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Homology for Operator Algebras III: Partial
Isometry Homotopy and Triangular Algebras

S. C. Power

Abstract. The partial isometry homology groups Hn defined in Power [17]
and a related chain complex homology CH∗ are calculated for various triangu-
lar operator algebras, including the disc algebra. These invariants are closely
connected with K-theory. Simplicial homotopy reductions are used to iden-
tify both Hn and CHn for the lexicographic products A(G) ? A with A(G)
a digraph algebra and A a triangular subalgebra of the Cuntz algebra Om.
Specifically Hn(A(G) ? A) = Hn(∆(G)) ⊗Z K0(C∗(A)) and CHn(A(G) ? A)
is the simplicial homology group Hn(∆(G);K0(C∗(A))) with coefficients in
K0(C∗(A)).
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Taking the perspective that equivalence classes of projections in the stable al-
gebra of a non-self-adjoint algebra A may be viewed as 0-simplexes one can often
identify the resulting homology group H0(A) as K0(C∗(A)). Analogously, viewing
partial isometries in the stable algebra as 1-simplexes one can similarly formulate
higher order homology group invariants for A. This was done recently in Power [17]
with the intention of extending the limit homology groups introduced by Davidson
and Power [3], for regular limit algebras, to subalgebras of general C*-algebras.

In the present paper we develop further these homology invariants together with
a related chain complex homology CH∗ also derived from partial isometries in the
stable algebra. Our main purpose is to indicate methods for calculation mainly in

Received January 23, 1998.
Mathematics Subject Classification. 47D25, 46K50.
Key words and phrases. operator algebra, homology group, nonselfadjoint, Cuntz algebra.

c©1998 State University of New York
ISSN 1076-9803/98

35

http://nyjm.albany.edu:8000/nyjm.html
http://nyjm.albany.edu:8000/j/1998/Vol4.html
http://nyjm.albany.edu:8000/j/1998/4-4.html


36 S. C. Power

the setting of triangular algebras, for which A ∩ A∗ is abelian. As we see there
is a close connection with K-theory for operator algebras, both in terms of the
formulation of the invariants and in their identification.

In appropriate contexts induced homology group homomorphisms together with
symmetric homology scales seem to provide critical invariants for the position of
subalgebras and for the classification of limit algebras. See for example Donsig and
Power [5], [6] and Power [17], [18]. In [6] for example, we completely characterise the
regular isomorphism classes of the so-called rigid systems of 4-cycle matrix algebras
in terms of K0, H1 and scales in K0 ⊕ H1. This indicates that partial isometry
homology may be more accessible and appropriate than Hochschild cohomology
at least in the common setting of algebras with a regular diagonal. At the same
time it will be of interest to elucidate the connections between H∗(A) and the
Hochshild cohomology of operator algebras, as given in Gilfeather and Smith [7],
[8], for example.

The partial isometry homology group H1(A) can be viewed as an obstruction to
the cancellative triangulability of cycles of partial isometries. (In the sequel we shall
restrict attention to homology groups arising from normalising partial isometries,
this being appropriate for algebras with a regular maximal abelian self-adjoint
subalgebra (masa).) To indicate this idea briefly, consider a partial isometry 2n-
cycle, by which we mean a 2n-tuple {v1, v2, . . . , v2n} with v∗2nv2n−1v

∗
2n−2 . . . v

∗
2v1 =

v∗1v1, and with appropriately matching initial and final projections, v1v
∗
1 = v2v

∗
2 etc.

Such a cycle is associated with a 2n-sided polygonal directed graph (digraph) with
alternating edge directions. It may be that for a particular such cycle in the stable
algebra of A that one can add additional partial isometries from the stable algebra
so that the totality has a digraph (with compositions of edges respecting operator
multiplication) which provides a triangulation of the original 2n-cycle graph. In
this case the 2n-cycle gives no contribution to H1(A). Thus, if partial isometry
cycles are always triangulable in this way then H1(A) vanishes. This is the case
for the disc algebra for example. However there is no general converse assertion
because H1(A) may also vanish for reasons of cancellation, as in the case of some
of the algebras of Theorem 2.

Theorem 1. Let A(D) be the disc algebra. Then H0(A(D)) = Z and Hn(A(D)) = 0
for n ≥ 1.

For Theorem 2 below Hn(∆(G)) denotes the integral simpicial homology of the
simplicial complex ∆(G) of the digraph algebra A(G). We write A1 ? A2 for the
triangular lexicographic product (see [14], [15]) relative to the natural direct sum
decomposition A1 = (A1 ∩ A∗1) + A0

1. Thus A(G) ? A, with A triangular, is simply
the algebra

(A(G) ∩A(G)∗)⊗A+A(G)0 ⊗ C∗(A),
which is also triangular if A(G) is triangular. The remaining terminology is ex-
plained later in the text.

Triangular algebras have a distinguished (maximal abelian self-adjoint) diago-
nal and an associated family of normalising partial isometries. Accordingly we
can define partial isometry homology group invariants based on this family. In
general the problem of uniqueness of diagonals must be addressed. On the other
hand lexicographic products do give diverse triangular algebras with computable
homology.
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Theorem 2. Let A(G) be a digraph algebra. Let TO0
m and TOm be the refinement

nest subalgebras of the algebraic Cuntz algebra O0
m and its closure in the Cuntz

algebra Om, respectively. Then Hn(A(G)?TO0
m) = Hn(A(G)?TOm) = Hn(∆(G))⊗

Zm−1 for all m ≥ 1 and n ≥ 0.

In the important special case of the 4-cycle digraph algebra

A(G) =


C 0 C C
0 C C C
0 0 C 0
0 0 0 C


the lexicographic product A = A(G) ? TOm may be viewed as

A(G) ? TOm =


TOm 0 Om Om

0 TOm Om Om
0 0 TOm 0
0 0 0 TOm

.

Whilst the K0 group here is simply K0(A ∩ A∗), which is C(X,Z) with X a
Cantor space, the homology group H1(A) is Zm−1.

There are two stages in the proof of Theorem 2. First we require a key analytical
result which is of independent interest, Lemma 5.4, on the structure of normalising
partial isometries in Om and its stable algebra. The second stage — Steps 1,
2 and 3 of Section 6 — can be viewed as the identification of Hn(A) through
simplicial homotopy reductions of general normalising partial isometry complexes
to elementary partial isometry complexes. In fact this direct approach is applicable
in other contexts for which the normalising partial isometries are well-understood.
This is the case for example for crossed products and semicrossed products of C(X)
with X a Cantor space [19].

In contrast to direct identifications one can also exploit the established machinery
of simplicial homology transferred to partial isometry homology. This theme is
taken up in the final section. Here a different but closely related form of partial
isometry homology, CH∗, is defined in terms of the homology of a chain complex.
This homology is more sensitive to torsion as we see in Theorem 7.2, the analogue
of Theorem 2. Algebraic topology techniques are easily imported for CH∗ and we
illustrate this briefly here with the Mayer Vietoris sequence for regular pairs.

1. The Partial Isometry Homology Hn(A; C)
First we define the stable partial isometry homology groups given in Power [17].

