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Some Geometric Properties for a Class of
Non-Lipschitz Domains

Mohammed Barkatou

Abstract. In this paper, we introduce a class C, of domains of RN , N ≥ 2,
which satisfy a geometric property of the inward normal (such domains are
not Lipschitz, in general). We begin by giving various results concerning this
property, and we show the stability of the solution of the Dirichlet problem
when the domain varies in C.
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1. Introduction

Most of the work concerning the stability of the solution of a boundary value
problem with the Laplacian operator was done by V. Keldyš in the 40’s and is pre-
sented in his original paper [12], see also [9], [14], [10]. In [6], the author considered
the class of all open domains satisfying the restricted cone property with a given
height and angle of the cone, say ε (each open domain is said to satisfy the ε-cone
property) which are stable in the sense of Keldyš (see Theorem 4.1). For other
kind of constraints, see for example [4], [5], [16]. In this paper, we introduce a very
simple constraint involving a geometric property of the inward normal vector. The
domains we consider must satisfy the following condition: for almost every point of
the boundary, the inward normal (if it exists) intersects a fixed compact convex set
C. We shall call this property C-GNP. Such property is satisfied by the solution of
the quadrature surface free boundary problem, see for example [1], [2], [8] and [13].
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The aim of this paper is, first, to show some important results concerning the do-
mains which satisfy C-GNP. We will prove that the boundary of a domain Ω which
satisfies C-GNP has a uniform cone property outside C. Moreover, even though
cusps can be formed at the points of ∂Ω∩∂C (one can consider, in two dimensions,
the convex C = [−1, 1]× {0} and the domain Ω = B(−1, 1) ∪B(1, 1)), it is shown
that these cusps are not sharper than (i.e., contain) a canonical cusp (which is ob-
tained by revolving the cusp between two touching circles of large radius around its
axis). In particular, this implies that every point of ∂Ω is regular for the Dirichlet
problem, as one can easily verify the Wiener criterion. We also obtain a characteri-
zation of C-GNP where we don’t need the normal and give an example of a domain
which satisfies C-GNP while its Steiner symmetrization doesn’t have C-GNP.

Next, in Section 3, we will prove that if Ωn is a sequence of open subsets included
in a fixed ball D and satisfying C-GNP, then there exists an open subset Ω ⊂ D
and a subsequence (still denoted by Ωn) such that:
1. Ωn converges to Ω in the Hausdorff sense,
2. Ωn converges to Ω in the compact sense: every compact subset of Ω is included
in Ωn for n large enough and every compact subset of Ω

c
is included in Ω

c

n for
n large enough (Ω

c
is the exterior of Ω),

3. Ωn converges to Ω in the sense of characteristic functions, and
4. Ω satisfies C-GNP.

In the last section, we study the behaviour of the solution of the Dirichlet problem
on Ωn when Ωn converges to Ω. We introduce un the solution of the Dirichlet
problem { −∆un = f in Ωn

un = 0 on ∂Ωn

and we prove that, if Ωn converges to Ω in the Hausdorff sense, the sequence
un (extended by 0 outside Ωn) converges strongly in H1

0 (D) to u solution of the
Dirichlet problem { −∆u = f in Ω

u = 0 on ∂Ω,

(f ∈ H−1(D)).

The proof relies on the notion of stability introduced by Keldyš and the conver-
gence in the compact sense of Ωn to Ω. It requires a particular study of the cusp
points of ∂Ω, and a precise computation of the capacity of the exterior of Ω, in a
neighbourhood of such a point in order to obtain the stability of the set Ω.

2. The geometric normal property

In this section, we introduce for an open subset Ω of RN , the geometrical property
of the normal with respect to convex C (noted C-GNP), and we study its various
properties. It will be shown first of all that the points of the boundary of Ω which
are outside of C have a property of the cone. Then for the points of ∂Ω which
are on C, we prove a geometrical result (see Proposition 2.2) expressing that the
outside of Ω is sufficiently consistent in term of capacity, in the neighbourhood of
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those points. Finally, we give a characterization of C-GNP which does not utilize
the normal.

Let D be an open ball of RN and C be a convex compact of D. All the open
subsets with which we shall work will be included in D. For any point x of the
boundary of an open subset Ω, we denote the inward normal vector to ∂Ω (if it
exists) by ν(x) and set

NΩ = {x ∈ ∂Ω : ν(x) exists}.
Finally, we shall denote byD(x, ν(x)), the half-line with origin x and director vector
ν(x).

Definition 2.1 ([3]). Let C be a convex set in RN and c a point of its boundary.
By the normal cone to C at c we mean the set:

CNc = {y ∈ RN : (y − c) · (z − c) ≤ 0 ∀z ∈ C}.
CNc can also be seen as the set of the points of RN , for which c is the projection
on C.

• We call a half-normal to C at c, any half-line with origin c and contained in
the normal cone CNc.

• We call a normal to C at c, a line containing one half-normal.

Remark 2.1. If c is a regular point of ∂C, then CNc is exactly the usual normal
to C at c.

Rule. Throughout this paper it is supposed that for any point c of ∂C, a particular
normal ∆c was fixed. One calls it the selected normal to C at c.

Definition 2.2. We say that an open subset Ω has a geometric normal property
with respect to C (or more simply Ω satisfies the C-GNP) if:

(P1) Ω contains the interior of C.
(P2) ∂Ω is Lipschitz outside of C.
(P3) ∀ x ∈ NΩ�C, D(x, ν(x)) ∩ C �= ∅.
(P4) For all selected normals, ∆, to C, ∆ ∩ Ω is connected.

C is the class of all domains which satisfy C-GNP.

We begin by showing the following proposition which will be useful thereafter.

Proposition 2.1. Let Ω be an open subset which has C-GNP. Let c be some point
of the boundary of C and ∆c be a half-normal to C at c. Then:
1. ∆c ∩ Ω cannot have a connected component ω such that, c /∈ ω.
2. ∆c ∩ Ωc cannot have a bounded connected component.

Proof. We show the first point. The proof of the second is the same while working
with the extremity of the connected component of ∆c ∩ Ωc further from C.

Suppose by contradiction that ∆c ∩ Ω has a connected component ]x0, y0[ with
c, x0 and y0 arranged in this order on ∆c and x0 �= c. Let e be the unit vector of
the half-line ∆c and put the origin O in x0. By hypothesis, O is not on C. Thus:

• On one hand, one can separate C and {O} by an hyperplane H orthogonal
to ∆c.
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• On the other hand, as O is on ∂Ω, there exists a neighbourhood V = V ′×]−
α, α[ of O, an orthonormal cartesian coordinate system R := (O, e1, . . . , eN )
and a Lipschitz function φ in V ′ such that:

Ω ∩ V = {(y′, yN ) ∈ V | yN < φ(y′)},
(Ω)c ∩ V = {(y′, yN ) ∈ V | yN ≥ φ(y′)}.

In the cartesian coordinate system R, we have
H = {x ∈ RN | x · e = δ0}

with δ0 < 0, (x · e being the scalar product of x and e, in RN ). According to
what precedes,

C ⊂ {x ∈ RN | x · e < δ0}.
Now, to continue the proof, we shall need the

Lemma 2.1. Let ψ be a Lipschitz function in a neighbourhood V ′ of 0 (in RN−1).
If ψ (t, 0, .., 0) > 0 for t > 0 and ψ (0, .., 0) = 0, then, there exists x′ ∈ V ′ such that
∇ψ(x′) exists and ∂ψ

∂x1
(x′) ≥ 0.

Proof. Since the 1-dimensional function f : s �→ ψ(s, 0, . . . , 0) is (as ψ) Lipschitz
in a neighbourhood of 0, it is differentiable for almost all s and

f(t) = f(0) +
∫ t

0

f ′(s) ds.

Using the function ψ, we can write

ψ(t, 0, . . . , 0) =
∫ t

0

∂ψ

∂x1
(s, 0, . . . , 0) ds.

So, if ψ(t, 0, . . . , 0) > 0 then there exists at least one s ∈ ]0, t[ such that
∂ψ

∂x1
(s, 0, . . . , 0) > 0.

