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Boundary Stabilization of a Hyperbolic Equation
with Viscosity

M. M. Cavalcanti

Abstract. This paper is concerned with the solvability and uniform stability
of a hyperbolic equation with spatially varying coefficients of viscosity and
elasticity and boundary damping.
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1. Introduction

Let Ω be a bounded domain of Rn with C2 boundary Γ and let (Γ0,Γ1) be a
partition of Γ;both parts with positive measure.

We consider the following hyperbolic problem:∣∣∣∣∣∣∣∣∣∣∣∣∣

∂2y

∂t2
−∇ · (aij(x)∇y)− ∂

∂t
∇ · (bij(x)∇y) = f in Q = Ω× (0,∞)

y = 0 on Σ1 = Γ1 × (0,∞)
∂y

∂νa
+
∂

∂t

∂y

∂νb
+ β(x)

(
∂y

∂t
− g
)

= 0 on Σ0 = Γ0 × (0,∞)

y(0) = y0;
∂y

∂t
(0) = y1 in Ω,

(1.1)

where ∂y
∂νa

(resp. ∂y
∂νb

) is the outer cornormal derivative with respect to the matrix
(aij) (resp. (bij)) defined by

∂y

∂νa
= νi aij

∂y

∂xj
and ν = (ν1, · · · , νn) denotes the exterior unit normal at Γ.
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In physical terms the entries aij and bij are related to coefficients of elasticity and
viscosity, respectively. Without viscosity, i.e., if bij = 0 and assuming that aij = 1,
f = 0 and g = 0, the problem (1.1) was studied by many authors: See J. P. Quinn
and D. L. Russell [10], G. Chen [2, 3, 4], J. E. Lagnese [7, 8] and V. Komornik and
E. Zuazua [6]. And when β = 0, an asymptotic regularization procedure is proved
by G. C. Hsiao and J. Sprekels [5]. Inspired by the above works we show solvability
of strong and weak solutions to problem (1.1), and obtain boundary stabilization.

To obtain the existence of solutions we make use of Galerkin’s aproximation.
However, as we are also interested in srong solutions we have some technical dif-
ficulties wich lead us to transform the problem (1.1) into an equivalent one with
zero initial data.

Stability problems with nonhomogeneous conditions require a special treatement
because we don’t have any information about the influence of the inner products
(f(t), y′(t))L2(Ω) and (g(t), y′(t))L2(Γ0) on the energy

E(t) =
1
2

∫
Ω

|y′(x, t)|2dx+
1
2

∫
Ω

aij(x)
∂y

∂xi
(x, t)

∂y

∂xj
(x, t) dx(1.2)

or about the sign of its derivative E′(t).
To obtain the uniform decay we use the perturbed energy method. Our paper

is organized as follows. In Section 2 we give notations and state our main result.
In Section 3 we prove solvability of strong and weak solutions of (1.1) while in
Section 4 we obtain the boundary stabilization of solutions from Section 3.

2. Notations and Main Result

We define
(u, v) =

∫
Ω

u(x)v(x) dx; |u|2 =
∫

Ω

|u(x)|2 dx,

(u, v)Γ0 =
∫

Γ0

u(x)v(x) dx; |u|2Γ0
=
∫

Γ0

|u(x)|2dx
and let V be

V = {v ∈ H1(Ω) ; v = 0 on Γ1}
which, equipped with the topology |∇ · | is a Hilbert subspace of H1(Ω).

In order to establish our main result, we make the following assumptions on the
coefficients:

aij , bij ∈ C1(Ω).(2.1)

There exist positive constants a0 and b0 such that

aij = aji, and for ξ ∈ Rn,
n∑

i,j=1

aijξiξj ≥ a0|ξ|2(2.2)

bij = bji, and for ξ ∈ Rn,
n∑

i,j=1

bijξiξj ≥ b0|ξ|2,(2.3)

β ∈ L∞(Ω); β(x) ≥ 0 a.e. on Γ0 , β(x) = 0 ∀x ∈ Γ0 ∩ Γ1(2.4)

and β(x)→ 0 whenever x tends to a point x ∈ Γ0 ∩ Γ1.

