m, the distinct fractional parts of $\alpha, 2\alpha, \dots, m\alpha$ determine a partition of the interval [0,1]. Defining $d_{\alpha}(m)$ and $d'_{\alpha}(m)$ to be the maximum and minimum lengths, respectively, of the subintervals of the partition corresponding to the integer m, it is shown that

ABSTRACT. Given an irrational number α and a positive integer

the sequence $\left(\frac{d_{\alpha}(m)}{d'_{\alpha}(m)}\right)_{m=1}^{\infty}$ is bounded if and only if α is of constant type. (The proof of this assertion is based on the continued

 $\left(d'_{\alpha}(m)\right)_{m=1}$ stant type. (The proof of this assertion is based on the continued fraction expansion of irrational numbers.)