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Homogenization of Random Walk in Asymmetric
Random Environment

Joseph G. Conlon

ABSTRACT. In this paper, the author investigates the scaling limit of a partial
difference equation on the d dimensional integer lattice Z¢, corresponding to a
translation invariant random walk perturbed by a random vector field. In the
case when the translation invariant walk scales to a Cauchy process he proves
convergence to an effective equation on R®. The effective equation corresponds
to a Cauchy process perturbed by a constant vector field. In the case when the
translation invariant walk scales to Brownian motion he shows that the scaling
limit, if it exists, depends on dimension. For d = 1, 2 he provides evidence that
the scaling limit cannot be diffusion.

CONTENTS
1. Introduction 31
2. Proof of Theorem 1.1 35
3. Proof of Theorem 1.2 46
4. Proof of Theorem 1.3 51
5. Proof of Theorem 1.4 54
References 60

1. Introduction

In this paper we shall be concerned with homogenization of a nondivergence
form elliptic equation. Let (€2, F, 1) be a probability space and b : Q — R? be a
bounded measurable function b(w) = (b1 (w),...,bg(w)) with

d
(1.1) b= b <1, weQ
i=1
We assume that Z? acts on by translation operators 7, : Q@ — Q, z € Z¢, which
are measure preserving ergodic and satisfy the properties 7,7, = T4y, 2,y € VA3

79 = identity. Using these operators we can define a measurable function b :
Z% x Q — R? by b(z,w) = b(r,w), v € Z%, we Q.
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For € > 0 let ZZ = €Z< be the ¢ scaled integer lattice. We define the integral of
a function g : Z¢ — R by

/zd g(x)dx o Z g(x).

z€Z?

The space L?(Z2) is then the space of square integrable functions u : Z¢ — C with
norm, ||ul|. satisfying

Jul2 = [ Jute)Pde
Zd

€

Fori = 1,...,d, let e; € Z¢ be the element with entry 1 in the ith position and
0 in the other positions. Suppose v € C and f : R? — R is a C* function with
compact support. Let p: Z¢ — R be a probability density, whence

p(x) >0, z € Z° Z p(x) = 1.
zE€Z?
With any such p we can associate a translation invariant operator A, on functions
ue : Z¢ — R by
Apue (@) = ue() = Y ply)uc(z +ey).
yeZd

For some probability densities p, the Markov chain with generator A, scales in the
large time limit to a Levy process [20]. If A, is such a generator, we denote the
index of the corresponding symmetric stable process by |A,|. If p is given by

(1.2) p(te;) =1/2d, i=1,...,d,

then |A,| = 2 since the corresponding Levy process is Brownian motion. We also
define a p which scales to a Cauchy process, whence |A,| = 1. To do this consider
the standard nearest neighbor random walk on Z*! started at the point (0, —1),
0 € Z%. Then

(1.3) p(x) = probability the walk first hits the hyperplane
{(y,0) : y € Z%} in the point (z,0), = € Z%.

We shall be interested in solutions to the equation

(1.4)

d
Apue(w,w) =1 > b1 (L,0) el + cei,0) — uelw — ceg,w)] + £ luc(z,w)
=1

= el f(z), z e 22

€

w € Q,

when p is given by either (1.2) or (1.3). For a function g : X — C where X = R?
or X = Z2, let g be its Fourier transform,

9(§) = /Xg(ﬂf)ewfd% ¢e R

Note that when X = Z9, then §(¢) is periodic in ¢ whence we can restrict ¢ to
the cube [—7/e, m/e]¢. Suppose now b = 0 in (1.4) and p is given by (1.2). Then
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it is easy to see that (1.4) has a unique solution u.(x) in L%(Z%). Further, if
u(z), = € RY, is the function which satisfies

1+ I¢l*/2dja(e) = f(9), €€ R,
then lim._.g ||ue — u|l. = 0. Similarly if b = 0 and p is given by (1.3) then (1.4)

has a unique solution u.(z) in L?(Z4). We show in §2 that if u(z),z € RY, is the
function which satisfies

(1.5) [1+[€]la(€) = £(€), €eRY,
then
(1.6) lim [ue — ul|- = 0.

We can also prove a corresponding theorem when b # 0 in the case p is given
by (1.3). In the following the expectation value of a random variable X on {2 is
denoted by (X).

Theorem 1.1. For 0 < € < 1, there exists a constant vq4 > 0, depending only on
d, such that if v € C satisfies |7y| < vq4 then (1.4) has a unique solution u.(-,w) €
L3(Z4), w € Q. There exists a vector Gy € Ccd, lgy| < 1, analytic in vy, such that if
u(z), = € R, is the function which satisfies

(1.7) [+ €] + igy - EJa(€) = f(§), £ eRY,
then there is the limit
(18) tim (Juc( ) — ul2) = 0.

Theorem 1.1 is a homogenization result for p given by (1.3). It says that the
scaling limit of the random walk, with transition probability (1.3), in a random
environment described by b(z,w), is a Cauchy process with a constant drift g¢,.
Corresponding results for uniformly elliptic partial differential equations in diver-
gence form were first proved by Kozlov [11] and later by Papanicolaou and Varad-
han [16]. In this case the scaling limit is Brownian motion. One can also prove a
Brownian motion scaling limit for parabolic equations in divergence form when the
coefficients are random in time as well as space [13]. It is possible to relax some-
what the uniform ellipticity assumption and still prove the scaling limit [5]. For a
comprehensive survey of homogenization results in partial differential equations see
the book of Oleinik at al [25]. Here we obtain the scaling limit of an asymmetric
partial difference equation. The scaling limit of a divergence form partial differ-
ence equation has been obtained by Kiinnemann [12] and of a symmetric partial
difference equation in non-divergence form by Lawler [14].

Evidently g, is in general nonzero even in the case (b(-)) = 0. Nevertheless it is
possible to impose some general conditions on b(-) to ensure ¢, = 0. We say that
the vector field b(-) is reflection invariant if it has the property that

5 eZ? 1<k <d, i=1,...n, n>1.