This choice of the function β was done in order to avoid eventual singularities.
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Defining

a(u, v) =
n∑

i,j=1

∫
Ω

ai,j(x)
∂u

∂xi

∂v

∂xj
dx, ∀u, v ∈ V(2.5)

b(u, v) =
n∑

i,j=1

∫
Ω

bi,j(x)
∂u

∂xi

∂v

∂xj
dx, ∀u, v ∈ V(2.6)

from (2.1), (2.2) and (2.3) there exist positive constants a0, a1, b0 and b1 such that

a0|∇u|2 ≤ a(u, u) ≤ a1|∇u|2, ∀u ∈ V(2.7)

b0|∇u|2 ≤ b(u, u) ≤ b1|∇u|2, ∀u ∈ V.(2.8)

Now, we are in position to state our main result.

Theorem 2.1. Let{
y0, y1, f, g

} ∈ V × L2(Ω)× L2(0,∞;L2(Ω))×H1(0,∞;L2(Γ0)).

Under the assumptions (2.1)-(2.3) and assuming that g(0) = 0, the problem (1.1)
possesses a unique weak solution y : Ω× (0,∞)→ R such that

y ∈ L∞(0,∞;V ), y′ ∈ L∞(0,∞;L2(Ω)).(2.9)

Moreover, provided that for large t, the inequality∫ t

0

exp(
ε

2
s)
(
|f(s)|2 + |

√
βg(s)|2Γ0

)
ds ≤ αtr(2.10)

holds for some positive constants ε, α, and r, we obtain the following energy decay

E(t) ≤ C exp(−ε
2
t), ∀t ≥ 0 and ∀ε ∈ (0, ε0]

where C and ε0 are positive constants.

Remark 1. The hypothesis (2.10) means that the map

t 7−→
∫ t

0

exp(
ε

2
s)
(
|f(s)|2 + |

√
βg(s)|2Γ0

)
ds

must be bounded by a polinomial P (t).

3. Solvability of strong and weak solutions

In this section we are going to prove the existence of strong solutions of problem
(1.1). Using density arguments we conclude the same for weak solutions. The exis-
tence of solutions may be proven either by the Galerkin method or using semigroup
arguments. We employ the Galerkin method.

We define the Hilbert space

H =
{
u ∈ V ; Au,Bu ∈ L2(Ω)

}
(3.1)

where A and B are the operators defined by

A = − ∂

∂xi

(
aij(x)

∂

∂xj

)
and B = − ∂

∂xi

(
bij(x)

∂

∂xj

)
and H is endowed by the natural inner product

(u, v)H = (u, v)V + (Au,Av) + (Bu,Bv).
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Let us consider

y0, y1 ∈ H(3.2)

satisfying the compatibility condition

∂y0

∂νa
+
∂y1

∂νb
+ β(x)

(
y1 − g(0)

)
= 0.(3.3)

In addition, let us assume that

f ∈ H1(0,∞;L2(Ω)), g ∈ H2(0,∞;L2(Γ0)).(3.4)

The variational formulation associated with problem (1.1) is given by

(y′′(t), w) + a(y(t), w) + b(y(t), w) + (βy′(t), w)Γ0

= (f(t), w) + (βg(t), w)Γ0
; ∀w ∈ V.