Now, if ∇ψ(s, 0) exists, the demonstration is achieved. If not, set

G = {x ∈ V ′ : ∇ψ (x) exists} .
(As ψ is Lipschitz, G is not empty and not negligible). We show that there exists
v ∈ G such that ∂ψ

∂x1
(v) ≥ 0.

Suppose by contradiction that no such point exists, i.e., ∀ x ∈ G, ∂ψ∂x1
(x) < 0.

This implies that, for h > 0 small enough and y in a neighbourhood of 0 (in RN−2),

ψ (s+ h, y)− ψ(s, y) =
∫ s+h

s

∂ψ

∂x1
(t, y) dt < 0.

Tending y to 0, ψ (s+ h, 0) − ψ(s, 0) ≤ 0. Then, dividing by h tending h to 0, we
obtain ∂ψ

∂x1
(s, 0) ≤ 0, which is absurd. �

End of the proof of Proposition 2.1.

Case 1: e = −eN (by construction, e = eN is not possible). In this case, the convex
C is included in the half-space {xN > δ0}. As the inward normal to ∂Ω at a point
x, with director vector

(
∂φ
∂x1
(x′), . . . , ∂φ

∂xN−1
(x′),−1

)
is in the opposite direction to

C, it cannot meet C and one has the desired contradiction.
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Case 2: The vector e is not parallel to eN . Note e′ the orthogonal projection of e on
the hyperplane orthogonal to eN . One can without restriction of generality, choose
a cartesian coordinate system in which e1 = 1

α1
e′, α1 > 0. Set e = e′ + αNeN

(e = α1e1 + αNeN ). The hypothesis ]O, y0[⊂ Ω, becomes
tαN < φ(tα1, 0, . . . , 0) for t > 0, t small.

Applying Lemma 2.1 to the function

ψ(x1, . . . , xN−1) = φ(α1x1, x2, . . . , xN−1)− αNx1,

there exists at least one point x = (x′, xN ) (x′ ∈ B(O,−δ0/2)) where the inward
normal directed by the vector

(
∂φ
∂x1
(x′), . . . , ∂φ

∂xN−1
(x′),−1

)
exists and ∂ψ

∂x1
(x′) ≥ 0.

Hence

α1
∂φ

∂x1
(x′)− αN ≥ 0.(1)

To conclude, show that the inward normal to ∂Ω at x cannot intersect C. Let
y = x+ tν(x) (t > 0) be a point of this inward normal. Since |x · e| ≤ ||x|| < −δ0/2
and ν(x) ·e has the sign of α1

∂φ
∂x1
(x′)−αN (which is positive according to (1)), then

y ·e > δ0/2; which proves the result since the convex C is included in the half-space
{x · e < δ0}. �

As a corollary of Proposition 2.1, we have:

Corollary 2.1. Let Ω be an open subset which has C-GNP. Let c be a point of ∂C
and ∆c be a half-normal to C at c, with director vector e. Let x be some point of
∆c ∩ Ω. Then:

• The interval ]c, x[ does not meet the exterior of Ω.
• The half-line with origin x directed by e does not meet Ω.

Lemma 2.2. Let Ω be an open subset which has C-GNP and S be a similarity
transformation (of ratio k > 0) then S(Ω) has the S(C)-GNP.

The proof of this lemma is trivial and therefore is omitted.

As we have said in the begining of this paper, if Ω satisfies C-GNP then ∂Ω ∩
∂C can have cusps. We shall describe the behaviour of such points, this with the
intention to prove that the eventual cusps of ∂Ω are regular in the sense of Wiener
[17] (see Section 4).

Proposition 2.2. Let C be a convex set with a nonempty interior (int(C) �= ∅)
and x0 ∈ ∂Ω ∩ ∂C. Let CN0 be the normal cone to C at x0.
1. If Ω satisfies C-GNP, then CN0 ∩ Ω = ∅.
2. If CN0 is reduced to the half-line ∆0, let H be the hyperplane orthogonal to
∆0 in x0 and H+ the open half-space limited by H and not containing C. Let
R be a real number which is strictly superior to the diameter of C and ε0 be
a small strictly positive number. Put Bx0 = B′(x0, ε0) × R (B′(x0, ε0) being
the (N − 1)-dimensional ball with center x0 and radius ε0). Then

Ω ∩Bx0 ∩H+ ⊂
⋃

z∈H, |z−x0|=R
B(z,R) = Bx0 .
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Remark 2.2. If int(C) = ∅, the previous result remains true if we replace CN0 by
CN0 ∩E, where E is one of the half-spaces limited by an hyperplane containing C.

Remark 2.3. The interest of Proposition 2.2 is to describe the boundary ∂Ω of
Ω, in the neighbourhood of x0: the union of spheres centered in z and of radius
R, form in x0 a (hyper)surface of revolution with a perfectly characterized cusp
point. This proposition says that the eventual singularity of ∂Ω in the point x0 can
be a cusp point which is included in the one of the revolution surface, described
above. This geometric characterization will allow us to estimate the capacity of the
exterior of Ω in the neighbourhood of the point x0 (see Section 4).

Proof of Proposition 2.2. We first prove that the normal cone CN0 does not
intersect Ω. If CN0 is reduced to a half-line, this is exactly the selected normal to
C and the result is then an immediate consequence of the condition (P4). Now, let
x0 be a vertex of the convex C such that x0 ∈ ∂Ω and let ∆0 be the selected normal
to C at x0. Suppose that the open subset Ω meets the normal cone CN0 and let
ω be a connected component of Ω∩CN0. By hypothesis, ω does not meet ∆0. Now
among all the planes containing ∆0 which meet ω, one can find at least a plane P
such that the 1-dimensional Lebesgue measure of the complement of NΩ∩P is null,
i.e., almost all the points of ∂Ω∩P have a normal. For x ∈ ∂(ω∩P ), νx (resp. nx) is
the inward normal vector to ∂ω (resp. to ∂(ω ∩ P )) at x. In the plane P , we have
the following situation: ω ∩ P is a relative open subset such that ∂ (ω ∩ P ) =
γ1 ∪ γ2, where γ1 ⊂ ∂Ω and γ2 is included in some half-normal ∆1which limits
CN0 ∩ P .
Let H be the supporting hyperplane orthogonal to ∆1 and passing by x0. Let ∆

be the line H ∩P . Let R (x0, e1, . . . , eN ) be the cartesian coordinate system of RN ,
where x0 is the origin, e1 is parallel to ∆ and eN is parallel to ∆1. By hypothesis,
the convex C is in the half-space {xN ≤ 0}. Since

0 =
∫
∂

n · eN =
∫
γ1

n · eN +
∫
γ2

n · eN =
∫
γ1

n · eN(2)

(n is the inward normal vector to ∂(ω ∩ P )), then there exists a subset (of strictly
positive measure) of γ1 on which nx · eN ≥ 0. Then, it is easy to see that using, for
∂Ω, the cartesian representation ψ(x1, x2, . . . , xN ) = 0, one can have νx·eN ≥ 0, i.e.,
the inward normal vector at such point x, cannot intersect C (which is “below” the
hyperplane H), contradicting thus, the property (P3).
Suppose now, that the cone CN0 is reduced to a half-line ∆0. To simplify, we can

put the origin at x0. Let B0 = B′(O, ε0)×R and suppose that (Ω∩B0∩H+)\Bx0 is
not empty. Let ω be a connected component of this set. By hypothesis, ω does not
intersect ∆0. Let P be a plane containing the normal ∆0 such that the complement
of NΩ∩P has a null measure. Once again, for x ∈ ∂(ω∩P ), let ν(x) (resp. n(x)) be
the inward normal vector to ∂ω (resp. to ∂(ω ∩ P )) at x.
In the plane P, we have the following situation: ω ∩ P is a relative open subset

such that ∂ (ω ∩ P ) = γ1 ∪ γ2, where γ1 ⊂ ∂Ω and γ2 ⊂ ∂Bx0 . Note ∆ the line
H∩P . Introduce, as above, a cartesian coordinate system of RN ,R (x0, e1, . . . , eN ),
where x0 is the origin, e1is parallel to ∆ (and of same direction that ω∩P ) and eN
is parallel to ∆0.
By hypothesis, Ω satisfies the condition (P3) w.r.t. C. Thus there exists ε >

0 (small enough) such that Ω∩H+∩B0 satisfies (P3) w.r.t. the (N − 1)-dimensional
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ball B(O,R− ε). This can be expressed by

∀X ∈ NΩ ∩H+ ∩B0, νN (X) < 0 and
N−1∑
i=1

(
xi − xN

νi(X)
νN (X)

)2

≤ (R− ε)2.