It should be borne in mind that the definition given below provides a natural
way of recovering the simplicial homology of the digraph of a digraph algebra in
purely algebraic terms. Moreover, by doing so in terms of partial isometries (rather
than partial orderings of minimal projections for example) we obtain homology
groups which give the “correct” limit groups in the case of the fundamental algebras
A(G)⊗B, with A(G) a digraph algebra and B an approximately finite C*-algebra.
Recall that a digraph algebra A(G) is a unital subalgebra of a complex matrix
algebra which is spanned by some of the matrix units of a self-adjoint matrix unit
system for the matrix algebra. The digraph G for such an algebra has edges (j, i)
associated with the matrix units ei,j that belong to the algebra.
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Let B be a unital involutive algebra and let C ⊆ A be unital subalgebras, with
C self-adjoint. Usually we take C to be an abelian subalgebra or a maximal abelian
subalgebra of B. The stable algebra of A is the algebra M∞(A) of finitely nonzero
infinite matrices over A, that is, the natural union of matrix algebras over A. It
is immediately clear from the definition below that the homology groups are stable
in the sense that

Hn(A; C) = Hn(M∞(A);M∞(C)).

It is appropriate to consider stable homology since this leads to the natural connec-
tions with K-theory. Moreover the stable formulation allows the freedom necessary
for the algebraic homotopy aguments in the proof of Theorem 2.

A partial isometry u in M∞(A) is an element for which u∗u is a (self-adjoint)
projection and is said to be M∞(C)-normalising, or simply normalising if the con-
text is clear, if ucu∗ and u∗cu belong to M∞(C) whenever c does. In particular, if p
is a projection in M∞(C) and pu is a partial isometry, then pu is also normalising.

Let D ⊆M∞(B) be star isomorphic to the matrix algebra Mr(C), with full ma-
trix unit system {uij : 1 ≤ i, j ≤ r} consisting of normalising partial isometries. In
particular each projection uii belongs to M∞(A) and it follows that the subalgebra

AD = D ∩M∞(A)

is spanned by the matrix units uij in M∞(A). The associated pairs (j, i) form the
edges of a (transitive relation) digraph. In particular AD is (completely) isomorphic
to a digraph algebra, and we refer to AD as a digraph algebra of A. More generally
define the digraph algebras AD when D is star isomorphic to a direct sum of
full matrix algebras. Also it is convenient to refer to unital subdigraph algebras
of AD (those unital subalgebras given by a subsemigroup of the matrix units)
also as digraph algebras of A. Note that the partial matrix unit systems of these
subalgebras must not only satisfy the obvious multiplicative relations but must also
generate a complete matrix unit system for a finite dimensional C*-algebra.

It is through such algebras, or partial isometry complexes, together with as-
sociated regular inclusions and direct sums, that we define the partial isometry
homology Hn(A; C). At least, this is appropriate in the case of unital and sigma
unital algebras.

Two digraph subalgebras A1 = AD1 and A2 = AD2 are said to be equivalent if
there is a unitary element v in M∞(A ∩ A∗) (more precisely, in some sufficiently
large matrix algebra over (A ∩A∗), which is normalising, such that vA1v

∗ = A2.
To the resulting equivalence class [AD] of AD there is a well-defined digraph G

and simplicial complex ∆(G). This complex is obtained from the undirected graph
G of G by including 0-simplexes 〈vi〉 for the vertices vi of G and t-simplexes for
each complete subgraph of G with t+ 1 vertices.

Define the simplicial homology group Hn([AD]) to be the usual simplicial ho-
mology group of ∆(G) with coefficients in Z. The group Hn(A; C) is defined as the
quotient

(
∑
[AD]

⊕Hn(([AD]))/Jn
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where Jn is a subgroup of the (restricted) direct sum associated with inclusions
and splittings of the subalgebras AD. Explicitly, Jn is generated by elements

−g ⊕ θ(g)

and

−h⊕ θ1(h)⊕ θ2(h),

where g ∈ Hn([AD1 ]) and θ : Hn([AD1 ]) → Hn([AD2 ]) is induced by an inclusion
of matrix unit systems, and where h ∈ Hn([AD]) and

θ1 + θ2 : Hn([AD])→ Hn([AD1 ])⊕Hn([AD2 ])

is the mapping induced by a splitting uij = u1
ij + u2

ij . By a splitting, we mean that
there is a projection p in M∞(C), dominated by the initial projection of u1,1 such
that u1

ij = u1
i1pu

1
1j for all appropriate i, j. In view of the assumed normalising

property of the uij the new systems {u1
ij} and {u2

ij} obtained in this way are also
normalising.

One can also express Hn(A; C) as a universal object amongst groups G with
families of embeddings Hn(∆[AD]) → G respecting the splitting and inclusion
induced maps.

In the case when A is a triangular algebra in the sense that A∩A∗ is abelian it
is convenient to define Hn(A) to be the group Hn(A;A ∩ A∗). This definition is
particularly appropriate for operator algebras A in which C is a regular subalgebra
in the sense that the normalising partial isometries in A generate A.

The following basic result is in Section 2 of [17]. See also the parallel Theorem
7.1 below. The partial isometry homology Hn(A(G)) is defined to be Hn(A(G);C)
where C is any maximal abelian self-adjoint subalgebra ofA(G). This is well-defined
since all such diagonal algebras C are unitarily equivalent. A convenient feature
of triangular algebras is that we can employ the definition of the last paragraph
and avoid problems of uniqueness of diagonals. In this regard there are already
complications in the case of diagonals of approximately finite algebras. (See [4].)

Theorem 3. The partial isometry homology of a digraph algebra A(G) is naturally
isomorphic to the simplicial homology of the simplicial complex ∆(G) of the digraph
G.

The homology scale

Let A(G) ⊆Mr(C) be a digraph algebra with diagonal subalgebra Dr and with
homology groups Hn(A(G);Dr) where r = |G|. Identify these groups with the
simplicial homology groups Hn(∆(G)). We may define the scale of Hn(A(G)) as
a subset determined by n-cycles which, in the following sense, lie in the complex
∆(G) for A(G). For simplicity we take n = 1.

A 1-cycle is said to belong to the scale Σ1(A(G)) of H1(A(G)) if it has the form
m1∑
i=1

δ1,i + · · ·+
mk∑
i=1

δk,i

where each pair δk,i, δj,l is disjoint if k 6= j, and each partial sum
m1∑
i=1

δk,i
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is a 1-cycle for which the 1-simplexes δk,i are essentially disjoint.
For a general pair (A, C) define the scale of Hn(A; C) to be the images of the

scales for all the inclusions

Hn(A)→ Hn(A; C)
arising from digraph subalgebras A contained in A (rather than the stable algebra
of A).

As an illustration consider the digraph algebra

A =


M2,2 M2,3 0 M2,2

0 M3,3 0 0
0 M3,2 M2,2 M2,2

0 0 0 M2,2


where M2,3 is the space of 2 × 3 complex matrices. In this case H1(A) = Z and
the scale is the subset {−2,−1, 0, 1, 2}. (The reduced digraph of A is a 4-cycle and
so, in the terminology of [5], A is a 4-cycle algebra.)

For the algebras of Theorem 2 the scales of the higher homology groups are
improper in that they coincide with the groups themselves.

For another elementary example consider the tensor product algebra A⊗C(X)
with A the digraph algebra above and X a Cantor space. Then

H1(A⊗ C(X)) = H1(A)⊗K0(C(X)) = Z⊗ C(X,Z) = C(X,Z)

(see [17]) and the scale can be identified with the subset C(X, {−2,−1, 0, 1, 2}).
The scale is a symmetric subset of the abelian group Hn(A; C). That is, if g is

an element then so too is −g. In many approximately finite contexts it is a gener-
ating subset. Also, as with the K0 scale, the homology scales provide isomorphism
invariants. In particular we remark that the scaled first homology group plays a
key role in the regular classification of limits of cycle algebras. (See [5], [6].)