In order to obtain strong solutions and since we can not use a ‘special basis’
(for instance, one formed by eigenfunctions) because of the boundary condition
(βy′(t), w)Γ0

, we need to derive the above expression with respect to t. But it
lead us to technical difficulties when we estimate y′′(0). To solve this problem we
transform the boundary value problem (1.1) into an equivalent one with null initial
data. In fact, considering the change of variables

v(x, t) = y(x, t)− φ(x, t)(3.5)

where
φ(x, t) = y0(x) + ty1(x), (x, t) ∈ Ω× [0,∞)

we obtain the equivalent problem for v :

∣∣∣∣∣∣∣∣∣
v′′ −∇ · (aij(x)∇v)−∇ · (bij(x)∇v′) = F in Q
v = 0 on Σ1

∂v

∂νa
+
∂v′

∂νb
+ βv′ = G on Σ1

v(0) = v′(0) = 0

(3.6)

where

F = f +∇ · (aij(x)∇φ) +∇ · (bij(x)∇φ′)(3.7)

G = βg − ∂φ

∂νa
− ∂φ′

∂νb
− βφ′.(3.8)

If v is a solution of (3.6) in [0,T], then y = v+φ is a solution of (1.1) in the same
interval. However, after two estimates we are going to prove later, we have that

|Av(t)|2 + |∇v′(t)|2 ≤ C(T ), ∀t ∈ [0, T ] and ∀T > 0.(3.9)

Thus, from (3.4) and (3.5) we have the same estimate obtained in (3.9) for the
solution y. So, we can extend y to the whole interval [0,∞) using the standard
argument

Tmax =∞ or if Tmax <∞ then lim
t→Tmax

(|Av(t)|2 + |∇v′(t)|2) =∞.

Hence, it is sufficient to prove that (3.6) has a solution in [0,T], which will be
done by the Galerkin method.
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We represent by (ων) a basis in H, which is orthonormal in L2(Ω), by Vm the
subspace of H generated by the m-first vectors ω1,· · · , ωm and define

vm(t) =
m∑
i=1

gim(t)ωi(3.10)

where vm(t) is the solution of the folowing Cauchy problem:

(3.11) (v′′m(t), ωj) + a(vm(t), ωj) + b(v′m(t), ωj) + (βv′m(t), ωj)Γ0

= (F (t), ωj) + (G(t), ωj)Γ0
;

vm(0) = v′m(0) = 0; j = 1, · · · ,m.
The aproximate system is a normal one of ordinary differential equations. It has

a solution in [0, tm). The extension of the solution on the whole interval [0,T] is a
consequence of the first estimate we are going to obtain below.

3.1. A Priori Estimates.

3.1.1. The First Estimate. Multiplying both sides of (3.11) by g′jm(t), summing
over 1 ≤ j ≤ m and considering (2.2), we obtain

1
2
d

dt

{
|v′m(t)|2 + a(vm(t), vm(t))

}
+ b(v′m(t), v′m(t)) +

∣∣∣√βv′m(t)
∣∣∣2
Γ0

(3.12)

= (F (t), v′m(t)) +
d

dt
(G(t), vm(t))Γ0

− (G′(t), vm(t))Γ0

≤ 1
2
|F (t)|2 +

1
2
|v′m(t)|2 +

d

dt
(G(t), vm(t))Γ0

+
C2

0

2
|G′(t)|2Γ0

+
1
2
|∇vm(t)|2

where C0 is a positive constant such that |v|Γ0 ≤ C0|∇v| , ∀v ∈ V.
Integrating (3.12) over (0,t) 0 < t < tm, taking into consideration (2.7) and (2.8)

and noting that vm(0) = v′m(0) = 0, we get

1
2
|v′m(t)|2 +

a0

2
|∇vm(t)|2 + b0

∫ t

0

|∇v′m(s)|2 ds+
∫ t

0

∣∣∣√βv′m(s)
∣∣∣2
Γ0

ds(3.13)

≤ 1
2
‖F‖2L2(0,T ;L2(Ω)) +

C2
0

2
‖G′‖2L2(0,T ;L2(Γ0)) + (G(t), vm(t))Γ0

+
1
2

∫ t

0

{
|v′m(s)|2 + |∇vm(s)|2

}
ds.