Therefore (
x1 − xN

ν1(X)
νN (X)

)2

≤ (R− ε)2.(3)

Let n(X) = (n1(X), nN (X)), be the inward normal vector (if it exists) to ∂(ω ∩P )
at X ∈ γ1. Using the cartesian representation ψ(x1, . . . , xN ) = 0, one can have
ν1(X)
νN (X) =

n1(X)
nN (X) . This together with the inequality (2) implies that

∀X = (x1, xN ) ∈ γ1 ∩NΩ, nN (X) < 0 and −R+ ε ≤ x1 − xN
n1(X)
nN (X)

≤ R− ε,

(4)

or again, if we introduce the tangential vector t(X) = (nN (X),−n1(X)) to ∂(ω∩P ):
(R− ε)nN (X) ≤ X · t(X) ≤ (−R+ ε)nN (X).(5)

Since nN < 0, then X · t(X) > RnN and,∫
γ1

X · t(X) ds >

∫
γ1

RnN (X) ds.

Now, as the points of γ2 belong to some circle of center z, we have

X · t(X) = RnN (X).

This implies that

0 =
∫
∂ω

X · t(X) ds =
∫
γ1

X · t ds+
∫
γ2

X · t ds >

∫
∂ω

RnN (X) ds = 0,

which is absurd. �
Remark 2.4. An immediate consequence of Proposition 2.2 above, is that an open
subset which has the C-GNP is of Caratheodory type. Recall that an open subset
Ω is of Caratheodory type if, for example, any point of its boundary is limit of a
sequence of points of its exterior Ω

c
.

In fact as ∂Ω\C is Lipschitz then, all its points can be approached by a sequence
of points of the exterior of Ω.
Now, if x0 ∈ ∂Ω ∩ C, according to Proposition 2.2, x0 is also in Bx0 which is of

Caratheodory type and its exterior is contained in the exterior of Ω. Consequently,
there exists a sequence of points of the exterior of Ω which converges to x0.

Remark 2.5. In two dimensions, an open subset which has C-GNP satisfies a
property of the exterior segment.

Now, let us give a characterization of C-GNP where we don’t need the normal.

Definition 2.3. Let C be a convex set. We say that an open subset Ω has the
C-SP, if the conditions (P1), (P2), (P4) of Definition 2.2 are satisfied and

(S) ∀ x ∈ ∂Ω�C Kx ∩ Ω = ∅,
where Kx is the closed cone defined by

{
y ∈ RN : (y − x).(z − x) ≤ 0, ∀ z ∈ C

}
.
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Remark 2.6. Kx is the normal cone to the convex hull of C and {x}.
Proposition 2.3. An open subset Ω has C-GNP if and only if it satisfies the C-SP.

To prove this proposition, we need to show the following lemma:

Lemma 2.3. Let c be a point of ∂C and CNc be the normal cone to C at c. Then
for all y ∈ CNc and y �= c, the half-line ∆(y,−→cy), with origin y and director vector
−→cy is contained in Ky (the normal cone of the convex hull of {y} and C).

Proof. Let z ∈ ∆(y,−→cy), then there exists λ ∈ R+ such that z − y = λ(y − c).
Show that z ∈ Ky, that is to say:

∀ ψ ∈ C, (z − y) · (ψ − y) ≤ 0,
or again,

∀ ψ ∈ C, (y − c) · (ψ − y) ≤ 0.
Since c is the projection of y on C, one has

(y − c) · (ψ − c) ≤ 0.
Thus,

(y − c) · (ψ − y) = (y − c) · (ψ − c)− ‖y − c‖2 ≤ 0.
�

Proof of Proposition 2.3. We first show that C-SP implies C-GNP: Let x ∈
NΩ \ C. Denote by Hx the tangential hyperplane to ∂Ω at x and by Cx the
orthogonal projection of C on Hx. The C-GNP will be proved if we show that x
belongs to Cx. In fact, if not, there would exist an hyperplane of Hx (therefore
an affine space in RN−2) separating strictly x of Cx, therefore, there would exist a
tangential vector ,τ such that one has,

∀ y ∈ C, ,τ · (y − x) > 0.

Now by C-SP, one can have, for all z ∈ Ω and all y ∈ C, the inequality (z−x) · (y−
x) > 0. Choosing a sequence of points zn ∈ Ω such that 1

‖zn−x‖ (zn − x) converges
to −,τ , one obtains −,τ · (y − x) ≥ 0, and thus the contradiction.
We now show that C-GNP implies C-SP: If x ∈ ∂Ω \ C, let Kx be the cone

defined above. Let c be the projection of x on C. By Lemma 2.3, the half-
line ∆(x,−→cx) is in Kx. Therefore, according to the Corollary 2.1, ∆(x,−→cx) does not
intersect Ω. Then, we find ouerselves in the same conditions as in the demonstration
of Proposition 2.2 by replacing CN0 by Kx and ∆0 by ∆(x,−→cx). One can conclude
that Ω∩Kx = ∅ (that returns to apply Proposition 2.2 to Ω and the convex hull of
C and {x}). �

Remark 2.7. The definition of Kx implies that: if z ∈ int(Kx) and if H denotes
the hyperplane passing by x and orthogonal to −→xz, then the convex C is included
in the open half-space limited by H and not containing z. Now, if z is a point
(different to x) such that if H is the hyperplane defined above and C is included in
the open half-space limited by H and not containing z, then z ∈ int(Kx).
This last remark allows us to state the following lemma which will be useful for

later.
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Lemma 2.4. Let x be a point which does not belong to C. Let H be an hyperplane
which separate strictly {x} and C. If Dx is the half-line with origin in x, orthogonal
to H and not intersecting this one, then Dx is in the interior of Kx.

Proof. In fact, if y is a point of the half-line Dx, applying Remark 2.7 to the
hyperplane Hx passing by x and parallel to H, one deduces that y belongs to
int(Kx). �

Lemma 2.4 allows us to show the following result which precises Proposition 2.1.

Corollary 2.2. Let Ω be an open subset which satisfies the condition (S). Let c be
a point of ∂C and CNc the normal cone to C at c. Then any half-line with origin
in c which is contained in CNc, intersects the boundary ∂Ω at most in one point.

Proof. Let ∆ be a half-line with origin in c included in CNc. Suppose there exists
two points x and y in ∆ ∩ ∂Ω (for example y ∈ [c, x]). According to Lemma 2.4,
one can deduce that x ∈ int(Ky) and therefore Ky ∩Ω is not empty, contradicting
the property (S). �

Corollary 2.3. Let Ω be an open subset which contains the convex C. If Ω satisfies
(P2) and (S), then it satisfies (P4).

Proof. Let ∆ be a normal to C at some point c. Suppose that ∆ ∩ Ω be not
connected. As this one is a relative open subset of ∆, it has at least two connected
components ]a1, a2[ and ]b1, b2[. Now, the points a1, a2, b1 and b2 are necessarily on
∂Ω. By hypothesis, at least one of the two intervals does not meet C (for example
]a1, a2[). Suppose that a1 be nearer to C than a2, then the Corollary 2.2 applied
to c and ∆ gives the contradiction. �

Now, we shall show the existence of an intrinsic cartesian coordinate system
such that the boundary of any open subset which satisfies C-GNP can be locally
represented by some Lipschitz function.

Proposition 2.4. Let Ω be an open subset which satisfies C-GNP. Let x ∈ ∂Ω�C
and xC its projection on C. Then, ∂Ω admits in a neighbourhood of x, a Lipschitz
representation in an orthonormal cartesian coordinate system.

Proof. Put Rx = (x, e′, eN ) with eN =
−−→xCx

‖−−→xCx‖ .We shall show that, in a neighbour-
hood of x:
1) ∂Ω is a graph in Rx.
2) ∂Ω \ C is Lipschitz in Rx.
Let ε > 0 be sufficiently small and y ∈ ∂Ω ∩ B(x, ε). Put y = (y′, yN ) and

c = (y′, 0).