Clearly (1.9) implies that (b(-)) = 0. We show at the end of §2 that if b(-) satisfies
(1.9) then ¢, =0 in (1.7).
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Suppose now (1.9) holds. Let u.(z) = (uc(x,)), = € Z%, where u.(z,w) is the
unique solution to (1.4) given by Theorem 1.1. Suppose p : [-m,7]¢ — R is the
Fourier transform of the function p of (1.3) and f. the Fourier transform of the
function f restricted to the lattice Z2. If 4. () is the Fourier transform of u.(z),
then one can see that there is a d x d matrix ¢, (¢), ¢ € [, 74, continuous in
¢ and analytic in , such that

(1.10)
(€)1 +e {1 = p(e&)} — e e(8)gy.c (e€)e(—8)] = fo(€) , € € [=m/e, 7/e],
where e((), ¢ € RY, is the vector e(¢) = (e1((), - - -, eq(¢)), with ex(¢) = 1 — eex<.

Theorem 1.2. Suppose the variables b(1,-), = € Z%, are independent with (b(-)) =
0 and g,(C) is defined by (1.10) for |y| < va, where vq is the constant of Theo-
rem 1.1. Then there exists a positive constant v/, < va, depending only on d, such
that if |y| < 7/, the matriz q..() converges uniformly in ( as € — 0 to a matric

QW(C)a ¢e [_71—7 W]d'

Theorem 1.2 is a considerably deeper theorem than Theorem 1.1. One has to
use the Calderon-Zygmund theorem [8, 22] that the Hilbert transform is bounded
on LP spaces for p # 2. In contrast, Theorem 1.1 can be proved by just using L?
theory.

Next we consider the situation when p is given by (1.2) and b # 0. We then
have the following theorem:

Theorem 1.3. For 0 < ¢ < 1 and v € C satisfying |y| < £/v/2d, equation (1.4)
has a unique solution u.(-,w) € L*(Z%), w € Q. If (1.9) holds then there is a
d x d matriz ¢y £(¢), ¢ € [—, 7|4, continuous in ¢ and analytic in vy, such that the
Fourier transform 4.(€) of (uc(z,-)) satisfies

(1.11)
- (O)[1+ e {1 — p(e€)} — e 2e(e€) gy o (e€)e(—£€)] = fo(£) , € € [-n/e, m/e].

Note that (1.11) is simply the analogue for p given by (1.2) of (1.10) for p given
by (1.3). Since g, (¢) is analytic in 7, we can write it in a series expansion,

(1.12) qw,s(() = Z ’mem,e(C)v

which converges for |y| < &/ V2d. In §5 we investigate the limiting behavior of Qm. e
as € — 0. We restrict ourselves to the situation when the b(7,-), € Z%, are given
by independent Bernoulli variables. Thus we assume that b;(-) = 0, j > 1, and
bi(1e) = Ya, x € Z% where the variables Y,, x € Z¢, are assumed to be i.i.d.
Bernoulli, Y, = +1 with equal probability. In that case we have the following:

Theorem 1.4. Form =2,3,--- the d x d matric ¢m c(C) has the properties:

(a) gm.c(C) =0 if m is odd or m = 2.

(b) The entries of the matriz gm.e(C) = [gmerr (Q)], 1 < kK < d, are zero if
kK > 1.

(c) The entries of the matriz ¢m (0) = [gm,e k1 (0)] are zero if k + k' > 2.
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(d) Assume d =1 and K C R is a compact subset. Then e™/?q,, .(€) converges
uniformly for £ € K to a function ¢, (§), as € — 0. The function q4(§) is
given by the formula,

32
1.13 _ 52
(e) If d =2 then qa1,1(0) converges to +o0o as € — 0.
(f) If d > 3 then qu.c(C) converges uniformly for ¢ € [—m,w]¢ to a matriz qu({) =
[,k ()] satisfying qa1,1(0) >0, as e — 0.

Unlike in the previous theorems, the results of Theorem 1.4 depend on the dimen-
sion d. For d = 1 the theorem suggests that if we set v = +//¢ in (1.4), fix v’and
let € — 0, then we should obtain a scaling limit. Note however that one expects the
resulting series obtained from (1.12) by letting e — 0 to be at most asymptotic in
+', not analytic. The limit here is related to the limits obtained by Sinai [21] and
Kesten [9] for one dimensional random walk in random environment. For d = 2 the
theorem suggests that if we fix v in (1.4) and let € — 0 no scaling limit exists. This
appears to contradict a conjecture of Fisher [6] that two dimensional random walk
in random environment has a diffusive scaling limit. In contrast Derrida and Luck
[4] conjecture a nondiffusive scaling limit in two dimensions. A numerical study of
the two dimensional equation (1.4) was made in [2] using a multigrid algorithm. It
was observed that the algorithm gave considerable acceleration over pure iterative
methods such as Gauss-Seidel. This suggests that there is some stability in the
Fourier space behavior of the solution to (1.4) as ¢ — 0. For d > 3 the theorem
suggests a diffusive scaling limit for d dimensional random walk in random envi-
ronment and that the effective diffusion constant is smaller than for the zero noise
case.

There has been some recent work [17, 23, 24] on (1.4) with p given by (1.2) and
under the assumption (b(-)) # 0. This situation is very different to the situation
studied in Theorem 1.4 since one expects now the drift to dominate diffusion. The
methods used in [23, 24] are related to methods used to prove Anderson localisation
for the random Schrodinger equation.

In this paper we shall adapt a method developed in [3] to prove the homoge-
nization results for (1.4). The method consists of space translation in € followed
by Fourier transformation in Z?. The space translation in  is similar in spirit to
“viewing the medium from an observer sitting on a tagged particle”, as described
in [10]. The main advantage here is that one obtains the coefficients of the effective
homogenized equation from the zero Fourier mode equation in the new variables.
The method also avoids use of Martingales, as for example occurs in the recent
paper [15].