2. Vanishing Homology

Cancellation

Let (A1, C1), (A2, C2) be pairs as in Section 1. A regular homomorphism between
such pairs is an algebra homomorphism ϕ : A1 → A2 such that ϕ(C1) ⊆ C2 and ϕ
maps the normaliser of C1 in A1 into the normaliser of C2 in A2. A star-extendible
homomorphism ϕ : A1 → A2 is one which is a restriction of a star homomorphism
between the generated star algebras. In particular, such a map maps a partial
matrix unit system in M∞(A1) to one in M∞(A2). Accordingly it is the star-
extendible regular maps that induce natural group homomorphisms

Hnϕ : Hn(A1; C1)→ Hn(A2; C2).

Suppose that α : A → A is a regular star-extendible automorphism with respect
to a regular masa C of A. Let us write, simply, id ⊕ α for the maps M2k ⊗ A →
M2k+1 ⊗ A given by a → a ⊕ (idM2k

⊗ α)(a) for k = 0, 1, 2, . . . . These maps are
regular homomorphisms, with respect to the diagonal masas D2k ⊗ C, and we may
form the algebraic direct limit

(Ã; C̃) = lim→ ((M2k ⊗A;D2k ⊗ C), id⊕ α).
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It can be verified that

Hn(Ã; C̃) = lim→ (Hn(M2k ⊗A;D2k ⊗ C), Hn(id⊕ α))

= lim→ (Hn(A; C), Hn(id⊕ α)).

In particular if Hnα : Hn(A; C) → Hn(A; C) is the map g → −g then (id ⊕ α)∗
is the zero map and Hn(Ã; C̃) = 0. These limit algebras illustrate how homology
groups may vanish through cancellation.

For a concrete example we may take A ⊆M4(C) to be the fundamental 4-cycle
matrix algebra (spanned by the diagonal matrix units eii and e13, e14, e24, e23) and
let α be a reflection automorphism. If one considers the 4-cycle {v1, v2, v3, v4} =
{e13, e14, e24, e23} in the first algebra C⊗A then no image in a subsequent super-
algebra M2k ⊗ A is triangulable (in the sense mentioned in the introduction and
below). Nevertheless the 4-cycle provides a generator for H1(C⊗A;C⊗A∩A∗) = Z,
and its image in M2 ⊗A can be split, in our sense, as a direct sum of two 4-cycles
of opposite orientation.

We remark that one can consider, more generally, direct limits
lim→ (Mnk ⊗A;Dnk ⊗ C) where each embedding is a direct sum of automorphisms
of Mnk ⊗ A coming from automorphisms of a fixed digraph algebra A. In this
way one obtains a very wide family of subalgebras of C*-algebras with computable
normalising partial isometry homology.

In the examples above cancellation is built in at the outset in the presentation
of the algebras. The following simple example illustrates how one might have to be
more creative in seeking homology cancellation or reduction.

Let A ⊆M2⊗L(H) be spanned by e1,1⊗ (C+K), e2,2⊗ (C+K), e1,2⊗L(H),
that is

A =
[
C+K L(H)

0 C+K

]
where K ⊆ L(H) is the ideal of compact operators and L(H) is the algebra of all
operators on H, a separable Hilbert space. Consider the 4-cycle {u1, . . . , u4} where
ui = e1,2 ⊗ wi, 1 ≤ i ≤ 4, and where w∗1w1 = w∗4w4 = I, w1w

∗
1 = w2w

∗
2 has defect

1, w∗2w2 = w∗3w3 has defect 2, and w3w
∗
3 = w4w

∗
4 has defect 3. We can indicate

this 4-cycle data with the array [
1 0
3 2

]
and the diagram

���������� HH
HH

HH
HHY
�

23

1 0

The 4-cycle admits no trivial triangulation, in the sense that none of the opera-
tors u∗3u2, u

∗
2u3, u

∗
3u4, u

∗
4u3 belong to A, as partial isometries in C + K have zero

Fredholm index. For similar reasons, if A1 is a digraph algebra associated with
{u1, . . . , u4} there is no multiplicity one inclusion i : A1 → AD for which i∗ = 0.
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However if A2 is associated with a 4-cycle {v1, . . . , v4} with defect array[
1 2
1 0

]
then the direct sum {u1 ⊕ v1, . . . , u4 ⊕ v4} is associated with the defect array[

2 2
4 2

]
.

Both these arrays have a constant column and so A2 and the algebra A3, for the
direct sum cycle, have trivially triangulable 4-cycle graphs. In particular the inclu-
sions Hn(A2)→ Hn(A; C), and Hn(A3)→ Hn(A; C) are the zero maps for n > 1.
A simple elaboration of this argument leads to Hn(A) = Hn(A; C) = 0.

Triangulation

We have observed how Hn(A; C) may vanish by virtue of cancellation giving rise
to induced zero maps i∗ : Hn(AD1)→ Hn(AD2). Here the inclusion i necessarily is
of multiplicity greater than one. It can also happen that Hn(A; C) vanishes for more
geometric reasons in the following sense. Suppose that for every digraph algebra
AD1 for the pair (A, C) there is a containing digraph algebra AD2 , with multiplicity
one star-extendible regular inclusion i : AD1 → AD2 , such that Hni = 0. For the
case n = 1 we can view the digraph G(AD2) as providing triangulations of the
cycles in G(AD1). In this case Hn(A; C) = 0.

We give two illustrations.
Let (A, C) = (Tm, Dm) where Tm ⊆ Mm(C) is the upper triangular subalgebra.

Let AD ⊆ MN ⊗ Tm be an MN ⊗ Dm normalising digraph algebra for A, with
connected digraph G and partial matrix unit system {uij : (i, j) ∈ E(G)}. The
partial matrix unit system can be decomposed as a direct sum uij = u

(1)
ij + · · ·+u(r)

ij

(in the appropriate splitting sense) where each u(k)
ij has rank one. We show that for

each associated digraph algebra AD(k) there is a regular multiplicity one inclusion
inducing a zero map on Hn for each n ≥ 1. We may as well assume already that
rank uij = 1 for all i, j. Note that since each uij is normalising it follows that

(IN ⊗ ekk)uij(IN ⊗ ell) = uij

for precisely one pair k, l with 1 ≤ k, l ≤ m. It now follows that {uij : (i, j) ∈ E(G)}
is unitarily equivalent to a subset of the standard matrix unit system for MN ⊗Tm.
In particular the inclusion i : AD →MN ⊗Tm is of the admissible kind specified in
the definition of Hn(A; C). Plainly Hni = 0 for n ≥ 1, since Hn([Mn ⊗ Tm]) = 0,
and so Hn(Tm;Dm) = 0 for n ≥ 1.

For the second illustration, consider the disc algebra A(D), viewed in the usual
way, as a function algebra on the unit circle S1. Let {u1, . . . , u2n} be a 2n-cycle of
partial isometries in M2n ⊗A(D) of the form

uk = vk ⊗ wk
where {v1, . . . , v2n} is the standard 2n-cycle inM2n given by v1 = e12, v2 = e32, v3 =
e34, . . . , v2n−1 = e2n−1,2n, v2n = e1,2n, and where w1, . . . w2n are inner functions in
A(D) with w1w3 . . . w2n−1 = w2w4 . . . w2n. The 2n-cycle {u1, . . . , u2n} together
with the diagonal projections eii⊗1 spans a subalgebra, A(w1, . . . , w2n) say, which
is completely isometrically isomorphic to the digraph algebra in M2n(C) associated
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with the standard 2n-cycle. Furthermore, A(w1, . . . , w2n) is a digraph algebra of
A(D) according to our definition.