We first show 1). Note Dc the half-line with origin in c and director vector eN .
One can show that

Dc ∩ ∂Ω = {y}.
By construction of Kx, the open half-line D(x, eN ) with origin in x and director
vector eN is contained in the interior of Kx. As Ky continuously varies with y, the
half-line D(y, eN ) with origin in y and director vector eN is in the interior of Ky,
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for y sufficiently close to x. Now, since Ω has C-GNP, Proposition 2.3 allows us to
derive

Ω ∩Ky = ∅.(6)

Therefore, if Dc = [c, y] ∪ D(y, eN ) contains some point η of ∂Ω, η �= y, then
according to (6), η would be on the interval [c, y[. Applying the C-SP to η, one
would have

Ω ∩Kη = ∅,
but, by Lemma 2.4 y ∈ Kη, which gives the contradiction.
Now, we show 2). As Ω has C-GNP, Proposition 2.3 implies that Ω∩Ky = ∅ or

again that Ky ⊂ Ωc. So the graph of ∂Ω does not meet the interior of the cone Ky
which contains the open half-line D(y, eN ) (see above). To conclude, it remains to
find an analogous cone situated under the graph of ∂Ω. Put Ey = {η : y ∈ Kη}.
Note that, according to Proposition 2.3, Ey does not contain any point of ∂Ω.
Introduce HN , the hyperplane {zN = yN

2 } and H+
N , the closed half-space {zN ≥

yN

2 }. As the closed intersection H+
N ∩C is empty, then there exists α > 0 such that

for all cartesian coordinate system R(y, e′1, . . . , e′N ) such that the angle ̂(e′N , eN ) <
α, the convex C is in the half-space {y′N < yN

2 }. Let η ∈ B(y, yN

2 ) ∩ C(y, α),
by construction, C is in the open half-space limited by the hyperplane which is
orthogonal to −→ηy passing by η and not containing y. Then Remark 2.7 gives y ∈ Kη,
and

B
(
y,

yN
2

)
∩ C(y, α) ⊂ Ey.

This implies the desired property. �

An immediate consequence to this proposition is the following:

Corollary 2.4. The intersection of two open subsets which have C-GNP is an open
subset which satisfies C-GNP.

Proof. Let Ω1 and Ω2 be two open subsets which contain the interior of C. If ∆
is a selected normal to C. By hypothesis, ∆∩Ω1 and ∆∩Ω2 are connected (there
are intervals of ∆) then their intersection is an interval of ∆ and is, therefore,
connected and Ω1 ∩ Ω2 satisfies (P4). It remains now to prove that if Ω1 and Ω2

satisfy (P2) and (P3), then Ω1 ∩Ω2 also. Let ΓI be the boundary of Ω1 ∩Ω2. If x
∈ ΓI where the inward normal exists, this one is necessarily the inward normal at
x to ∂Ω1 or to ∂Ω2, so (P3) will be verified. To conclude, it suffices to show that if
Ω1 and Ω2 have C-GNP, then ΓI \C is Lipschitz (in general, if Ω1 and Ω2 are two
Lipschitz open subsets, their intersection is an open subset which is not necessarily
Lipschitz). Let x ∈ ΓI , then in the cartesian coordinate system Rx defined by
Proposition 2.4, there exists a neighbourhood Vx of x and two Lipschitz functions
φ1 and φ2 representing respectively ∂Ω1 ∩ Vx and ∂Ω2 ∩ Vx in Rx. Consequently if
we put ΦI = inf(φ1, φ2), then ΦI is a Lipschitz representation of ΓI ∩Vx in Rx. �

Remark 2.8. In general, the union of two open subsets which satisfy the property
(P4) does not satisfy it. One can consider in two dimensions the convex C =
[−1, 1] × {0}. Let Ω be the union of the two open discs D−1 and D1 centred
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respectively in −1 and 1 and of radius 1/2. If the selected normal to C at the two
extremities is the line y = 0 then D−1 and D1 satisfy (P4) while Ω does not.

Now we shall precise the result obtained above. We want to prove that for an
open subset Ω which has C-GNP, ∂Ω�C satisfies the cone property. More precisely
we shall show the following proposition.

Proposition 2.5. Let Ω be an open subset which has C-GNP and x0 a point of
∂Ω�C. Then, there exists an unitary vector η and a real number ε (strictly positive)
which depend only on x0 and C and such that

∀ y ∈ B(x0, ε) ∩ Ω C(y, η, ε) ⊂ Ω,
where C(y, η, ε) is the cone with vertex y, of direction η and angle to the vertex and
of height ε:

C(y, η, ε) =
{
x ∈ RN ; |x− y| ≤ ε and |(x− y) · η| ≥ |x− y| cos ε} .

Proof. Denote by δ, the distance of x0 to C. The C-GNP allows us to work in
the cartesian coordinate system R0 with origin in O (the projection of x0 on C)
and which has the last vector of coordinates, −→eN = −−→

Ox0/δ such that {xN = 0} is
the supporting hyperplane to C at O. One can complete the base by choosing an
orthonormal base of {xN = 0}.
Let φ be the Lipschitz representation of ∂Ω ∩ B(x0, α) in R0. One can suppose

that α < δ/2. Then

∂Ω ∩B(x0, α) = {(x′, xN ) ∈ B(x0, α) ; xN = φ(x′)},
and

Ω ∩B(x0, α) = {(x′, xN ) ∈ B(x0, α) ; xN < φ(x′)}.
Let R > 0 be large enough in order that the intersection between the cone with
vertex y supported by C and the hyperplane xN = 0 will be contained in the
(N −1)-dimensional ball B′(O,R), for all y ∈ B(x0, δ/2). Start with characterizing
analytically the geometric property of the normal. At every point ξ = (ξ′, ξN ) ∈
∂Ω ∩ B(x0, α) where the normal νξ exists, the half-line with origin ξ and directed
vector νξ intercects the hyperplane {xN = 0} inside the ball B′(O,R):

∀ξ ∈ NΩ ∩B(x0, α), |ξ′ + φ(ξ′)∇φ(ξ′)| ≤ R.(7)

This implies that the function

ξ �−→ φ2(ξ′) + |ξ′|2

is 2R-Lipschitz in B′(O,α). Hence φ2 is (2R+ 2α)-Lipschitz and if φ ≥ δ/2 we ob-
tain that φ is (2R+ 2α) /δ-Lipschitz and therefore satisfies an uniform cone prop-
erty (see [7]). But as it is not absolutely evident that the geometric characteristics
of the cone can be chosen independently of Ω, we continue the demonstration.
Let us fix ε > 0 sufficiently small that

2ε+ (1 + tan2 ε)ε+ 2 tan ε < δ,

(it is clear that ε depends only on x0 and C, by the intermediary of R and δ).
Choose, as direction of the cone, η = −eN . Let y ∈ B(x0, ε)∩Ω, y = (y′, δ+yN )

with

|y′|2 + y2
N < ε2 and δ + yN ≤ φ(y′).(8)
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Now, let z ∈ C(y, η, ε):

z = y + (h′,−hN ) with, |h′|2 + h2
N < ε2, |h′| ≤ (tan ε)hN and hN > 0.(9)

We shall prove the uniform cone property, that is to say that, z ∈ Ω, or again that,
(δ + yN − hN )2 < (φ(y′ + h′))2.

Using (7), we can have

(φ(y′ + h′))2 ≥ (φ(y′))2 − 2R|h′|+ |y′|2 − |y′ + h′|2.
And from (8),

(φ(y′ + h′))2 ≥ (δ + yN )2 − 2R|h′|+ |y′|2 − |y′ + h′|2
≥ (δ + yN )2 − 2R|h′| − |h′|2 − 2ε|h′|.

Now, according to (9), one gets

(φ(y′ + h′))2 ≥ (δ + yN )2 − 2(R+ ε) tan(ε)hN − tan2(ε)h2
N .

Using the definition of ε, we obtain

(φ(y′ + h′))2 ≥ (δ + yN )2 + h2
N − 2hN (δ − ε) ≥ (δ + yN − hN )2.

which is the result. �

Let us now see if the class C is stable by Steiner symmetrization.
Definition 2.4. Let Ω be an open subset of R2. Assume that Ω is convex in the
direction Oy. For α ∈ R, let Ωα be the segment

{
(α, y) ∈ R2 ; (α, y) ∈ Ω}. The

Steiner symmetrization of Ω is

Ω∗ =
{
(α, t) ∈ R2 ; α ∈ R and |t| < |Ωα|

2

}
.