2. Proof of Theorem 1.1

We first prove (1.6). Thus we consider (1.4) with b = 0 and p given by (1.3). To
obtain an expression for p, let us denote a point in Z4+! by (x,y) with z € Z9, y €
Z. For n = 0,1,2,... let G(z,y,n) be the probability density of the standard



36 Joseph G. Conlon

random walk in Z9+!, started at the origin, after n steps. Thus

ilz-E+yl] 1
(2.1) Z ZG(;&y,n)e[ & C]_{(dJrl)

reZd yeZ

}n
By the reflection principle, the probability that the d 4+ 1 dimensional walk, started

at (0,—1) first hits the hyperplane {(y,0) : y € Z%} after n + 1 steps at the point
(z,0) is given by

d
Zcos(ei - &) + cos(
i=1

Q(d:_ 1) [G(x,0,n) — G(x,2,n)].
Hence we have
(2.2) p(z) = ﬁ Z [G(x,0,n) — G(z,2,n)].
n=0

We can compute the Fourier transform of p by using (2.1). Thus
(2.3)

Lo _ iwe _ 1 g d 1—cos2( .
Pe) x;dp(ff)e dm(d +1) [w Cl - [2?21 cos(e; - &) +cosC| /(d+1)

Lemma 2.1. The limit (1.6) holds.

Proof. We rewrite the formula of (2.3) for p(&) as

T cos d — cosle; -
(2.4) pé)=1- i d¢ (1+ Q)2 imall (€ -&)]

2r J_ . {(1 —cos() + Z?:l[l — cos(e; - f)]]

whence, on performing the integration with respect to (, we obtain the formula,

)

1/2 d
2
25) 1-pE) =4 |1+ —1 1— cos(e; - £)] .
(2.5) p(&) ST 1 cos(er _5)}] ;[ cos(e; - §)]
It follows from (2.3), (2.4) that 0 < p(§) < 1. We can also easily see from (2.5) that
(2.6 lim =L - ()] = [, € R,

Consider now (1.4) with b = 0. Taking the Fourier transform of (1.4), we see that
(1.4) is equivalent to the equation,

d
N ~ A -
(2.7 1+ &= peelic(e) = i) s | 7T
where fs is the Fourier transform of f regarded as a function on Z¢. Since f is O
of compact support it is easy to see that (2.7) is uniquely solvable in L? ([’T”, 7] d)
and
d
~ P -1 N -
I O/ ey R C0) R B
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Let 4(€) be the function given in (1.5). We decompose its Fourier inverse u(x), x €
R4, as a sum, u(x) = v.(v) + w. (), where

_L (&)e @€
0@ = g [ HOT e

—m m)d
e e

Since f(¢) is rapidly decreasing in ¢ it follows that lim._¢ |jwe|[c = 0. We can see
this from the identity

2

1 2mn
wlt = [ | 2 e ) de

neZ\{0}

Thus we have
lim ||ue — ulle = lim [Jue — vel|e,
e—0 e—0
1
2 _ ~ ~ 2
||u5 - Us”s = (27‘r)d = |us(§) - u(f)' dg,

]d

RIE]

s

where @, (€) is given by (2.8) and #(&) by (1.5). The result follows from (2.6) and
the dominated convergence theorem. O

Next we wish to prove existence of a solution to (1.4) provided ~ is sufficiently
small, depending only on d. To do this we need to define the Green’s function
Gpy(z), z € Z9, associated with p. Thus for n > 0, G, ,(z) is the solution to the
equation

(2.9) Ap Gpy() +1 Gpy(x) = 8(x), @€ Z7

where 0 is the Kronecker ¢ function, §(0) = 1, é(x) = 0,  # 0. The Fourier
transform G), (&) of G, () is given by the formula

(2.10) Cou(&) =L +n—pE)] ", & [-ma’
It is easy to see from (2.5) that

0< é'p,n(f) <C/In+ ],

for some universal constant C'. We can also obtain a corresponding decay rate on
the function Gy, ().

Lemma 2.2. Let G, ,(z), x € Z%, be the solution to (2.9), and 0 < n < 1. Then
there is a constant Cy, depending only on d such that if d > 2,

(2.11) 0< Gpy(x) < Caf [L+7?|2)?] [L+[2|*7Y], =€z
Proof. Consider the random walk on Z¢ with transition probability p given by
(2.2). Let p,(x),n = 0,1,2,... be the probability that the walk, started at the

origin hits z after n steps. Thus po(z) = §(z) and p;(z) = p(x), = € Z%. Tt is easy
to see that the solution of (2.9) is given by the formula,

A+ pp(zx), =zcZ

[M]¢

(2.12) Gpp(z) =
0

3
I
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We can derive a formula for p,,(x), m > 2, similar to the formula (2.2) for p(z).
In fact we have

(2.13) pm(z) = ﬁZ[G(x,mfl,n) — G(xz,m+1,n)].
n=0

It is easy to see from this and (2.12) that

(2.14) Gpolz) = 8(z) + ﬁ 3 (G (x,0,n) + Gz, 1,n)].
n=0

If we use now the bound

0<G(z,y,n) < Ca

< Ty P [-mindlel + lyl, (2 + [y1*)/(n + 1)}/Ca]

for the standard random walk on Z*1, then the inequality (2.11) for n = 0 follows
from (2.14). To obtain (2.11) for n > 0 we need to use the inequality,
0 < G(Jf,y— 1,7’l) - G($7y+ 17”) <

Cay :
Tz o0 [min{lal + lyl, (2 + y*)/(n+1)}/Ca]
reZl yeZ y>0.
It follows from this and (2.13) that

Cdm
RREA FIERTE e TE R

The inequality (2.11) follows now from this last inequality by estimating the sum
(2.12). O

0 < pm(z)

Lemma 2.3. Suppose d > 2 and f : R* — R is a C* function with compact
support. Then there exists a constant vq, depending only on d such that if || < V4
and 0 < ¢ < 1, then (1.4) has a unique solution u.(z,w) in L*(Z%). Further, there
is a constant Cy, depending only on d, such that ||us(-,w)|le < Callfle-

Proof. Suppose u.(r,w) is in L?(Z%) and satisfies (1.4). Let v.(z,w) be defined
by

ve (2, w) = e Apue (v, w) + cuc(z,w))].

It is easy to see that v.(z,w) € L2(ZY). In view of (2.9) it follows that

(2.15) wew) = [ 4y G, (H) 0ol ).