The algebra A(w1, . . . , w2n), can be triangulated as follows.
Consider the natural inclusion

A(w1, . . . w2n)→ A(w1, . . . , w2n) ⊕ Ce2n+1,2n+1.

Let w = w1w3 . . . w2n−1 and define

x1 = e1,2n+1 ⊗ w,
x2 = e2,2n+1 ⊗ w

w1
,

x3 = e3,2n+1 ⊗ ww2

w1
,

...

x2n = e2n,2n+1 ⊗ ww2

w1
.
w4

w3
. . .

w2n−2

w2n−1

Note that in view of the equality w1w3 . . . w2n−1 = w2w4 . . . w2n it follows that
A(w1, . . . w2n) together with x1, . . . , x2n and e2n+1,2n+1 span a digraph algebra,
A+ say. The digraph of A+ is the cone over the digraph of A and so the inclusion
A(w1, . . . , w2n)→ A+ induces the zero map on H1.

3. The Proof of Theorem 1

We now turn to the proof that Hn(A(D)) = 0 for n ≥ 1. The essential idea
is the triangulation argument above, although this time we must consider matrix
functions.

Let D ⊆MN⊗C(S1) be a finite-dimensional C*-algebra with matrix unit system
{uij} normalising MN ⊗C. Without loss of generality assume that D is isomorphic
to Mr and that AD is spanned by {uij : (i, j) ∈ E(G)} where G is a connected
digraph with r vertices. We claim that there is a multiplicity one inclusion D → D+

where D+ has matrix unit system {uij : 1 ≤ i, j ≤ r+1}, where D+ ⊆M2N⊗C(S1)
and where AD+ = {uij : (i, j) ∈ E(H)} where H is a digraph containing G and
all edges from the new vertex r + 1 to vertices of G (labelled 1, . . . , r). That is H
contains the cone over G.

This step will complete the proof since the simplicial complex of the cone has
trivial higher order homology.

Define vij ∈ M2 ⊗ MN ⊗ C(S1) by vij = e11 ⊗ uij , for 1 ≤ i, j ≤ r. Let
vr+1,r+1 = e22⊗ur,r, vr,r+1 = e12⊗ur,r, and consider the full matrix unit system for
Mr+1 which is generated by these matrix units and denoted {vij : 1 ≤ i, j ≤ r+ 1}.
Consider the partial isometries vi,r+1, for 1 ≤ i ≤ r, which correspond to edges
from vertex r + 1 to the vertices of G. Each such partial isometry is a word in the
set

{e11 ⊗ uij , e11 ⊗ u∗ij : 1 ≤ i, j ≤ r} ∪ {vr,r+1}.
Moreover we can choose words of length at most r, in which no partial isometries

are repeated. Thus, each vi,r+1 has the form

e12 ⊗ u1 . . . uk
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where k ≤ r and for each i with 1 ≤ i ≤ r either ui or u∗i belongs to MN ⊗A(D).
A partial isometry w in MN ⊗A(D) has the form

w = U1D1U2D2 . . . UtDtUt+1

where each Uk is a scalar partial isometry and where each Dk is a diagonal ma-
trix of functions whose entries consist of a single Blaschke factor φk and constant
functions. (This may be deduced from the well-known corresponding assertion
for inner functions in MN ⊗ A(D).) It follows that if Φ(z) is the inner function
Φ(z) = I ⊗ (φ1 . . . φt) then

Aw∗BΦ(z)

is a partial isometry in MN ⊗A(D) for all partial isometries A,B in MN ⊗A(D) for
which Aw∗B is a partial isometry. Let Ψ(z) be the product of the Blaschke factors
associated with all the partial isometries uij in AD. Define

v′ij =
[
I 0
0 Ψ(z)

]∗
vij

[
I 0
0 Ψ(z)

]
for 1 ≤ i, j ≤ r + 1. This is a matrix unit system for D+ = Mr+1 with the desired
properties.

4. K0-regular Inclusion and Homotopy

We begin by considering H0(A; C) and the following idea (see also [17]) will be
useful.

The inclusion C → A is said to be K0-regular if

(i) the induced map K0C → K0(C∗A) is a surjection, and
(ii) whenever p, q are projections inMN⊗C which are unitarily equivalent inMN⊗

C∗A, then there is a digraph subalgebra for A with connected graph which
contains projections p′ and q′ as minimal projections, where the K0(C∗(A))
classes [p], [p′], [q], [q′] all agree.

Note, for example, that Dm → Tm, the diagonal algebra inclusion, is K0-regular.
Also, C → A(D) is K0-regular. We shall see that the masas for the triangular
algebras of Theorem 2 have K0-regular inclusions.

Proposition 4.1. If C → A is a K0-regular inclusion then H0(A; C) = K0(C∗(A)).

Proof. By the hypotheses ∑
[AD]

⊕ H0([AD])

contains the subgroup ∑
[p]∈(K0C∗(A))+

⊕ Z

arising from the degenerate digraph algebras Cp associated with projections p in
MN ⊗C for some N . Moreover, in view of the inclusion and splitting relations used
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in the definition of J0 we see that

H0(A; C) = (
∑
[AD]

⊕H0([AD]))/J0

= (
∑

[p]∈(K0C∗(A))+

⊕Z)/J0

= K0C
∗(A).

The second equality here is a consequence of the inclusion relations in J0. The
last equality holds since the splitting relations correspond to the semigroup relations
for K0(C∗(A))+, and for any semigroup S the quotient (

∑
s∈S ⊕Z)/R, arising from

the semigroup relations R, is the Grothendieck group of S. �

The assertions concerning H0A for the triangular algebras of Theorem 2 follow
from this proposition and the K0-regularity of the diagonal inclusions discussed
below.

We now consider a simple retraction procedure which will be useful for identifying
the partial isometry homology of lexicographic products.

Let A1, A2 be digraph algebras for the pair (A, C) for which there is a containing
digraph algebra A with the following properties:

(i) The digraph G(A) has vertices {v, w}∪{v1, . . . , vr} and A1 (respectively A2)
is the subalgebra of A determined by the full subgraph of G(A) for the vertices
{v} ∪ {v1, . . . , vr} (respectively {w} ∪ {v1, . . . , vr}).

(ii) (v, vi) ∈ E(G(A)) if and only if (w, vi) ∈ E(G(A)) and (vi, v) ∈ E(G(A)) if
and only if (vi, w) ∈ E(G(A)), and at least one of the edges (v, w) or (w, v)
belongs to E(G(A)).

In this case we say that there is an elementary homotopy between A1 and A2

(and between A2 and A1). Since ∆(G(A1)) and ∆(G(A2)) are simplicial retractions
of ∆(G(A)) it follows that Hn(∆(G(A1))) = Hn(∆(G(A2))) = Hn(∆(G(A))) for all
n ≥ 0. Moreover, since the inclusions A1 → A, A2 → A induce simplicial homology
isomorphisms it follows, in the notation of Section 1, that

(Hn([A1])⊕Hn([A2])⊕Hn([A]))/Jn = Hn([Ai])/Jn

for i = 1 or 2. In this way we will be able to obtain reductions through inclusion
relations corresponding to homotopy. More generally this reduction will also hold
if A1 and A2 are homotopic, by which we mean that there is a finite chain of
elementary homotopies connecting A1 to A2. Plainly there is a more general notion
of homotopy, allowing for retractions, but the present usage suffices for the proof
below.

