at most O(N>/?)
such squares. Since C'! is increasing and has range contained in [0, 1], the set
of all t with (C~1)/(t) > N'/3 has measure O(N~'/3). Also, as (s,t) varies over
each small square, (C~1)'(s) and (C~1)'(t) are constant. Hence, in this step we are
removing at most O(N~/3 /N=2) = O(N>/3) squares.

Thus, we can restrict our attention to squares containing only points (s,t) with
|s —t| > N-Y2 (C~1YY(s) < NY3 and (C~1)'(t) < N'/3,

Now we will estimate the difference between the sum and the integral. If we can
show that on each square, f varies by at most o(1) (uniformly for all squares), then
we will be done. To determine how much f can vary over a square of side length
N~1, we compute

of _ (€Y@ 1

o C-1(t)—C-1(s) t—s"
The second term has absolute value at most N'/? (since by assumption |s — t| >
N~1/2). To bound the first term, we start with the denominator. Because C’ < 1
everywhere, we have (C~1)" > 1,50 |C~1(t) — C7!(s)| > |s — t|, and thus

Ce'® | =)@

< (C_l)l(t)N1/2.

Clt)=Cls)| = [s =t
Finally, since (C~1)'(t) < N'/3, we have
of

= O(N®/%) = o(N).
oL = O(N/) = o(N)
The same holds for df/0s, of course.

Therefore, over one of the small squares of side length N~!, f can vary by at
most o(1). Thus, the sum (6.1) differs from the integral (6.2) by at most o(1).
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