Now for i = 1,...,d let us define operators T; on L?(Z2) by

Tute) == [ i G (2 er) = G (T ) [t

It is easy to see that T} is a bounded operator on L?(ZY). Tt follows from (2.10)
that the norm of T; is bounded by

(2.16) IT:| < sup
ge[—m,m¢
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We can see from (2.5) that there is a constant ¢4, 0 < ¢4 < 1, depending only on
d such that

(2.17) 1—p(&) > calél, €€ [—mm%

It follows from this and (2.16) that ||T;|| < 2/c4. Observe now that (1.4) implies
that v (z,w) € L?(Z%) satisfies the equation

d
(2.18) ve(T,w) — 7 Z bi(z/e,w)Tive(x,w) = f(x).
i=1
In view of (1.1), if we take 4 = ¢4/2 it follows that for |y| < 74 the function v, (z, w)
is uniquely determined by (2.18). In view of (2.15) it follows that u.(z,w) € L*(Z%)
is the unique solution to (1.4). To prove existence note that (2.18) has a solution

ve(z,w) € L*(Z2) provided |y| < 4. If we then define u.(z,w) by (2.15) one can
easily see that u.(z,w) satisfies (1.4). O

We have proven existence of a unique solution u. (z,w) to (1.4) provided |y| < 4.
Next we follow a development similar to the one in [3]. Thus we put v.(z,w) =
Ue (2, Ty jew), © € Z¢,w € Q, whence u.(z,w) = v.(z,7,/cw). Rewriting (1.4) in
terms of v., we obtain the equation,

0 (7o) = 3 P (2 + £y, Ty T o)
yeZd

d
—y Z bi(Ty/ew)[ve (T + €€4, T, Ty jew)
i=1
— V(T — €€, T o, Ty ew)]| + €V (2, Ty /ew) = ef (1), € Z¢ weq.

This last equation is evidently the same as

(2.19) ve(z, w) — Z p(y)ve(x + ey, Tyw)
y€eZd

d
— Z bi(w)[ve(x + €€, Te,w) — V(T — €€, T—o,w)]
i=1

+eve(z,w) =ef(x), ze€Z weq.

We write now v (z,w) = u.(z) + ¥ (z,w), = € Z%, w € Q, where (¢.(z,-)) = 0,
x € Z4. Tt follows that

ue(x) = <1}5(z, )> = <u6(:c, )>, x ezl
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Substituting into (2.19) we obtain the equation

(220)  we(w)— > p(y)uc(z +ey)

yEZd
—'yZb VNue(x + c€;) — uc(x — ce;)] + eue ()

+ Ye(r,w) — Z p(y)Ye(x + ey, Tyw)

yeZd
_’Yzb ) We(z + €€, Te,w) — e (v — €€y T—e,w)]
+€1/Js(x,w):€f(x), ezl weq

Taking the expected value of this last equation, we obtain the equation,

d
(2.21) Apuc(z) — ’yZ(bz(»[ua(x +ce;) —u(x — ce;)] + cue(x)
d
_7<Z 2()[77[}6(13“‘59%7& ) — ¥e( €€, T—e; )]>
=cf(x), =cZ¢

If we subtract now (2.21) from (2.20) we obtain
(2.22)

Zbe(%w) - Z p(y)wa(x + ey, Tyw)

yEZ4

—VPZb Mtbe (z + c€4, Te,w) — Ye(x — €€, T_e,w)] + Ve (2, w)
i+1

772 €NW[ue(z + ce;) — ue(x — €e;)], = € Z2, w € Q,

where P : L?(Q) — L?(f) is the projection orthogonal to the constant function.
Thus a solution u. (7, w) of (1.4) which is in L?(Z¢ x Q) yields functions u.(z) in
L?(Z%) and 9. (x,w) in L2(Z2 x Q) which satisfy (¢.(x,-)) =0, = € Z¢, and the
equations (2.21), (2.22). Conversely, if we can find functions u.(x) in L%(Z2) and
Ye(z,w) in L2(Z4 x Q) which have the property that (i.(z,-)) =0, z € ZZ, and
satisfy (2.21), (2.22) then we can construct from them the solution . (x,w) of (1.4)
and u.(7,w) is in L?(Z4 x Q).

We concentrate now on finding solutions to the system (2.21), (2.22) of equations.
To do this we Fourier transform the equations. The Fourier transform of (2.21) is
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given by

(223)  a.() {1+ 1 — pee)] +2mz m

d

yeZd
d
+ ,YPZ bj (w) [eiaej{Q/;g(f,T_ejW) _ efiaej-ﬁz/;s(f,'rejw)} + 6’1[)5(5,(,0)
j=1
i ; ; -7 7]?
= S lh) = N e = e e, e [ TI] L wen
j=1

Suppose now that ¥¥((,w), 1 < k < d, ¢ € [-7,7]¢, w € Q, are functions in
L2([—m, 7] x Q) which satisfy the equation,

(2.25)
W?(va) - Z p(y)eiiy.cwlg(C7Tyw)
yeZ
d
+P Z bj(w) [eiej.g‘l’lac(éh, T_e;w) — et Cwk(¢, Tejw)] +eUF(¢,w)
j=1

= bk(w) - <bk()>7 e [_Waﬂ—]dv we Qv 1<k<d

Then it is clear that the function
(2.26) &E(g, = =20y (€ Zsm (cer - )W (6§,w)

is in L2([_T” E]d x Q) provided () is bounded. Furthermore ﬁs(f,w) given by

' e

(2.25), (2.26) satisfies (2.24). If we substitute for ¢, from (2.26) into (2.23) then
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we obtain the equation,
(2.27)
115(5){1—1—6_1[ p(£€)] +2fyzz

sm ee] 3]

52 Zd . sin(eey, - §) ice;-Eyk N —ice;-E sk )
27”}/ b]( ) e \I/E (Eé.? T—ej ) € \Ijs (667 Tej )
J

; €
k=1

Lemma 2.4. Suppose d > 2 and vq = cq/2, where ¢4 satisfies (2.17). Then if
1] < 74 and 0 < e < 1, Equation (2.25) has a unique solution W¥({,w) € L?(1).
Furthermore, Wk ((,w) viewed as a function from [—m,m]¢ to L*(Q) is continuous
and satisfies an inequality,

(2.28) & sup (WGP < Cu,
<€[7W77T]d

where Cy depends only on d.