5. The Cuntz Algebras and TOm

The Cuntz algebra Om is the universal C*-algebra generated by m isometries
S1, . . . , Sm with S1S

∗
1 + · · ·+SmS

∗
m = 1. In fact, any C*-algebra generated by a set

of isometries satisfying this relation is isomorphic to Om. It will be convenient to
consider the specific representation on L2[0, 1] generated by the natural isometries
S1, . . . , Sm where SiS∗i is the orthogonal projection onto L2[(i − 1)/m, i/m], for
1 ≤ i ≤ m. Specifically, for f ∈ L2[0, 1],
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(Sif)(x) =
{ √

mf(mx− (i− 1)) , for i− 1 ≤ mx ≤ i
0 , otherwise.

The (unclosed) star algebra generated by S1, . . . , Sm is also uniquely determined
by any realisation, and we denote this algebra by O0

m.
Recall the following basic facts from Cuntz [1]. Let Wk denote the words of

length k in the letters 1, 2, . . . , n. If µ = µ1 . . . µk ∈Wk then write Sµ = Sµ1 . . . Sµk ,
l(µ) = k and let

d(µ) =
µ1 − 1
m

+ · · ·+ µk − 1
mk

.

Every word in the operators S1, . . . , Sm and their adjoints can be reduced to the
form SµS

∗
ω for uniquely determined words µ, ω. For words of the same length, we

have

Lemma 5.1. Let µ, ω ∈Wk. Then SµS∗ω is the natural partial isometry with initial
space L2[d(ω), d(ω) +m−k] and final space L2[d(µ), d(µ) +m−k].

Thus {SµS∗ω : µ, ω ∈Wk} is a set of matrix units for a copy of the matrix algebra
Mmk . The union of these algebras will be denoted F 0, and the closed union, which
is a UHF C*-algebra of type m∞, will be denoted F . Also write C for the masa in
F generated by {SµS∗µ : µ ∈Wk}.

We now define the triangular algebra TOm. Let N be the nest of projections in
F 0 corresponding to the subspaces L2[0, i/mk], for 1 ≤ i ≤ mk, k = 1, 2, . . . . Define

TF = {a ∈ F : (1− p)ap = 0, ∀ p ∈ N},
TOm = {a ∈ Om : (1− p)ap = 0, ∀ p ∈ N},

and define TF 0 and TO0
m similarly. Then TF is a copy of the refinement algebra

lim→ (Tmk , ρ) determined by the so-called refinement embeddings. (See [13].) For
this reason we refer to TOm as the refinement subalgebra of Om. We can also think
of the algebras TF and TOm as the Volterra nest subalgebras of the realisations of
F and Om. Alternatively, the algebras TOm and TO0

m can be described in purely
intrinsic terms, as follows. This description will not be needed below, and we refer
the reader to [11] for a proof.

Proposition 5.2. If l(µ) ≤ l(ω) then SµS
∗
ω ∈ TOm if and only if d(µ) ≤ d(ω). If

l(µ) < l(ω) then SµS
∗
ω ∈ TOm if and only if

d(µ) +m−l(µ) ≤ d(ω) +m−l(ω)

Furthermore, TOm is generated as an operator algebra by the operators SµS∗ω in
TOm.

In particular, it follows that TOm is generated by a subsemigroup of an inverse
semigroup of normalising partial isometries. The same is true for the algebras
A(G) ? TOm.

The next two lemmas provide the purely C*-algebraic technical results that
we need to understand normalising partial isometries and the normalising finite-
dimensional C*-algebras associated with Om. In brief they allow for a reduction
to the case of standard matrix unit systems with matrix units that are orthogonal
sums of the standard partial isometries SµS∗ω.



Partial Isometry Homotopy and Triangular Algebras 47

Lemma 5.3 (Cuntz [1].). Each operator a in the star algebra O0
m generated by

S1, . . . , Sm has a unique representation

a =
N∑
i=1

(S∗1 )ia−i + a0 +
N∑
i=1

aiS
i
1

where ai ∈ F for each i. Moreover the linear maps Ei given by Ei(a) = ai extend
to continuous contractive linear maps from Om to F .

Lemma 5.4. (i) If v is a C-normalising partial isometry in Om then there is a
partial isometry w in O0

m such that v = cw where c is a partial isometry in C and
w has the form

w =
N∑
i=1

(S∗1 )iv−i + v0 +
N∑
i=1

viS
i
1

where the sum is an orthogonal sum of partial isometries with each vj equal to an
orthogonal finite sum of partial isometries in {SµS∗ω : µ, ω ∈Wj}.

(ii) If v is a Mn ⊗ C-normalising partial isometry in Mn ⊗ Om then there is a
partial isometry w′ such that v = cw′ where c is a partial isometry in Mn ⊗C and
where w′ = (wij)ni,j=1 with each wij a partial isometry as in (i).

Let us say that two standard partial isometries v, w in Om, by which we mean
those of the form SµS

∗
ω, are disjoint if for all projections p, q in C the equality

pvq = pwq implies pvq = pwq = 0. This is equivalent to the graphs of the partial
homeomorphisms inducing v and w (as composition operators) having at most one
point in common.

Proof of Lemma 5.4. Note that if the index l(µ) − l(ω) for SµS∗ω differs from
the index for SρS∗δ then these partial isometries are disjoint. Let v ∈ NC(Om). It
follows from Lemma 5.3 that there is a finite complex combination w = α1u1 +
· · ·+ αnun of disjoint standard partial isometries such that ‖v −w‖ < 1

4 . Here the
coefficients αi are nonzero complex numbers.

We claim that there is a subset of {ui}, which we may relabel as u1, . . . , ul,
consisting of partial isometries with orthogonal initial projections and orthogonal
final projections such that v = c(u1 + · · ·+ ul) for some partial isometry c in C.

By disjointness there are projections p, q in C such that pvq 6= 0 and pwq =
αipuiq for some i. Relabel to arrange i = 1. Thus ‖pvq − α1pu1q‖ < 1

4 . Also
|1− |α1|| < 1

4 and so ‖v1 − t‖ < 1
2 where v1 = pvq and t = pu1q. In particular tt∗

is a projection in C and ‖tt∗ − v1t
∗‖ < 1

2 . Thus ‖Pv1t
∗P⊥‖ < 1

2 for all projections
P in C. Since v1t

∗ is normalising it follows that Pv1t
∗P⊥ = 0 for all such P . Since

C is a masa in Om it follows that v1t
∗ is a partial isometry, d1 say, in C. Thus

v1 = d1t with t a standard partial isometry and d1 a partial isometry in C.
The partial isometry u1 can be expressed as a strong operator topology sum∑∞
i=1 piu1qi of orthogonal partial isometries of the form above. In this way we

deduce that v(u1u
∗
1) = cu1 where c =

∑∞
i=1 di. Furthermore, since v = cu1 +

(v − cu1) is necessarily an orthogonal sum of two partial isometries it follows that
c = E0(vu∗1) and hence that c belongs to C.