On the other hand, for ar arbitrary η > 0 we have

(G(t), vm(t))Γ0
≤ C2

0

4η
|G(t)|2Γ0

+ η |∇vm(t)|2 .(3.14)

Combining (3.13), (3.14) and choosing η > 0 small enough, we obtain the first
estimate

|v′m(t)|2 + |∇vm(t)|2 +
∫ t

0

|∇v′m(s)|2 ds+
∫ t

0

∣∣∣√βv′m(s)
∣∣∣2
Γ0

ds ≤ L1(3.15)

where L1 is a positive constant independent of m ∈ N and t ∈ [0, T ].
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3.1.2. The Second Estimate. First of all we are going to estimate v′′m(0) in L2(Ω)
norm. Taking t = 0 in (3.11) and taking into account that vm(0) = v′m(0) = 0, it
follows that

(v′′m(0), ωj) = (F (0), ωj) + (G(0), ωj)Γ0
.(3.16)

From (3.3) and (3.8) we have that G(0) = 0, and from (3.16) we conclude

|v′′m(0)|2 = (F (0), v′′m(0))

which implies that

|v′′m(0)| ≤ L; ∀m ∈ N(3.17)

where L is a positive constant independent of m ∈ N.
Now, taking the derivative of (3.11) with respect to t, we can write

(3.18) (v′′′m(t), ωj) + a(v′m(t), ωj) + b(v′′m(t), ωj) + (βv′′m(t), ωj)Γ0

= (F ′(t), ωj) + (G′(t), ωj)Γ0
.

Multiplying both sides of (3.18) by g′′jm(t) and summing over 1 ≤ j ≤ m, we
obtain

(3.19)
1
2
d

dt

{
|v′′m(t)|2 + a(v′m(t), v′m(t))

}
+ b(v′′m(t), v′′m(t)) +

∣∣∣√βv′′m(t)
∣∣∣2
Γ0

= (F ′(t), v′′m(t)) +
d

dt
(G′(t), v′m(t))Γ0

− (G′′(t), v′m(t))Γ0
.

Using arguments analogous to those considered in the first estimate, observing
that v′m(0) = 0, and taking into account (3.17), from (3.19) we obtain the second
estimate

|v′′m(t)|2 + |∇v′m(t)|2 +
∫ t

0

|∇v′′m(s)|2 ds+
∫ t

0

∣∣∣√βv′′m(s)
∣∣∣2
Γ0

ds ≤ L2(3.20)

where L2 is a positive constant independent of m ∈ N and t ∈ [0, T ].
Due to estimates (3.15) and (3.20) we can extract a subsequence {vµ} of {vm}

such that

vµ ⇀ v weak star in L∞(0, T ;V )(3.21)

v′µ ⇀ v′ weak star in L∞(0, T ;V )(3.22)

v′′µ ⇀ v′′ weak in L2(0, T ;V )(3.23)

v′′µ ⇀ v′′ weak star in L∞(0, T ;L2(Ω))(3.24)

βv′µ ⇀ βv′ weak in L2(0, T ;L2(Γ0)).(3.25)

The above convergences are sufficient to pass to the limit.

3.2. Uniqueness. Supose we have two solutions y and ŷ of problem (1.1). Then
z = y − ŷ satisfies

(z′′(t), w) + a(z(t), w) + b(z′(t), w) + (βz′(t), w)Γ0
= 0, ∀w ∈ V(3.26)

z(0) = z′(0) = 0.
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Taking w = 2z′(t) in (3.26) we obtain

d

dt

{
|z′(t)|2 + a(z(t), z(t))

}
+ 2b(z′(t), z′(t)) + 2

∣∣∣√βz′(t)∣∣∣2
Γ0

= 0.(3.27)

Integrating (3.27) over (0,t) we obtain

|z′(t)|2 + a0 |∇z(t)|2 + 2b0
∫ t

0

|∇z′(s)|2 ds+ 2
∫ t

0

∣∣∣√βz′(s)∣∣∣2
Γ0

ds = 0

which implies that |∇z(t)| = |z′(t)| = 0. This completes the proof.