Proof. We follow an argument similar to that in Lemma 2.3. Suppose V¥ (¢, w) €
L2(2) and satisfies (2.25). Let ®*(¢,w) be defined by

(2.29) F(Cw) = TE(Cw) = D ply)e ™ WE((, myw) + e TE(C w).
yeZd
It is easy to see that ®F((,w) € L?(Q2). Further, it follows from (2.9) that
(2.30) UF(¢,w) = Z Gpe(2)e ™Rk (¢, T,w).
z€Z4

Now for n >0, ¢ € [-m, @)%, j =1,...,d we define operators T}, c on L?(Q) by

(2.31) Tjpcp(w) = Z [Gpn(z —€j) = Gpy(z + ;)] e_”'cap(rxw).

zeZ?
We can see from Bochner’s theorem [19] that 7T}, ¢ is bounded on L?(£2) and

2|sin(e; - ¢")| _ 2
(2.32) ITimcll < suwp  25me el 2
Pl = e T+ —p()
where the constant cq is from (2.17). Further, (2.25), (2.29), (2.30) imply that
®F (¢, w) satisfies the equation,

(2.33) (¢ w 7sz )Tje,cPE (¢ w) = bi(w) — (br(-)-

Hence if we take 74 = c4/2, it follows that for |y| < 74 the function ®F((,w) is
uniquely determined by Equation (2.33). In view of (2.30) it follows that ¥*((,w)
is the unique solution of (2.25) in L?(2). We can similarly prove existence for
|7] < va- The inequality of (2.28) follows from (2.30) on using Bochner’s theorem
and the fact that ®%((,-) € L?(9) is bounded independently of ¢, ¢. O
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It is clear now that we can construct the solutions to (2.21), (2.22), by using
Lemma 2.4 and Equations (2.26) and (2.27). Next we wish to show that the limit
of the coefficient of 4. () in (2.27) as € — 0 exists. Evidently

d sin(ee; - )
lim 81+ 711 = p(e)] +27i ) _{b; (D) —_—"
j=1
d
=1+ 1€l +27vi Y (b;())(e; - ),

j=1
so we are left to show existence of the term involving the function W*. To prove
this first observe from (2.30), (2.31) that

e ITODE (G o,w) — € OWE(C Ty w) = T cPE(G ).
Next we prove a version of the von Neumann ergodic theorem [19].

Lemma 2.5. Let ¢ € L*(Q) and & € RY. Then if (p) = 0 the function Tj. ¢
converges in L*(Q) to the function Tj 0.

Proof. First note that we can define the operator Tjo ¢, ¢ € [—m, 7], by (2.31)
and from (2.32) it is a bounded operator on L%(£2). To be more precise, observe
that for n > 0, Tj,cp = 0 if ¢ € L*(Q) satisfies d;¢p = 0, where 9;¢ is the
operator on L?(Q) given by

8]){90((")) = eiiej.CW(Tejw) - eiej.C@(T—eJ‘w)'
Observe that the adjoint 9} - of 9; ¢ is given by 97 . = —0; ¢. Suppose now ¢ = 9; ¢
where 1) € L?(Q). Then from (2.31) we have that

(2.34)
Tjpcp(w) = Z [Gpn(z 4 2e5) + Gp (2 — 2€5) — 2Gp ()] e_ix'CQ/’(Tzw)
z€Z4

We can readily see, using the argument of Lemma 2.2 that there is a constant Cy,
depending only on d such that

|Gpn(z +2€5) + Gz — 2¢5) — 2Gp n(2)]
< Caf[L+? |21 + |2, @ € 2.

Hence if ¢ = 9;¢v, ¢ € L*(), we can define T} cp by setting n = 0 in the
formula (2.34). If 0j,c¢ = 0 we set Tjo,cp = 0. In view of (2.32) this defines T ¢
as a bounded operator on L?(Q) which has the property that, for any ¢ € L?(Q),
Tj.n.c ¢ converges in L*(Q) to Tjo.cp as n — 0.

So far we have not used the ergodicity of the translation operators 7, = € Z%.
Suppose now ¢ € L%(2) and (¢) = 0. Then ergodicity of the translation operators

implies that for any § > 0 there exists 5 € L%(Q2) such that ||¢ —8; 05| < 6. Now
using the fact that

0j.0hs = Oj.ecths + Y5
where 5 € L*(Q) satisfies [|¢5 || < 2¢le; - &[[|9s]], it follows from (2.32), (2.34)

that T} . -¢[0},0vs] converges in L?*(Q) as € — 0 to the function T} [0 0ts). The
result then follows from (2.32) on letting § — 0. O
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Lemma 2.5 enables us to define the vector ¢, € R? of (1.7).

Lemma 2.6. There exists a constant vq > 0, depending only on d, such that if
7| <74 and 0 < £ <1, Equation (2.27) has a unique solution 4. € L? ([=X, Z]%).
There is a vector q, € C, analytic in v and satisfying lgy| < 1, such that if
u(z), = € R%, has Fourier transform satisfying (1.7) and u.(z), = € Z2, is the

Fourier inverse of ., then

(2.35) liH(lJ llue — ulle = 0.

Proof. First observe that we can rewrite (2.27) as

d .

(2.36) m(g){l +e 1 - p(eg)] + 2y Z@(-»%

j=1

d .
+ W< > by ok >>}
j,k=1
d
—f©. e | I

where ®¥(¢,w) is the solution of (2.33). Note that from (2.36),(2.17) and (2.32)
one has that 4. € L? ([=Z, Z]) provided 0 < € < 1, |y| < 74 and 74 is sufficiently

€ Ve
small, depending only on d. It is also clear from Lemma 2.5 and (2.32) that for any

¢ € L?(Q) with {¢) = 0 and nonnegative integer m,
i 7% o = T o
where the convergence is in the L? norm. It follows then from (2.33) that
lim Ty ce®Z(e€, 1) = Tj.0025(0, ).