Repeating the argument above obtain an orthogonal decomposition

v = v′ + v′′
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where v′ = c1u1 + · · · + clul with ci ∈ C for each l, where, after relabelling,
|1 − |αi‖ < 1

4 precisely for 1 ≤ i ≤ l. But now consider v′′ = v − v′. This is a
normalising partial isometry. Suppose that v′′ 6= 0. Then (by disjointness again)
there are projections p, q in C such that pvq = pv′′q 6= 0 and pwq = αjpujq. Of
necessity j > l and |1−|αj || ≥ 1

4 . Since ‖w−v‖ < 1
4 we obtain ‖αjpujq−pv′′q‖ < 1

4
which, given the inequality for αj , leads to the contradiction ‖pv′′q‖ 6= 1

The proof of (ii) is similar. �

Although in this paper we focus on TOm, we note that Om has many other
natural maximal triangular subalgebras.

Let A ⊆ F be a maximal triangular subalgebra which contains the masa C.
Let A ⊆ Om be the set of operators a for which E0(a) ∈ A and Ei(a) = 0 for
i < 0. Both A and its superalgebra A + F have, roughly speaking, the nature of
an analytic subalgebra or semicrossed product in the sense of Muhly and Solel [9]
and Peters [10], for example.

In general one expects a maximal triangular subalgebra to have trivial partial
isometry homology groups for n > 1 and this is so for TF and TOm by simple
triangulation argument in the spirit of the next section. The analytic algebras A
above (“bianalytic” is a more accurate designation) also have trivial higher homol-
ogy. Nevertheless we now indicate a maximal triangular subalgebra A of M4⊗C(X)
for which H1(A) = Z, and this can be used in the construction of more elaborate
examples, with trivial centre for example, also with nonzero H1.

Let X be a Cantor space and let U, V be open subsets with dense union and
with X/(U ∪ V ) = {x} where x is a point of closure of U and of V . Write C(U)
and C(V ) for the subalgebras of C(X) supported on U and V and define

A =


C(X) C(V ) C(X) C(X)
C(U) C(X) C(X) C(X)

0 0 C(X) C(V )
0 0 C(U) C(X)

 .
This is a maximal triangular algebra. Over the point x in the maximal ideal space
of the centre of A, the local algebra for x is isomorphic to the 4-cycle algebra A(D4).
This in turn leads to the fact that H1(A) = Z.

6. The Proof of Theorem 2

Let (A, C) = (A(G) ? TOm,C|G| ⊗ C). Clearly the K0(Om) classes [1] and
[SiS∗i ] coincide for i = 1, . . . ,m and so m[1] = [S1S

∗
1 ] + · · · + [SmS∗m] = [1]. Thus

(m−1)[1] = 0. Moreover Cuntz [2] has shown that for m > 1 K0(Om) = Z/(m−1),
with [1] as generator. In particular the inclusion C → Om induces a K0 group
surjection. In fact the inclusion C → A is K0-regular as we now show.

We may assume that G is connected. Let us say that a projection p in MN ⊗
C|G| ⊗ C is A-connected to a projection p′ if there is a digraph subalgebra for A,
with connected digraph, which contains p, p′ as minimal projections. In particular,
if p 6= p′ then these projections are orthogonal. Note first that each projection p in
MN ⊗C|G|⊗C is A-connected to a projection p′ in MN ⊗ e1,1⊗C. Accordingly, it
will be enough to show that two orthogonal projections p′, p′′ in MN ⊗ e1,1 ⊗ C, if
unitarily equivalent in MN ⊗ e1,1 ⊗ Om, are A-connnected. But Mn ⊗A contains
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MN ⊗ e1,1⊗TOm, and there exist partial isometries u, v in MN ⊗ e1,1⊗TOm with
uu∗ = vv∗, u∗u = p′ and v∗v = p′′, and so p′ and p′′ are A-connnected.

Since the standard partial isometries SµS∗ω are normalising the K0-regularity of
the inclusion C → A follows.

Step 1. Reduction to standard digraph subalgebras.

Let D1 be a finite-dimensional C*-algebra in the stable algebra M∞(C∗(A)) with
a normalising matrix unit system for M∞(C). Then, for some integer N,

D1 ⊆MN ⊗ C∗(A(G))⊗Om = MN ⊗ C∗(A),

with matrix unit system normalising MN ⊗ C|G| ⊗ C. Using Lemma 5.4 (ii) it
follows from routine C*-algebra theory that D1 is unitarily equivalent, by a unitary
operator in MN ⊗ C|G| ⊗ C to a finite-dimensional C*-algebra D2 with a matrix
unit system which is decomposable, by splitting, as a direct sum of matrix unit
systems each with matrix units v of the standard form fkl ⊗ eij ⊗ SµS

∗
ω, where

(fkl) is a standard system for MN , {eij} the standard system for C∗(A(G)) and
with k, l, i, j, µ, ω depending on v. We say AD2 is a standard digraph algebra for A.
Thus, if D is the sub-collection of digraph algebra classes [AD] associated with the
elementary tensor systems then we have the first reduction

Hn(A; C) = (
∑
D
⊕Hn([AD]))/In

where In is the ideal in the direct sum (of the right hand side above) generated by
the splitting and inclusion relations for the standard algebras AD.

In fact this reduction follows in two stages. First note, as we did above, that
AD1 is equivalent to a subalgebra AD2 of a standardised algebra AD where the
subalgebra inclusion map AD2 → AD is regular. Secondly, note that, for similar
reasons,

Jn ∩ (
∑
D
⊕Hn([AD]) = In

since a generator for the ideal Jn, arising from a splitting, or an inclusion, can be
written as a sum of elements in In.

Step 2. Homotopies to equalise traces of diagonal matrix units.

Assume now that D is a standardised finite-dimensional C*-algebra matrix sum-
mand, with associated digraph subalgebra AD = D∩ (MN ⊗A) with a matrix unit
system of elementary tensors. Further reduction will be obtained by non-self-adjoint
homotopy in the sense described earlier.

Claim: Suppose that the digraph of AD is connected so that D is a full matrix
algebra. Then AD is homotopic to AD′ where D′ is also a full matrix subalgebra
but with matrix units v of the form fkl ⊗ eij ⊗ SµS∗ω where l(µ) and l(ω) are equal
to a fixed integer (which is independent of v).

Consider first the subalgebras of AD of the form

A1 = (fkk ⊗ ell ⊗ 1)AD(fkk ⊗ ell ⊗ 1)

for some self-adjoint matrix unit v = fkk ⊗ ell ⊗ SλS∗λ for D. Then A1 is a digraph
subalgebra of fkk ⊗ ell ⊗ TOm with matrix units of the form fkk ⊗ ell ⊗ wij where
wij has the form SµS

∗
ω for various µ, ω.
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In particular each wii is an interval projection for the projection nest in TOm.
First we consider homotopies to equalise the traces of these matrix units.

Since D is a full matrix algebra we know that these diagonal projections are
equivalent in Om. Order the projections wii as a family {w1, w2, . . . , wr} with the
usual ordering of intervals of a projection nest. Also, relabel the wij for consistency
so that wij = wiwijwj . Let u1 be an interval projection of small trace which is
the final projection of a partial isometry z = SµS

∗
ω in TOm with initial projections

w1. We then see that A1 is homotopic (and isomorphic) to the digraph algebra
Â1 in which w1 is replaced by u1 and each w1j is replaced by zw1j . Strictly
speaking, according to our definition, this is not quite a homotopy since u1 may
not be orthogonal to w1 and in this case we cannot consider the containing digraph
algebra for the pair A1, Â1. However we are only interested in equivalence classes
and it is a simple matter to replace Â1 by an equivalent algebra in M2N⊗A(G)⊗Om
for which there does exist the necessary containing algebra.