Lemma 2.5. Let Ω be an open subset of R2 which contains the convex C = [−1, 1]×
{0}. If Ω satisfies C-GNP, then Ω is convex in the direction Oy.

Proof. The proof is an immediate consequence of Definition 2.2. Let H+ and H−

be the half-planes separated by the axis Ox. Let x ∈ ∂Ω. As Ω satisfies C-GNP
from Proposition 2.3, we deduce that the vertical segment over x is in the closed
cone Kx. In the same way, if there exists z in the vertical segment under x we
have x ∈ Kz which contradicts Lemma 2.4. Therefore Ω is convex in the direction
Oy and ∂Ω ∩H+ and ∂Ω ∩H− are two graphs. �

Proposition 2.6. There exists an open subset Ω ⊂ R2 which satisfies C-GNP and
such that its Steiner symmetrization doesn’t satisfy C-GNP.

Proof. Using the notations of the previous proof, let ϕ1 (resp. ϕ2) be the repre-
sentation of ∂Ω∩H+ (resp. of ∂Ω∩H−). It is easy to see that C-GNP is equivalent
to

−1 ≤ x+ ϕi(x)ϕ′
i(x) ≤ 1, i = 1, 2,

for all x such that the derivative ϕ′
i(x) exists.
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Let r ∈ ]0, 1[ and put
ϕ1(x) =

√
(2 + r)2 − (x− 1)2

ϕ2(x) =
{ √

r2 − (x+ 1)2 if x ∈ [−1− r,−1]√
4− (x− 1)2 if x ∈ [−1,+∞[ .

The symmetrized Ω∗ (of Ω) is limited by the graph of ϕ1+ϕ2
2 in H+ and the graph

of −ϕ1+ϕ2
2 in H−. Now, if x = −1+ r with r sufficiently small, a simple calculation

shows that

x+
(
ϕ1 + ϕ2

2

)
(x)

(
ϕ1 + ϕ2

2

)′
(x) � −1 + 1

2r

(
r +

√
4r + r2

)
,

which tends to +∞ when r tends to 0. Therefore, Ω∗ doesn’t satisfy C-GNP. �

When we symmetrize an open set Ω (which satisfies C-GNP) by the Steiner
continuous symmetrization, the same property is satisfied by its symmetrized Ωt,
for t small, at the points of the boundary ∂Ω whose normal meets the relative
interior of C.

Definition 2.5. Let Ω be an open set in R2 which is convex in the direction Oy.
The Steiner continuous symmetrization consists in centering each segment [y1, y2]
parallel with the axis Oy (y1 and y2 belong to ∂Ω) with a speed equal to the
distance from the center of [y1, y2] to the axis {x = 0}, i.e., that if ∂Ω is given
by two functions φ1 and φ2 then for all t (t ∈ [0, 1]) the boundary ∂Ωt of its
symmetrized Ωt will be given by the functions φt1and φt2 such that{

φt1 = φ1 − t
2 (φ1−φ2)

φt2 = φ2 + t
2 (φ1−φ2).

Definition 2.6. An arc γ centered in (−1, 0) or (1, 0) is said to be of Type I if it
is not included in

{
(x, y) ∈ R2 : x ≤ −1} ∪ {

(x, y) ∈ R2 : x ≥ 1} .

Proposition 2.7. Let Ω be an open set which strictly contains the segment C and
satisfying C-GNP. If ∂Ω does not contain arcs of Type I, then for t sufficiently
small, Ωt satisfies also C-GNP.

Proof. Suppose that ∂Ω is given by two functions φ1 and φ2, then, for t small
enough, its symmetrized ∂Ωt will be given by the functions φt1 and φt2 such that{

φt1 =φ1 − t
2 (φ1−φ2)

φt2 =φ2 + t
2 (φ1−φ2).

For x ∈ ∂Ωt, the inward normal meets C if and only if

−1 ≤ x+ φti(x)(φ
t
i)

′(x) ≤ 1 , i = 1, 2.

It is thus a question of checking if

−1 ≤ x+ φ1(x)φ′
1(x)−

t

2
[2φ1(x)φ′

1(x)− (φ′
1(x)φ2(x) + φ1(x)φ′

2(x))]

+
t2

4
(φ1(x)− φ2(x))(φ′

1(x)− φ′
2(x)) ≤ 1.
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Now we place ourselves in a point of the boundary ∂Ω, of x-coordinate x0 and such
that the interior normal cuts the segment C, for example, at (−1, 0). One has

x0 + φ1(x0)φ′
1(x0) = −1,

and

φ′
2(x0) ≥ − 1 + x0

φ2(x0)
.

One thus deduces that at the point of x-coordinate x0,

φ′
1(x0)φ2(x0) + φ1(x0)φ′

2(x0) ≥ −(1 + x0)
(
φ2(x0)
φ1(x0)

+
φ1(x0)
φ2(x0)

)
.

But (
φ2(x0)
φ1(x0)

+
φ1(x0)
φ2(x0)

)
≥ 2

(and even > 2 if φ1(x0) �= φ2(x0), the equality corresponds to the case where we
don’t move). Therefore if −(1 + x0) > 0 one has

φ′
1(x0)φ2(x0) + φ1(x0)φ′

2(x0) ≥ −2(1 + x0) = 2φ1(x0)φ′
2(x0)

and the term between brackets in the previous inequality is negative and conse-
quently this one is checked at the point of x-coordinate x0. In addition, since
x0 + φ(x0)φ′

1(x0) = −1 and t is rather small then

x0 + φ1(x0)φ′
1(x0)− t

2
[2φ1(x0)φ′

1(x0)− (φ′
1(x0)φ2(x0) + φ1(x0)φ′

2(x0))]

+
t2

4
(φ1(x0)− φ2(x0))(φ′

1(x0)− φ′
2(x0)) ≤ 1.

Which gives the result. �

3. The geometric normal property and the convergence of
domains

In this section, we start by recalling three notions of convergence we can define
on the open subsets of RN . Next, we prove that the class C of all open subsets
satisfying C-GNP is compact for the Hausdorff convergence. We finish by showing
that the three considered convergences are equivalent on C.
In all the following, we consider a fixed ball D centered to the origin and of

sufficiently large radius to be able to contain the convex compact C, and all the
open subsets we shall use.

Definition 3.1. LetK1 andK2 be two compact subsets ofD.One calls a Hausdorff
distance of K1 and K2 and we denote by it dH(K1,K2), the following positive
number:

dH(K1,K2) = max [ρ(K1,K2), ρ(K2,K1)] ,

where ρ(Ki,Kj) = max
x∈Ki

d(x,Kj) i, j = 1, 2 and d(x,Kj) = min
y∈Kj

|x− y| .
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Definition 3.2. Let Ωn be a sequence of open subsets of D and Ω be an open
subset of D. Let Kn and K be their complements in D. One says that the se-
quence Ωn converges in the Hausdorff sense to Ω and we denote by Ωn

H−→ Ω if
lim

n→+∞dH(Kn,K) = 0.

The notion of convergence that follows is less classical than the Hausdorff con-
vergence, but it is very useful for the stability of the solution of elliptic problems
when the domain varies, e.g., [10] and [12].

Definition 3.3. Let Ωn be a sequence of open subsets of D and Ω be an open
subset of D. One says that the sequence Ωn converges in the compact sense to Ω
and we denote by Ωn

K−→ Ω if:
• Every compact subset of Ω is included in Ωn, for n large enough.
• Every compact subset of Ωc is included in Ωcn, for n large enough.

Definition 3.4. Let Ωn be a sequence of open subsets of D and Ω be an open
subset of D. One says that the sequence Ωn converges in the sense of characteristic
functions to Ω and we denote by Ωn

L−→ Ω if χΩn
converges to χΩ in Lploc(R

N ),
p �=∞, (χΩ is the characteristic function of Ω).

Now, we recall some elementary results concerning the Hausdorff convergence.
First of all, the three following propositions which are very classical, see for example
[4] or [15].

Proposition 3.1. The set of open subsets confined in the ball D is relatively com-
pact for the Hausdorff convergence.