Hence from (2.36) we define the vector ¢, = (q1,...,¢a) by

d
(2.37) gk = 270k () + 29 > (b5 (-)T5.006(0,-)) -
j=1

Evidently we may choose 4 sufficiently small, depending only on d, such that
lgy| < 1. The limit (2.35) now follows from the argument of Lemma 2.1. O

Lemma 2.7. Let U¥(¢,w) be the function defined in Lemma 2.4 for |y| < 4, 0 <
e < 1. Then for any & € RY, there is the limit,

(2.38) lim 2 (|¥k(e,)?) =o.
e—0
Proof. We first consider the zeroth order contribution in v to ¥*. Thus in (2.33)

we make the approximation ®*(¢,w) =~ by(w) — (bx(-)). In this approximation we
have from (2.30) and Bochner’s theorem the identity,

3
1+e—-p(¢—&f)

(239) 2 (JUR(eE, ) = /

[—m,m]d

e)



Homogenization in Asymmetric Environment 45
where dp,, is the finite positive Borel measure on [—, 71]%, satisfying
(preO) = [ oot wezt,

and p(w) = bi(w) — (bx(:)). Observe now that

2
(2.40) [1+5—p(<—e§)} <1, ¢e€[-ma]%,

2
. €

240 3 [1+€—;6(C—6£)} -

Since (p) = 0, one has by ergodicity of the translation operators 7,, = € Z%, that

pe({0}) = 0. It follows now by dominated convergence that (2.38) holds in this

approximation.

To deal with the general case note that (2.39) holds with p(w) = @.(w) =
®F(e€,w). The result follows then from the above argument if we use the fact that
diy. < 2dpg, +2dps. — s, and the fact that lim. o f1p. g, ([—7, 7|4) = || — o> =
0. O

¢ € [-m, 7"\ {0}.

Proof of Theorem 1.1. We just need to prove (1.8). In view of Lemma 2.6 and
(2.26) it will be sufficient to show that

liy |, WOPIEPe (we(eg ) de = 0.
This follows by dominated convergence from (2.28) and Lemma 2.7. O

Finally we show that if (1.9) holds then the vector g, defined by (2.37) is zero.

Lemma 2.8. Suppose (1.9) holds and the conditions of Theorem 1.1. Then g =0
in (1.7).

Proof. In view of (2.37) we need to show that
(2.42) (0;()Tj.00®5(0,-)) =0, 1<j.k<d,

where ®F satisfies (2.33). To do this let L% (Q) be the subset of functions ® € L2()
which have the property that

<(I)(Tx’) [T ow (7. ~)> = (=) <‘I’(T—x') [T ')> ;

i=1 i=1

:z:,a:,;GZd, 1<k <d, i=1 n, n>0.

gee ey Ity

Evidently ® € L%(f2) implies (®) = 0. In view of (1.9) b;(-) € L%(Q), 1 <i < d.
Observe now that for any > 0 the operator b;(w)T} .o takes L%(£2) into L%(€2).
This follows from the fact that Gy, (2) = Gpp(—2), © € Z%. Now let ®f(w) be the

solution in L%(Q) to the equation

d
(2.43) OF(w) = 7D bj(W) T 0Pk (w) = br(w).

Jj=1
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Clearly a unique solution ®} exists if |y| < 74. Comparing (2.43) and (2.33) one
sees that ®%(0,w) = ®*(w) € L%(). Taking the limit as e — 0 we conclude that
Ok (0,w) € L%(£2), whence (2.42) follows. O

3. Proof of Theorem 1.2
Since (b(:)) = 0 we have from (2.33), (2.36) that

n

d

e(€)qy.(e€)e( = —QzZsm e - &) ny"“< Z VTjece P bk(~)>.

It is easy to see from the argument of Lemma 2.8 that if (1.9) holds, then

n

(3.1) < Zb TjeoP bk(')>: L 1<k<d n>1

Hence we may write

d [e'e) n

(3:2)  e(e€)gy.(s€)e(~ :—stm cey. ) Z

n=0 m=0
m

d
< Zb JEOP Z {TJEEE j,s,O}P

n—m

Zb )Tj.c.ce P bk(-)>.

If » € Z¢ with = - e; > 0, we denote by L;(x) all the points of Z? which lie on
the line segment joining the point  — (z - e;)e; and z, excluding the point z. If
x-e; =0, then Li(x) is the empty set. If - e; < 0, then L;(z) is all the points of
Z< which lie on the line segment joining the point  — (z - e1)e; and x, excluding
the point « — (x - e1)e;. Similarly if z - ea > 0 we denote by La(x) all the points
of Z? which lie on the line segment joining the point x — (z - e;)e; — (z - e2)ey
and z — (2 - e1)ey, excluding the point  — (z - e;)e; etc. For n > 0, ¢ € [-, 7%,
k=1,---,d, we define operators Sy, ¢ on L*(Q2) by

d
(3.3) Skapcolw) = ij (w) Z [Gpy(@ — €j) = Gpplx + €;)]sgn(z - ey)

Jj=1 zeZd
Z e W Cp(Tw).
yELk(x)
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We can see now from (3.2) and (2.31) that the matrix ¢, () = [gy .54 (¢)], 1 <
k,k' <d, is given by the formula

(3.4)
Qye ek () =
_ § - - 4 n—m
. Z ,yn+2 Z < Z b]()Tj,s,OP Sk/’s,qp Z b]()T]s,CP bk()>
n=0 m=0 |J=1 2 J=1
N § . - m | 4 n—m
o Z ,yn—i-? Z < Z bj(')Tj,s,OP e_lek'CSk,s,CP Z bj(')Tj,E,CP bk/()>
n=0 m=0 _j:1 i J=1

We proceed as in [3] to consider the case when the b(7,-), = € Z4, are given
by independent Bernoulli variables. Thus we assume that b;(-) = 0, j > 1, and
bi(rn) = Yy ,x € Z¢, where the variables Y,, x € Z?, are assumed to be i.i.d.
Bernoulli, Y, = 41 with equal probability. Using the notation of §4 of [3] we
introduce the Fock spaces F"(Z%), 1 < r < oo, with F2(Z%) isomorphic to L(Q).
Now we have seen from (2.32) that 7). ¢ is a bounded operator on L?*(£2) with
norm |71 ¢ ¢|l2 < 2/cq. We have also seen in Lemma 2.5 that

(35) lim [|[Thec ~ Troclele =0, ¢ € L(9).
We note now as in [3] that the Calderon-Zygmund theorem implies that a similar
result holds for all Fock spaces F"(Z4), 1 < r < co. We shall show that the limit in

(3.5) is uniform for ¢ € [, n]¢, provided one projects orthogonal to the constant
function.