3.3. Solvability of weak solutions. We have just proved the existence of solu-
tions of the problem (1.1) when y0 and y1 are smooth. By density arguments we
conclude the same for weak solutions. However, the principal difficulty is due to the
existence of a sequence of initial data which satisfies the hypothesis of compatibility
(3.3). For this end and since g(0) = 0, given

{
y0, y1

} ∈ V × L2(Ω) it is sufficient
to consider

y0
µ ∈ D(A) =

{
u ∈ V ; Au ∈ L2(Ω) and

∂u

∂νa
= 0 on Γ0

}
such that

y0
µ → y0 in V

and
y1
µ ∈ D(B) ∩H1

0 (Ω) such that y1
µ → y1 in L2(Ω).

The uniqueness of weak solutions requires a regularization procedure and can
be obtained using the standard method of Visik-Ladyshenskaya, cf. J. L. Lions [9]
Chapter 3, Section 8.2.

4. Asymptotic Behaviour

In this section we obtain the uniform decay of the energy given in (1.2) for
strong solutions, since the same occurs for weak solutions using standard density
arguments.

The derivative of the energy given by (1.2) is

E′(t) = −b(y′(t), y′(t))−
∣∣∣√βy′(t)∣∣∣2

Γ0

+ (f(t), y′(t)) + (g(t), y′(t))Γ0
.(4.1)

Let λ and µ be positive constants such that

|v|2 ≤ λ|∇v|2 ∀v ∈ V(4.2)

and ∣∣∣√βv∣∣∣2
Γ0

≤ µ|∇v|2; ∀v ∈ V.(4.3)

For an arbitrary ε > 0 we define the perturbed energy

Eε(t) = E(t) + εψ(t)(4.4)

where

ψ(t) =
∫

Ω

y′ydx.(4.5)
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Proposition 4.1. There exists C1 > 0 such that

|Eε(t)− E(t)| ≤ εC1E(t), ∀t ≥ 0 and ∀ε > 0.

Proof. From (2.7), (4.2) and (4.5) we obtain

|ψ(t)| ≤ 1
2
|y′|2 +

1
2
λ a−1

0 a(y, y) ≤ (λa−1
0 + 1

)
E(t).(4.6)

If we define C1 = λa−1
0 + 1,then from (4.4) and (4.6) we can write

|Eε(t)− E(t)| = ε|ψ(t)| ≤ εC1E(t).

This concludes the proof. �

Proposition 4.2. There exist C2 = C2(ε) and ε1 positive constants such that

E′ε(t) ≤ −εE(t) + C2

(
|f(t)|2 + |

√
βg(t)|2Γ0

)
; ∀t ≥ 0 and ∀ε ∈ (0, ε1].

Proof. First of all we must estimate ψ′(t) in terms of E(t). Taking the derivative
of ψ(t) given in (4.5) and replacing y′′ by ∇ · (aij(x)∇y) +∇ · (bij∇y′) + f in the
expression obtained it follows that

ψ′(t) =
∫

Ω

∇ · (aij(x)∇y) y dx+
∫

Ω

∇ · (bij∇y′) y dx+
∫

Ω

fy dx+
∫

Ω

|y′|2dx.
(4.7)

On the other hand, from Gauss’ theorem and taking into account that

∂y

∂νa
+
∂y′

∂νb
= β(g − y′) on Γ0

we obtain

(4.8)
∫

Ω

∇ · (aij(x)∇y) y dx+
∫

Ω

∇ · (bij∇y′) y dx

= −a(y(t), y(t))− b(y′(t), y(t))−
∫

Γ0

βy′y dΓ +
∫

Γ0

βgy dΓ.

Replacing (4.8) in (4.7); adding and subtracting the term
∫

Ω
|y′|2dx in (4.7) we get

ψ′(t) = −2E(t)− b(y′(t), y(t)) + 2
∫

Ω

|y′|2dx−
∫

Γ0

βy′y dΓ +
∫

Ω

fy dx+
∫

Γ0

βgy dΓ.