Remark 3.1. The previous proposition is very important because it allows us to
extract from each sequence of open subsets of D, a subsequence which converges in
the Hausdorff sense.

Proposition 3.2. If Ωn is a sequence of open subsets of D and Ω is an open subset
of D such that Ωn

H−→ Ω, then:
(i) Every compact subset of Ω is included in Ωn for n large enough.
(ii) For all x in ∂Ω, lim

n→+∞d(x, ∂Ωn) = 0.

Proposition 3.3. If Ωn is a sequence of open subsets of D and Ω is an open subset
of D such that Ωn

H−→ Ω, then:
(iii) lim meas (Ω�Ωn) = 0.
(iv) χΩ ≤ lim inf

n→+∞χΩn .

Show now the following theorem.

Theorem 3.1. Let Ωn be a sequence of open subsets of D satisfying the C-GNP.
Then there exists an open subset Ω of D and a subsequence (still denoted by Ωn)
such that:

• Ωn converges to Ω in the Hausdorff sense.
• Ωn converges to Ω in the compact sense.
• Ωn converges to Ω in the sense of characteristic functions.
• Ω satisfies C-GNP.
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We start by showing that Hausdorff convergence implies compact convergence.

Proposition 3.4. Let Ωn be a sequence of open subsets of D, which have C-GNP.
If the sequence Ωn converges in the Hausdorff sense to an open subset Ω, then it
converges in the compact sense to Ω.

Proof. One knows by Proposition 3.2 that for all compact K ⊂ Ω, one has K ⊂
Ωn, for n large enough. It remains to show an analogous property for the compacts
situated in the exterior of Ω. Let L be a compact set of D (one can always suppose
that the interior of L is not empty) L ⊂ Ωc. Let Ωn be an eventual open subset of
the sequence such that Ωn∩L �= ∅. In the case where L ⊂ Ωn, one has immediately
dH(Ωn,Ω) ≥ α, where α is the radius of a ball included in L. As lim

n→+∞dH(Kn,K) =

0, the set of n such that L ⊂ Ωn, is finite.
In the other case one has ∂Ωn ∩ L �= ∅. Let x be some point of this intersection.

According to the Proposition 3.2, there exists ε > 0 and an unitary vector η (both
are independent of n) such that the cone C(x, η, ε) is included in Ωn. As one
can always suppose ε small enough so that C(x, η, ε) ∩ Ω = ∅, one can derive
that dH(Ωn,Ω) ≥ β (where β is the radius of some ball included in the cone
C(x, η, ε)). As lim

n→+∞dH(Ωn,Ω) = 0, the set of n such that ∂Ωn ∩ L �= ∅ is finite.
This achieves the demonstration. �

The following proposition will be useful later.

Proposition 3.5. Let Ωn be a sequence of open subsets which converges, in the
compact sense, to an open subset Ω. If ∂Ω has a null measure, then Ωn converges
to Ω in the sense of chracteristic functions.

Proof. If χn is the characteristic function of Ωn, χn is bounded in L∞(D), so it
converges to a function l ∈ L∞(D) for the w*-L∞(D) convergence. Let K be a
compact set in Ω. By the compact convergence, there exists NK ∈ N such that
K ⊂ Ωn, for all n ≥ NK . Therefore, χn = 1 on K for all n ≥ NK and thus,
l = 1 on K. As this is valid for all compact K of Ω, one has l = 1 on Ω. In
the same way considering some compact L ⊂ (Ω)c, one has l = 0 on (Ω)c. As
D = Ω ∪ (Ω)c ∪ ∂Ω and meas(∂Ω) = 0, then one has l = χΩ almost everywhere
(χΩ being the characteristic of Ω). Therefore, χn

∗
⇀ χΩ and thus, as all the open

subsets are confined in D, χn converges strongly, to χΩ in L1(D). �

According to Proposition 3.1, one knows that C is relatively compact for the
Hausdorff convergence. It remains to show the closure of C, that is to say that if
Ωn is a sequence of open sets in C which converges in the Hausdorff sense to an
open set Ω, this one belongs to C. For this, we need to prove the following:
1. Ω is Lipschitz outside of C.
2. At points of ∂Ω, where the inward normal exists, this one intersects C.
3. For all selected normals ∆ to C, ∆ ∩ Ω is connected.
It is clear that if Ωn

H−→ Ω and ∆∩Ωn is connected, then ∆∩Ω is also connected
(because the limit, in the Hausdoff sense, for a sequence of intervals is an interval).

We now show the first point.
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Theorem 3.2. Let Ωn be a sequence of open subsets of D which have C-GNP and
Ω be an open subset of D. If Ωn

H−→ Ω, then ∂Ω is Lipschitz outside of the convex
C.

Proof. Let x ∈ ∂Ω\C. According to (ii) of Proposition 3.2, there exists a sequence
of points xn ∈ ∂Ωn \C which converges to x. Denote by τn the translation of vector
−−→xnx. It is clear that if Ωn H−→ Ω, τn(Ωn)

H−→ Ω. So we can suppose that x ∈ ∂Ωn, for
all n.
For each n, ∂Ωn can be represented, in a neighbourhood of x, by some Lipschitz

representation φn, in the cartesian coordinate system (O, e1, . . . , eN ) where O is
the projection of x on C and eN=

−→
Ox
|−→Ox| .

According to Proposition 2.5, all the Ωn satisfy a uniform property of the ε-cone,
in the neighbourhood of x, with ε independent of n (it depends only on x and on
C). Using the result obtained by D. Chenais in [7], one can fix a (N−1)-dimensional
closed ball B′(O,α) on which all the functions φn are defined.
As in the proof of Proposition 2.5, if φn ≥ δ/2 then φn is (2R+ 2α) /δ-Lipschitz,

proving that the functions φn are uniformly Lipschitz. One can use Ascoli’s theorem
to extract from φn, a subsequence (still denoted φn) which converges uniformly to a
Lipschitz function φ. It remains now, to show that the function φ is a representation
of ∂Ω in a neighborhood of x, that is to say that in a neighborhood V of x, one has

∂Ω ∩ V = {(y′, yN ) ∈ B′(O,α)× R : yN = φ(y′)} := Gra(φ)(10)

Ω ∩ V = {(y′, yN ) ∈ B′(O,α)× R : yN < φ(y′)}.(11)

Let y = (y′, yN ) ∈ ∂Ω ∩ V. By Proposition 3.2, there exists a sequence of points
yn = ((yn)′, ynN ) ∈ ∂Ωn which converges to y. Since ynN = φn((yn)′), the uniform
convegence of φn to φ implies that yN = φ(y′), i.e., ∂Ω ∩ V ⊂ Gra(φ). For the
inverse inclusion, one can remark that, for all fixed point y′ in B′(O,α), there
exists only one point of Gra(φ) which is “above” y′. This one is necessarily the
point (y′, yN ) which belongs to ∂Ω ∩ V.
Now, let y = (y′, yN ) ∈ Ω. According to Proposition 3.2, one knows that there

exists n0 ∈ N such that y ∈ Ωn, ∀n ≥ n0. Therfore, yN < φn(y′) and, tending n to
infinity, yN ≤ φ(y′). As y /∈ ∂Ω, yN < φ(y′).
At last, let y = (y′, yN ) with yN < φ(y′). One can prove that y ∈ Ω. If this is

not true, then either:
1. y ∈ ∂Ω which is impossible according to what precedes, or
2. y is in the exterior of Ω. This is also impossible because Ωn

K−→ Ω which
implies that y ∈ Ωcn for n large enough, and so yN > φn(y′) and, at the limit
yN ≥ φ(y′).

�

Theorem 3.3. Let Ωn be a sequence of open subsets of D which have C-GNP and
Ω be an open subset of D. If Ωn

H−→ Ω, then Ω satisfies C-GNP.