Lemma 3.1. Suppose 1 < r < oo and regard T\ . ¢ as an operator on Fr(Z4).
Then there is a constant Cr 4 depending only on r,d such that |Tic¢|lr < Cra.
There is also the limit,

(3.6) lim { sup ||[T1ccP — TLO,CP]QDHT} =0, pe€ ]:T(Zd).

=0 L cel—mm?
Proof. Let 7. ¢ be the integral operator on L"(Z<) defined by

T.of(x) =) Kc(z—y)e "V f(y), v ez,

y€Zd
where K. (z) = Gp.(x —e1) — Gp (2 + e1). It follows from (2.17) that
(37) K-() < 2/ca, €€ [-m ).

We may also apply the argument of Lemma 2.2 to see that there is a constant
Cq > 0, depending only on d, such that

(3-8) |Ke()] < Ca/[1 + o]+ J2|9], =€ 27,
|Ke(z + ;) — Ke(2)] < Ca/[1+*a)[L + |2|*7Y]), e 2.

It follows now from (3.7), (3.8) that 7. is a bounded operator on L"(Z?) and
there is a constant C. 4 depending only on r,d such that |7, ||, < Cyq. This is
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a discrete version of the Calderon-Zygmund Theorem [22]. Now, arguing as in [3],
we see that this also implies ||T} c ¢||» < Cyq.
Next we show that

(3.9) lim { sup  ||[Tec — To,g]f”T} =0, felL"(Z%.
€=0 | ce[—m,m]d

We first show that (3.9) holds for » = 2. We can do this by going to the Fourier
representation of 7 -, which we denote T¢ ¢. Thus,

(3.10) T. f(6) = Ke(€ = Of(€), € € [-m. )",
Observe now that since f € L2([—m,n]?), for any § > 0 there exists v > 0 such that
(311) [ iora < 5 celmalt

[€—=Cl<v

It is easy to see that for any v > 0, K.(£) converges uniformly to Ko(¢) in the
region ¢ € [—m, 7|4, |£] > v. It follows from this and (3.7), (3.10), (3.11) that (3.9)
holds for r = 2.

To prove (3.9) for general r, 1 < r < oo, we define for n =1,2,..., ¢ € [-7, 7]?
an operator A, ¢ on functions f : Z¢ — C by

Apof(z Zcp Ve f(x 4 2), xeZ
z€Z4

Here ¢, is the probability density for the standard random walk in Z? after n steps
of the walk. Thus ¢,(z) >0, z € Z¢, and

Z on(z) =1
z€Z4
It follows that A, ¢ is a bounded operator on L"(Z%) with ||A, ¢ < 1. Observe
now that
Toelf = Ancfl@) = Y Kewlo - 9)e @05 f(y), o € 29,
yeZd
where the function K, ,, is given by
Ken(z) = Z [Ke(z) — Ke(z + 2)]en(2).
z€Z4

It is easy to see from (3.8) that K., € L'(Z%) with norm | K. ,||; satisfying
[ Kenlli < Can, where the constant Cy, depends only on d and n. Further, for
any ¢ € Z%, K. ,(x) converges to Ko ,(z). We conclude that for any function
f € L"(Z%) one has

=0 | ¢el—m,m]d

lim { sup [Tt ¢ — Tocllf — Am(f]llr} =0,

for any n = 1,2,---. The result (3.9) follows then if we can show that for any
feL(ZY),1<r < oo,and d > 0, there exists a positive integer N such that

[Ancfllr <0, n>N, ¢é€l[-mn]"
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This last inequality follows by approximating f € L"(Z%) with a function of finite
support. A similar argument implies (3.6). O

Lemma 3.2. Suppose d > 2, 1 < r < d and ¢ < oo satisfies 1/r > 1/d+ 1/q.
Then the operator Sy, of (3.3) is a bounded operator from the space F"(Z?) to
Tq(Zd). There is a constant Cy 4 4, depending only on r,q,d, such that the norm
|Skn.cllrg of the operator Sy, ¢ satisfies the inequality || Sk n.cllrg < Crq,da- There
is also the limit

(3.12) lim { sup H[Sk,a,CP — Sk,()’Cp](p

e=0 | ¢cel~m,a]d

T,q} =0, ¢ecF(Z9.

Proof. We proceed as in Lemma 3.1. Let Sc ¢ be the operator on functions f €
L"(Z?) defined by

Secf(@) = Keclz —y)f(y), z € Z°,

yeZd
where
Ke((x) = [Gpe(z —e1) — Gpo(z+er)lsgn(z-er) » e =<
z€L4(x)
It follows from (3.8) that there is a constant Cy > 0, depending only on d, such
that
|Kec(@)] < Caf[L+ [TV, @ eZ.

Hence K. € L*(Z%) for any s > d/(d — 1). Tt follows now by Young’s inequality
that S.cf € L9(Z%) for any q > 0 satisfying 1/r > 1/d + 1/q. Further, there is a
constant C. 4 4, depending only on 7, ¢, d, such that the norm [|S; ¢||,q of Sc ¢ as an

operator from L"(Z4) to LI(Z%) satisfies ||Sc ¢|lrqg < Cyqa- It is easy to see that
for any x € Z,

lim sup |K.¢(xz) — Koc(x)] p =0.
e—0 ce[—m,m?

Hence, if Sy ¢ is the operator with kernel Ky ¢, one has

lim { sup. [[Se¢ - So,dflq} =0, felL'(Z%,
€0 Ce[_ﬂ-’ﬂ—]d

provided ¢ < oo satisfies 1/r > 1/d + 1/q. Now, arguing as in [3] we obtain the
result. (I

Corollary 3.1. Suppose b;(-) =0, j > 1 and bi(,-) = Yy, x € Z4, where the
Y,, x € Z¢, are independent Bernoulli variables with zero mean. Then Theorem 1.2
holds.