Similarly we can, through an elementary homotopy, replace w2 by an interval
projection u2 of the same trace as u1, as long as the trace of u1 is small enough.
Repeating, obtain a homotopy between A1 and (an isomorphic) digraph algebra A′1
with diagonal matrix units of the form fkk ⊗ ell ⊗ ui with the projections ui of the
same trace.

Since A is the lexicographic product A(G) ? TOm there is in fact no obstruction
to extending these homotopies to homotopies between AD and AD′ for some other
standard matrix algebra D′. Indeed at the first stage if w is any matrix unit of the
form

fk′,k ⊗ el′,l ⊗ u
where l′ 6= l, el,l′ ∈ A(G) and where u = SµS

∗
ν in Om (but perhaps not in TOm)

and has final projection w1, then simply replace u by zu. Similarly, if

fk′,k ⊗ el′,l ⊗ v
is a matrix unit of AD, where l′ 6= l and v has initial projection w1, then we may
replace v by vz∗. In this way extend the first elementary homotopy and it is clear
that the subsequent homotopies can be extended in the same way.

Similarly we can continue with homotopies to equalise the traces of all the diag-
onal matrix units of AD and this establishes the claim, and Step 2.

Note that the algebra AD′ is necessarily a (multiplicity one) subalgebra of MN ⊗
A(G)?Tmr for some r (equal to the common values of l(µ)) and some matrix algebra
MN . Furthermore note that the algebras MN ⊗ A(G) ? Tmr , r = 0, 1, 2, . . . , are
all homotopic. In particular it follows that Hn(A; C) is finitely generated since it
coincides with the subgroup Hn([A(G) ? Tm])/In.

In fact, in view of these homotopies, this subgroup is necessarily a quotient of
Hn(∆(G))⊗ Zm−1.

Step 3. The Isomorphism.

We have shown that given the special digraph subalgebra AD with matrix unit
system consisting of elementary tensors, and with connected digraph, there is a
similar digraph subalgebra for A of the form

AD+ =
[
AD′ ?

0 AD

]
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where AD′ is a subalgebra of MN ⊗ A(G) ? Tmr spanned by elementary tensors.
We refer to this as a homotopy construction for AD. Although the class [AD′ ] is
not determined explicitly in the construction — there is freedom in the choice of
r and in the choice of small interval projections — there is however a well-defined
surjective map

νAD : Hn([AD])→ Hn(∆(G))⊗ Zm−1

determined from the composition

Hn([AD]) → Hn([AD′ ])→ Hn([MN ⊗A(G) ? Tmr ])
→ Hn(∆(G))→ Hn(∆(G))⊗ Zm−1

where the first map is the isomorphism induced by the inclusion in AD+ , the second
is induced by inclusion and the third is the natural indentification isomorphism.

A splitting AD → AD1 ⊕ AD2 of AD need not yield digraph algebras ADi of
the same type, with elementary tensor matrix unit systems (since, for example,
I − S1S

∗
1 is not of the form SµS

∗
µ if m ≥ 3). Nevertheless it is clear that one also

has a homotopy construction for digraph algebras AE of this type (with connected
digraph) and well-defined maps νAE as before.

We now note that the family {νAE} (we can restrict to the case of connected
digraphs for simplicity, although this is not necessary) respects splittings and in-
clusions in the following sense. If AE1 → AE2 is an inclusion of standard digraph
algebras for A then the following diagram commutes

Hn([AE1 ]) i∗→ Hn([AE2 ])
νAE1

↓ νAE2
↓

Hn(∆(G))⊗ Zm−1
id→ Hn(∆(G))⊗ Zm−1

and if θ : AE → AE1 ⊕AE2 is a splitting, with induced map

θ∗ : Hn([AE ])→ Hn([AE1 ])⊕Hn([AE2 ])

then the following diagram commutes

Hn([AE ]) θ∗→ Hn([AE1 ])⊕Hn([AE2 ])
νAE ↓ νAE1

+ νAE2
↓

Hn(∆(G))⊗ Zm−1
id→ Hn(∆(G))⊗ Zm−1

By Step 1, Hn(A; C) is the quotient group associated with the groups Hn([AE ])
and the family of splitting maps θ∗ and inclusion maps i∗. Thus, in view of the
above there is a surjection

Hn(A; C)→ Hn(∆(G))⊗ Zm−1

In view of the remarks at the end of Step 2, for example, this surjection must be
an isomorphism. �

7. The Partial Isometry Chain Complex Homology

Whilst the definition of the groups Hn(A; C) is suitable for the purpose of direct
identifications for particular algebras it has the drawback that it does not present
normalising partial isometry homology as the homology of a chain complex. With
such a presentation one can more fully exploit the standard techniques of algebraic
topology and we illustrate this below.
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For a pair A, C, as before, we form the chain complex (Cn(A; C), ∂) obtained
from the quotients Cn(A; C) in the short exact sequences

0→ Qn →
∑
[AD]

⊕Cn([AD])→ Cn(A; C)→ 0

where Qn is the subgroup of the full n-chain group
∑

[AD]⊕Cn([AD]) (restricted
direct sum) associated with inclusions and splittings of the digraph spaces D. Ex-
plicitly, Qn is generated by elements

−g ⊕ θ(g)

and

−h⊕ θ1(h)⊕ θ2(h),

where g ∈ Cn([AD1 ]) and θ : Cn([AD1 ])→ Cn([AD2 ]) is induced by an inclusion of
matrix unit systems, and where h ∈ Cn([AD]) and

θ1 + θ2 : Cn([AD])→ Cn([AD1 ])⊕ Cn([AD2 ])

is the mapping induced by a splitting uij = u1
ij + u2

ij .
The boundary operators ∂ : Cn([AD]) → Cn−1([AD]) respect inclusions and

splittings and so induce group homomorphisms Qn → Qn−1 and boundary operator
∂n : Cn(A; C) → Cn−1(A; C). We define the (C−normalising)-partial isometry
chain complex homology of the pair (A, C) to be the homology CHn(A; C) of the
chain complex (Cn(A; C), ∂n), where ∂0 is the zero map.

Put another way, (Qn, ∂) is a subcomplex of the direct sum of the chain com-
plexes (Cn([AD]), ∂), the complex (Cn(A; C), ∂) is defined to be the associated
quotient complex, and the homology CH∗ is defined to be the homology of this
quotient.

The following theorem, and the analogous Theorem 1, show that H∗ and CH∗
coincide for digraph algebras.

For a directed graph G of a digraph algebra define the reduced graph Gr to be
the undirected graph obtained from G through an identification of the vertices v, w
of G for which both of the edges (v, w) and (w, v) belong to G.

Theorem 7.1. If C is a masa in a digraph algebra A(G) then CHn(A(G); C) is
naturally isomorphic to Hn(∆(G)) for all n.

Proof. Let A ⊆ Mk ⊗ A(G) be a normalising digraph algebra for A(G). The
unitary equivalence class [A] has a representative, which we may take to be A,
with partial matrix unit system {ui,j} such that each ui,j is an orthogonal sum of
standard matrix units fl,m ⊗ ep,q in Mk ⊗ A(G). Such choices of A give inclusion
induced maps

iA : Cn([A])→ Cn([Mk(A) ⊗A(G)]).