Proof. To prove that Ω satisfies C-GNP is equivalent to show that Ω satisfies the
C-SP.
Let x ∈ ∂Ω�C. As Ωn

H−→ Ω, by Proposition 3.2 there exists a sequence xn ∈
∂Ωn�C which converges to x. This implies in particular that the sequence of



206 Mohammed Barkatou

the closed cones Kxn(defined in Definition 2.3) converges in the Hausdorff sense to
the closed cone Kx. As the intersection is continuous for the Hausdorff convergence,
Ωn∩Kxn

H−→ Ω∩Kx. But Ωn∩Kxn
= ∅ so Ω∩Kx = ∅ (according to Proposition 3.2)

and Ω satisfies the C-SP. �

As a consequence of what precedes, we have the following propositions which
prove that the three convergences are equivalent on C.
Proposition 3.6. Let Ωn be a sequence of open subsets of D which have C-GNP
and Ω be an open subset of D. If Ωn

K−→ Ω, then Ωn
H−→ Ω.

Proof. Since the Ωn are confined in D, then Proposition 3.1, gives us the existence
of an open subset Ω̃ and a subsequence (still denoted Ωn) such that Ωn converges
in the Hausdorff sense to Ω̃. We now show that Ω̃ = Ω. Since Ω has C-GNP,
then Ω is of Caratheodory type (int(Ω) = Ω). To conclude, it suffices to prove
that Ω ⊂ Ω̃ ⊂ Ω. We start by showing the first inclusion. Suppose there exists
x ∈ Ω̃ ∩ (Ω)c, then:
1. On one hand, the compact convergence of Ωn to Ω implies the existence of
an integer Nx ∈ N such that

∀ n ≥ Nx, x ∈ (Ωn)c.

2. On the other hand, as Ωn
H−→ Ω̃, then there exists N ′

x ∈ N s.t. ∀ n ≥ N ′
x, x ∈

Ωn. Consequently,

∀ n ≥ max(Nx, N ′
x) , x ∈ Ωn ∩ (Ωn)c,

which is absurd.

We now show that Ω ⊂ Ω̃. Let x ∈ Ω, there exists a closed ball B(x) centered
in x s.t. B(x) ⊂ Ωn. But Ωn H−→ Ω̃, so B(x) ⊂ Ω̃ and thus, x ∈ Ω̃. �

Proposition 3.7. Let Ωn be a sequence of open subsets of D which have C-GNP
and Ω be an open subset of D. If Ωn

H−→ Ω, then Ωn
L−→ Ω.

Proof. As Ωn
H−→ Ω, then according to Proposition 3.4, Ωn

K−→ Ω. Since ∂Ω ⊂
(∂Ω \ C) ∪ ∂C and ∂C and ∂Ω \ C have null measures (since they are Lipschitz),
then meas(∂Ω) = 0. Then, Proposition 3.5 gives the result. �

Proposition 3.8. Let Ωn be a sequence of open subsets of D which have C-GNP
and Ω be an open subset of D. If Ωn

L−→ Ω, then Ωn
H−→ Ω and Ω has C-GNP.

Proof. Let Ωn be a sequence of open subsets of D converging in the sense of
characteristic functions to Ω. The Ωn are confined in D, so, even if to take a
subsequence of Ωn, Ωn

H−→ Ω̃ and Ω̃ has C-GNP. Now, as the Ωn have C-GNP,
Ωn

K−→ Ω̃ (see Proposition 3.4). Because Ω and Ω̃ are of Caratheodory type,
Proposition 3.5 implies that Ω̃ = Ω, and thus Ω satisfies C-GNP. �
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4. Stability of the solution of Dirichlet problem

By Remark 2.5 in two dimensions, an open subset which has C-GNP satisfies
the exterior segment property. Therefore, it is stable in the sense of Keldyš (see
Theorem 4.1). In all the following we suppose that N ≥ 3.
Generally, Hausdorff convergence is not sufficient to get the stability of the so-

lution of a boundary value problem like the Dirichlet one, when the domain varies.
In our case, nevertheless, we were able to prove (Proposition 3.4) that in the class
C, Hausdorff convergence implies compact convergence which is the main tool for
proving the stability of the solution of Dirichlet problem. However, this is not suf-
ficient to assure a priori the desired result of stability. In fact, it is necessary that
the limit domain has a minimum of regularity in order to get this stability result.
Now, if an open subset Ω satisfies C-GNP, it is Lipschitz outside of C that is more
than the wished regularity. Unfortunatly, we have seen, in Proposition 2.1, that
the boundary of Ω could have cusps which are on ∂C. In general, at cusp point,
an open subset can be regular or irregular in the sense of Wiener (Definition 4.2).
This depends on the geometric shape of cusps and, in particular, it depends on the
“quantity of material” (in terms of capacity) contained in the exterior of Ω, in a
neighbourhood of such points. We will make a precise computation of the capacity
of the exterior of Ω in a neighbourhood of cusps in order to be sure that C-GNP
implies their regularity. Before that, let us recall some definitions and results which
are very useful for proving the stability of the solution of the Dirichlet problem,
when the domain varies.

Definition 4.1. The Sobolev capacity is defined as follows:
• For a compact subset K of RN

Cap(K) = inf
{∫

RN

|∇ϕ|2 ; ϕ ∈ C∞
0 (R

N ), ϕ ≥ 1 on K

}
.

• For an open subset G of RN

Cap(G) = sup {Cap(K) : K ⊆ G, K is compact} .
• For any set E of RN

Cap(E) = inf {Cap(G) : G ⊇ E, G is open} .
One says that a property takes place quasi everywhere (or more simply q.e.) if

it takes place in the complement of a set of null capacity.

We now give a regularity criterion called the Wiener criterion [17].

Definition 4.2 (Wiener criterion). Let Ω be an open subset of RN , N ≥ 3, and x0

a point of ∂Ω. For all q, q ∈ ]0, 1[, let
Gn = Ω

c ∩ {
x : qn+1 ≤ |x− x0| ≤ qn

}
.

Then, x0 is regular if and only if the series of general term
Cap(Gn)
qn(N−2) is divergent.

Now we return to our question concerning the stability of the solution of the
Dirichlet problem when the domain varies. This stability is related to the stabil-
ity (in the sense of Keldyš) of the domain Ω intervening in such a problem. The
fundamental question now, is to know which condition the domain Ω must satisfy
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in order that a function which vanishes q.e. on the exterior of Ω, vanishes in the
complement of Ω (that is to say, that such a function belongs to H1

0 (Ω)). This is
exactly what the Wiener criterion says. To be more precise let us give the following
results, e.g., [10], [12] and [14].

Definition 4.3 (Keldyš). An open set Ω is said to be stable if and only if all points
of its boundary (except a set of null capacity) are regular in the Wiener sense.

Theorem 4.1. Let Ωn be a sequence of open subsets of D and let un be the solution
of the Dirichlet problem

(Pn)
{ −∆un = f in Ωn

un = 0 on ∂Ωn.

If Ωn
K−→ Ω and Ω is stable in the sense of Keldyš, then un converges strongly in

H1
0 (D) to a function u, the solution of the Dirichlet problem on Ω :

(P )
{ −∆u = f in Ω

u = 0 on ∂Ω

(the functions un and u are extended by zero in D, f ∈ H−1(D)).

Before applying this result to our problem, we shall give a necessary and sufficient
condition so that a cusp of surface of revolution will be regular in Wiener sense.
Without loss of generality, one can suppose this point in the origin. Such point is
given, in spherical coordinates, by

(PR)
{

θ = f(ρ), ρ ≤ 1, f(0) = 0 and f(1) < π,
where f(ρ) is an increasing function.

Theorem 4.2. Let Ω be an open subset of RN and O ∈ ∂Ω be given by (PR).
• If N = 3, then O is regular if and only if the series of general term 1

ln f(qn) is
divergent.

• If N ≥ 4, then O is regular if and only if the series of general term [f(qn)]N−3

is divergent.