(4.9)

Now, from (2.7), (4.2), (4.3) and (4.9), using for an arbitrary η > 0 the inequality
ab ≤ a2

4η + ηb2 we can write

ψ′(t) ≤− (2− 8η)E(t) +
(

2λ+
||b||2a−1

0

4η

)
|∇y′(t)|2(4.10)

+
µa−1

0

4η

∣∣∣√βy′(t)∣∣∣2
Γ0

+
a−1

0 λ

4η

(
|f(t)|2 +

∣∣∣√βg(t)
∣∣∣2
Γ0

)
where

||b|| =
n∑

i,j=1

||bij ||L∞(Ω).



Boundary Stabilization of a Hyperbolic Equation 175

Choosing η = 1
8 from (4.10) we have

ψ′(t) ≤ −E(t) +M1 |∇y′(t)|2 +M2

∣∣∣√βy′(t)∣∣∣2
Γ0

+M3

(
|f(t)|2 +

∣∣∣√βg(t)
∣∣∣2
Γ0

)(4.11)

where
M1 = 2

(
λ+ ||b||2a−1

0

)
, M2 = 2µa−1

0 and M3 = 2a−1
0 λ.

Thus, combining (2.8), (4.1), (4.4) and (4.11), we conclude

E′ε(t) = E′(t) + εψ′(t)

≤ −b0 |∇y′(t)|2 −
∣∣∣√βy′(t)∣∣∣2

Γ0

+ (f(t), y′(t)) + (βg(t), y′(t))Γ0
− εE(t)

+ εM1 |∇y′(t)|2 + εM2

∣∣∣√βy′(t)∣∣∣2
Γ0

+ εM3

(
|f(t)|2 +

∣∣∣√βg(t)
∣∣∣2
Γ0

)
which implies

E′ε(t) ≤ − (b0 − ε(M1 + 1)) |∇y′(t)|2 − (1− ε(M2 + 1))
∣∣∣√βy′(t)∣∣∣2

Γ0

(4.12)

− εE(t) +
(
λ

4ε
+ εM3

)
|f(t)|2 +

(
1
4ε

+ εM3

)
|g(t)|2Γ0

.

Defining

ε1 = min

{
b0

M1 + 1
,

1
M2 + 1

}
and choosing ε ∈ (0, ε1] it follows that

E′ε(t) ≤ −εE(t) + C2(ε)
(
|f(t)|2 +

∣∣∣√βg(t)
∣∣∣2
Γ0

)
which concludes the proof. �

Proof of the exponential decay. We define

ε0 = min{ε1,
1

2C1
}

and let us consider ε ∈ (0, ε0]. From Proposition 4.1 we have

(1− C1ε)E(t) ≤ Eε(t) ≤ (1 + C1ε)E(t)(4.13)

Since ε ≤ 1/2C1,
1
2
E(t) ≤ Eε(t) ≤ 3

2
E(t) ≤ 2E(t); ∀t ≥ 0(4.14)

and therefore

−εE(t) ≤ −ε
2
Eε(t).(4.15)

Hence, from (4.15) and considering Proposition 4.2 we obtain

E′ε(t) ≤ −
ε

2
Eε(t) + C2

(
|f(t)|2 + |

√
βg(t)|2Γ0

)
.

Consequently
d

dt

(
Eε(t) exp(

ε

2
t)
)
≤ C2

(
|f(t)|2 + |

√
βg(t)|2Γ0

)
exp(

ε

2
t).
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Integrating the above inequality over [0,t] we get

Eε(t) ≤ exp(−ε
2
t)Eε(0) + C2 exp(−ε

2
t)
∫ t

0

exp(
ε

2
s)
(
|f(s)|2 + |

√
βg(s)|2Γ0

)
and taking into consideration (4.14) we see that

E(t) ≤
(

3E(0) + 2C2

∫ t

0

exp(
ε

2
s)
(
|f(t)|2 + |

√
βg(t)|2Γ0

))
exp(−ε

2
t).(4.16)

Combining (4.16) with the assumption (2.10) we prove the desired decay and
finish the proof of Theorem 2.1. �
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