Let

qk : Cn([Mk ⊗A(G)])→ Cn(∆(Gr))

be the natural surjections determined by the identification of equivalent 0-simplexes
of ∆([Mk ⊗A(G)]). Then the homomorphism

i =
∑
[A]

⊕qk(A) ◦ iA :
∑
[A]

⊕Cn([A])→ Cn(∆(Gr))
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maps Qn to zero and so induces a surjective group homomorphism

θ : Cn(A(G); C)→ Cn(∆(Gr)).

On the other hand any natural inclusion ∆(Gr) → ∆(G) = ∆([A(G)], with G
the undirected graph, which gives a cross-section for q1, induces a cross-section
for θ. By the first paragraph above this cross-section is surjective and so θ is an
isomorphism. Moreover θ determines a chain complex isomorphism and so the
theorem follows. �

The chain complex homology need not coincide with Hn(A; C). Perhaps the sim-
plest way to see this is to consider a digraph algebra for which Tor(Hn(A(G)),Z2)
is nonzero. Then Hn(A(G) ⊗ O3;D|G| ⊗ C) = Hn(∆(G)) ⊗ Z2, by Theorem 2.1
of [17]. On the other hand CHn(A(G) ⊗ O3;D|G| ⊗ C) is computable, by direct
methods similar to the proof below, (or by a Kunneth formula), as the homology
of the chain complex (Cn(A(G) ⊗K0(O3)), ∂ ⊗ id). Accordingly, by the universal
coefficient theorem, the chain complex homology has the extra torsion term. Such
a difference also appears in the next theorem.

Theorem 7.2. Let A(G) be a digraph algebra. Let TO0
m and TOm be the re-

finement nest subalgebras of the algebraic Cuntz algebra O0
m and its closure in

the Cuntz algebra Om, respectively. Then for all m ≥ 1 and n ≥ 0 the groups
CHn(A(G) ? TO0

m) and CHn(A(G) ? TOm) coincide with the simplicial homology
group Hn(∆(G);Zm−1) with coefficients in Zm−1. In particular

CHn(A(G) ? TOm) = (Hn(∆(G))⊗ Zm−1))⊕ (Tor(Hn−1(∆(G)),Zm−1)).

Sketch of proof. Let A = A(G)∗TOm. The case for TOom is essentially the same.
As in step one of the proof of Theorem 2 obtain the reduction

Cn(A; C) = (
∑
D
⊕Cn([AD]))/IQn

where the sum is taken over classes [AD] associated with elementary tensor systems
and where IQn is the ideal in this direct sum generated by splitting and inclusions.

For each AD (with connected digraph) the existence of a homotopy with a di-
graph subalgebra of MN ⊗A(G)?Tmr , for some r, leads to a group homomorphism

iD : Cn([AD])→ Cn([MN ⊗A(G) ? Tmr ]).

This homomorphism depends on the particular homotopy and on N and r. But as
before the natural induced maps

ĩD : Cn([AD])→ Cn(∆(Gr))⊗ Zm−1

are well defined and are chain maps. The sum

i =
∑
D
⊕ ĩD :

∑
D
⊕Cn([AD])→ Cn(∆(Gr))⊗ Zm−1

respects splittings and inclusions and so gives a chain complex surjection

i : (Cn(A; C), ∂)→ (Cn(∆(Gr))⊗ Zm−1, ∂ ⊗ id).

On the other hand the homotopy reductions show that the cross section of i
induced by a natural injection ∆(Gr) → ∆(G) is surjective. Thus i is a chain
isomorphism. �
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Mayer Vietoris Sequence

Let C ⊆ A1 ⊆ B, C ⊆ A2 ⊆ B where A1 and A2 are subalgebras of the star
algebra B. We say that the pair A1,A2 is a regular pair if every Mn⊗C-normalising
partial isometry in MN ⊗ (A1 + A2) can be decomposed as an orthogonal sum of
normalising partial isometries in MN ⊗A1 and MN ⊗A2. There are many contexts
providing regular pairs. We shall not go into the details of this but nevertheless
we remark that Lemma 5.4 is useful for identifying regular pairs. Furthermore all
pairs of subalgebras of an AF C*-algebra B which contain a fixed regular canonical
masa are regular pairs. (See Chapter 4 of [13].)

Theorem 7.3. If C ⊆ Ai ⊆ B where A1 and A2 is a regular pair with sum A =
A1 +A2 then we have the Mayer Vietoris sequence

..→ CHn(A1 ∩ A2; C)→ CHn(A1; C)⊕ CHn(A2; C)→
CHn(A; C)→ CHn−1(A1 ∩ A2; C)→ ..

The theorem follows immediately from the excision lemma below and standard
algebraic topology. (See Chapter 6 of [20] for example.)

If C ⊆ A1 ⊆ A2, with (C,Ai) as before, then we define the relative homology
CHn(A2,A1; C) as the homology of the quotient chain complex

(Cn(A2; C)/Cn(A1; C), ∂).

In particular one has the long exact sequence for the connecting homomorphisms

dn : CHn(A2,A1; C)→ CHn−1(A1; C).
Lemma 7.4 (Excision). For a regular pair A1,A2 as above,

CHn(A1,A1 ∩ A2; C) = CHn(A1 +A2,A2; C).
Proof. It is sufficient to show that the inclusion induced chain complex map

(Cn(A1; C) + Cn(A2; C), ∂)→ (Cn(A1 +A2, ; C), ∂)

induces an isomorphism of homology. However if A is a normalising digraph sub-
algebra of A1 + A2 then, since A1,A2 is a regular pair it follows, from a simple
finiteness argument, that A has a splitting A → A1 ⊕ · · · ⊕ Ar where each Ai is a
digraph subalgebra of A1 or A2. Thus the inclusion induced map above is already
an isomorphism. �

By way of a simple application of the Mayer-Vietoris sequence in our context
consider the nontriangular operator algebra

A =


F 0 Om Om
0 F Om Om
0 0 F 0
0 0 0 F


contained in M4 ⊗ Om, which can be viewed as the intersection A1 ∩ A2 where
A1 = A(D4)⊗Om and

A2 =


F Om Om Om
0 F Om Om
0 0 F Om
0 0 0 F

 ,
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and let C ⊆ A be the diagonal C4 ⊗ C. It can be shown that, for reasons of
cancellation, CH1(A2; C) = 0. The argument for this, which we leave to the reader,
uses defect symmetrisation as in Section 2.

The sum A1 +A2 is T4⊗Om and so in particular Hn(A1 +A2; C) = 0, for n > 0,
either by direct calculation or by a natural Kunneth formula. The pair A1,A2 is a
regular pair and, with C suppressed, the Mayer-Vietoris sequence gives

CH2(A1 +A2)→ CH1(A1 ∩ A2)→ CH1(A1)⊕ CH1(A2)→ H1(A1 +A2)

which is

0→ CH1(A1 ∩ A2)→ Zm−1 ⊕ 0→ 0

Thus, in view of exactness we get, as expected, CH1(A; C) = Zm−1.
Modifying A2, with TF replacing F , similar arguments show that the triangular

algebra

E =


TF 0 Om Om
0 TF Om Om
0 0 TF 0
0 0 0 TF


also has CH1(E ; C) = Zm−1.
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