Proof. Suppose first, that N = 3. Let q be a real number such that 0 < q < 1,
and let θn = f(qn). Then the set

Gn = Ω
c ∩ {x : qn+1 ≤ |x| ≤ qn}

is on one hand included in the right circular cylinder with height qn and of basis
radius qn sin θn, or again in the ellipsoid En of half-axes 2qn sin θn, 2qn sin θn, 2qn.
On the other hand, it contains the right circular cylinder with height qn − qn+1

and of basis radius qn+1 sin θn+1, or again, it contains the ellipsoid Fn of half-axes
qn+1 sin θn+1, qn+1 sin θn+1, qn(1− q)/2.
Now, compute the capacity of these two ellipsoids. For this, let us consider a

general ellipsoid E

E :=
{
X = (x, y, z) ∈ R3

∣∣∣∣ x2

a2
+

y2

b2
+

z2

c2
< 1

}
.(12)

Introduce the capacitary potential

U(x, y, z) = p

∫ ∞

λ

dt

[(a2 + t)(b2 + t)(c2 + t)]
1
2
,(13)
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where λ is the biggest root of the equation

x2

a2 + λ
+

y2

b2 + λ
+

z2

c2 + λ
= 1,(14)

and p is such that U = 1 on ∂E , that is to say
1
p
=

∫ ∞

0

dt

[(a2 + t)(b2 + t)(c2 + t)]
1
2
.(15)

We recall that U is the solution of
∆U = 0 in R3 \ E
U = 1 on ∂E
U = O( 1r ) if r → ∞.

Note that the capacity of the set E is given by

Cap(E) = 8π

(∫ ∞

0

dt

[(a2 + t)(b2 + t)(c2 + t)]
1
2

)−1

.

In fact,

Cap(E) =
∫
∂E

|∇U |.

By (14), one gets (
∂λ

∂x

)
|λ=0

=
2x

a2(x2/a4 + y2/b4 + z2/c4)
.

(one can do the same for y and z).

Therefore on ∂E , one has
∂u

∂x
= −p

∂λ
∂x

abc
= − p

abc

2x
a2(x2/a4 + y2/b4 + z2/c4)

(one can do the same for y and z).

Now, if X = (x, y, z) is on ∂E and ,n(X) is the normal vector to ∂E at X, then
,n(X) =

1√
x2/a4 + y2/b4 + z2/c4

(
x/a2, y/b2, z/c2

)
.

One obtains therefore,

|∇u| = 2p
abc

X · ,n(X).
Hence, (see also [17], [12], [11]),

Cap(E) =
∫
∂E

|∇U | = 2p
abc

∫
∂E

X · n =
2p
abc
3Vol(E) = 8πp.

Where Vol(E), denotes the volume of E .
Now, as we work with ellipsoids which have two equal axes, we are in the case

where a = c ≤ b. We have to compute an integral of the form

I3 :=
∫ ∞

0

dt

(a2 + t)(b2 + t)
1
2
.
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Using the variable change s2 = b2 + t, we obtain

I3 =
∫ ∞

b

2ds
s2 − (b2 − a2)

.

If we put, w2 = b2 − a2, we get

I3 =
1
w
ln

b− w

b+ w
.

If E = En, a = 2qn sin θn, b = 2qn and w = 2qn cos θn, I3 becomes

I3 =
1

2qn cos θn
ln
1− cos θn
1 + cos θn

,

and thus,

Cap(En) = c3
2qn cos θn
ln cot θn

2

.

In the same way, the capacity of Fn is given by

Cap(Fn) = c3
2qn+1 cos θn+1

ln cot θn+1
2

,

One can, therefore, deduces

c3
2q cos θn+1

ln cot θn+1
2

<
Cap(Gn)

qn
< c3

2 cos θn
ln cot θn

2

.

This shows that the pointO is regular if and only if the series of general term 2 cos θn

ln cot θn
2

diverges. As θn must to tend to zero, the divergence of this series is equivalent to
the divergence of the series of general term 1

ln θn
= 1

ln f(qn) .

Remark 4.1. According to what precedes, if f(ρ) = Aρm, the cusp point is regular
and if f(ρ) = A exp(−mρ ), it is irregular.

Now, suppose that N ≥ 4 and consider the ellipsoid

EN :=
{
X = (x1, . . . , xN ) ∈ RN

∣∣∣ i=N∑
i=1

x2
i

a2
i

< 1

}
,

and the capacitary potential

U(X) = p

∫ ∞

λ

dt

[(a2
1 + t)(a2

2 + t) . . . (a2
N + t)]

1
2
,

where λ is the biggest root of the equation
i=N∑
i=1

x2
i

a2
i + λ

= 1,

and
1
p
=

∫ ∞

0

dt

[(a2
1 + t)(a2

2 + t) . . . (a2
N + t)]

1
2
.

As seen above, the set Gn is contained in the ellipsoid En of (N − 1) equal half-
axes 2qn sin θn, . . . , 2qn sin θn and 2qn. It contains the ellipsoid Fn of (N − 1) equal
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half-axes 2qn+1 sin θn+1, . . . 2qn+1 sin θn+1 and 2qn+1. To get the capacity of the
ellipsoid

EN :=
{
X = (x1, . . . , xN ) ∈ RN

∣∣∣ i=N−1∑
i=1

x2
i

a2
+

x2
N

b2
< 1

}
,

we need to compute the following intgral

IN =
∫ ∞

0

dt

(a2 + t)
N−1

2 (b2 + t)
1
2

.

Using the variable change s2 = b2 − t and putting w2 = b2 − a2, IN becomes

IN = 2
∫ ∞

b

ds

(s2 − w2)
N−1

2

.

Putting s = wx, x = cosh θ and t = tanh θ2 , we get

IN =
22

(2w)N−2

∫ 1

α

(1− t2)N−3

tN−2
,

with

α = tanh
argch bw
2

=

√
b− w

b+ w
.

Thus,

IN =
22

(2w)N−2

k=N−3∑
k=0

CkN−3

(−1)k
2k −N + 3

[
1−

(
b− w

b+ w

)k−N−3
2

]
Now, for the ellipsoid En, one has a = 2qn sin θn, b = 2qn and w = 2qn cos θn,
therefore

IN =
1

22N−6qn(N−2)

k=N−3∑
k=0

CkN−3

(−1)k
2k −N + 3

[
1−

(
1− cos θn
1 + cos θn

)k−N−3
2

]
,

and,

Cap(En)
qn(N−2)

=
CN (cos θn)N−2∑k=N−3

k=0 CkN−3
(−1)k

2k−N+3

[
1−

(
1−cos θn

1+cos θn

)k−N−3
2

] .
In the same way,

Cap(Fn)
qn(N−2)

=
CNq(cos θn+1)N−2∑k=N−3

k=0 CkN−3
(−1)k

2k−N+3

[
1−

(
1−cos θn+1
1+cos θn+1

)k−N−3
2

] .
When θn tends to zero,

Cap(En)
qn(N−2) and

Cap(Fn)
qn(N−2) are equivalent to θN−3

n . As

Cap(Fn)
qn(N−2)

<
Cap(Gn)
qn(N−2

<
Cap(En)
qn(N−2)

,

we get

Cap(Gn)
qn(N−2)

∼ θN−3
n ,
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or again,

Cap(Gn)
qn(N−2)

∼ f(qn)N−3.

�

Remark 4.2. If f(ρ) = Aρm or f(ρ) = A exp(−mρ ), then the considered cusp point

is irregular. On the other hand, if f(ρ) =
[
− 1

ln(ρ)

] 1
N−3

, (ρ ≤ ρ0 < 1), it is regular.

Now, consider a point x0 ∈ ∂Ω ∩ ∂C. By Proposition 2.2, this eventual cusp
point is contained in some cusp point of surface of revolution, which is given in
spherical coordinates by,

θ = arcsin
ρ

2R
.

In particular, when ρ tends to zero, one has θ ∼ ρ/2R. By Theorem 4.2, this
cusp point is regular in the sense of Wiener. One deduces therefore, that x0 is also
regular since, in its neighbourhood, the capacity of the exterior of Ω is greater than
the capacity of the set (Bx0)

c (of Proposition 2.2).

Now, Definition 4.3 and Theorems 3.1, and 4.1 allow us to state:

Theorem 4.3. Let Ωn be a sequence of open subsets of RN (N = 2, 3), included
in D and having C-GNP. If un is the solution of the Dirichlet problem

(Pn)
{ −∆un = f in Ωn

un = 0 on ∂Ωn,

then there exists a subsequence of Ωn (still denoted Ωn) and an open subset Ω of D
which is stable in the sense of Keldyš, such that:

• Ωn H−→ Ω.
• Ωn K−→ Ω.
• un converges strongly in H1

0 (D) to a function u, solution of the Dirichlet
problem on Ω:

(P )
{ −∆u = f in Ω

u = 0 on ∂Ω

(the functions un and u are extended by zero in D, f ∈ H−1(D)).
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