Proof. Observe that by(-) € F"(Z?) for all 7 > 1. The result follows now from
Lemmas 3.1, 3.2 and the representation (3.4) for ¢, . (¢). O

Next we wish to generalize our method to all b(-) such that b(7,-), = € Z9, are
independent random variables. To do this we pursue the method developed in §5
of [3]. Thus we define a spin space S as all s = (my,...,mq) where the m; are
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nonnegative integers satisfying |s| = my + -+ +mg > 1. For s € S we define a
random variable b; by

bs() = H bi()™ , s=(mi,...,mq),

i=1

and a random variable Yy ; = by — (bs). Then for s € S, n € Z? we define the
variable Y,, s to be the translate of Y 5, i.e., ¥}, s(-) = Yy o(7-). For 1 < r < oo we
may define Fock spaces F5(Z?) of many particle wave functions where the particles
move in Z% and have spin in S. We can also, for any § > 0, define a mapping Us
from FZ(Z?) to functions on Q by

(3.13) Usp =20+ Y. Y. Un(msing, s, nn,sy)

N=1{n,,..ny}ezé"N
s;€8, 1<i<N

w glsil+Flsnl v

n1751Yn2:S2 st Y’I’LN,SN'
Following the argument of Lemma 5.1 of [3] we have:

Lemma 3.3. There exists § > 0, depending only on d, such that the mapping Us
of (3.13) is a bounded operator from F2(Z%) to L2(Q) satisfying ||Us|| < 1.

We shall use the operator Us = U of Lemma 3.3 to transfer the equation of
(2.33) from L?() to FZ(Z?). Thus we shall need to construct operators Pr, Bj r,
Tjecr 1<j<d, with the property that they are bounded operators on F32(Z%)
and satisfy

(3.14) UPr = PU, UBj5="b;()U, UTjecr="T;ecU.

The simplest of these operators to construct is Pr. Thus if ¢ = {¢yn : N =
0,1,2,...} € F2(Z%) then Pryp = {(Pryp)y : N = 0,1,2,...}, where (Pri))o =
O, (P]:?[J)N = ’l/)]\/7 N > 1. Similarly we have Tj757<7].‘1/} = {(Tjﬁ’g]ﬂ/})]\[ : N =
0,1,2,...}, where

(Tjec.rp)o = [e74% = €% ] G o (— )i,
(Tjec.r)n(n1,51,...,nN,8N) =

Z [Gpve(x_ej) —Gp75($+ej)] e_ixlch(nl _37,51,...,71]\/‘—13,8]\[), N > 1
TEZ

The most complicated of the operators to define is Bj . We have

(Bj,r)n(n1, 81, ,nn,s8) = (bi()¥n(n1, s1,...,nN, 5N)
+ Z [<b]b5> - <bj><b8>] 5‘S|’l/}N+1(07 $,M1,81,...,1N, SN),
seS

ifn, £0,1<k <N, N>0;
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(Bj,fw)N(O,Sl,nQ,SQ,...,nN,SN) ZO7
if ng#0, 2<k<N, s1=(m,...,mq), mj =0;

(B, 70)N (0, s1,n2, 82, ...,nn, sy) = 0 PN (0, 81, n2, 82, .. ., nN, SN),
if le#o, 2<k<N, slz(ml,...,md), m; >0, ‘$1| > 1,

/ .
51 = (ml, e ,mj_l,mj — 17m]‘+1, e ,md),
(B, 7)n(0, 81,2, 82, ..., N, SN) = 0 “hn_1(n2, S2, ..., N, SN)
_Z 5‘| 1'1/1]\708712,82,...,71]\7,81\[)7
ses

ifng #0,2<k <N and sy = (0,0,...,1,0,...,0), with 1 in the ith position.
Lemma 3.4. For 1 <k <d let g, € }"gv(Zd) be the wave function pr = {pr N :
N=0,1,2,...} where oy =0 if N # 1 and i1 is defined by

vri(n,s)=1 if n=0, s=(0,...,0,1,0,...,0),

with 1 in the kth position, @i 1(n,s) = 0, otherwise. Then there exists a constant
va depending only on d such that if |y| < va, the equation

d
(3.15) OF 2(Q) = vPr > Bj rTiccr® £(¢) = o,
j=1
has a unique solution ®F £(¢) € FL(Z®). Further the solution to (2.33) is given by
the function ®F((,w) = U@’;,f(g) € L?(Q).

Proof. Evidently Pr is a bounded operator on F2(Z%) with norm 1. We can also
easily see that T} . ¢ 7 is a bounded operator on F2(Z?) with norm bounded by the
RHS of (2.32). Also Bj, r is bounded with norm depending only on d. Hence we may
choose 74 small enough, depending only on d, such that (3.15) is uniquely solvable.
The fact that U®F () solves (2.33) comes from (3.14) and Uy, = by(-) — (bg). O

Proof of Theorem 1.2. Observe from (2.36) that ¢. ,(¢) is defined in terms of
®F(¢,w). In view of Lemma 3.4 we get a representation of g. - (¢) similar to (3.4)
but with the operators Tj . ¢, Sk.ec, bj(-) on L?(£2) replaced by the corresponding
operators T . ¢c. 7, Sk.e.c,7, BjF on Fock space. Here the operator S . ¢ 7 satisfies
USke.c.7 = Sk,e,cU. We now argue exactly as in Corollary 3.1. O

4. Proof of Theorem 1.3

We assume in this section that the function p is given by (1.2). Let G ,(x) be
the function defined by (2.9). Then ép,n(f) satisfies the inequality,

0 < Gpy(€) < O/l + €],

for some universal constant C. One can also see that if d > 2 and 0 < n < 1, there
is a constant Cy, depending only on d, such that

(4.1) |Gz = er) = Gyl + er)| < Caexp [=/lzl/Ca) /[ + |z|*7].

Next we prove the analogue of Lemma 2.3.
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Lemma 4.1. Suppose d > 2 and f : R — R is a C> function with compact
support. Then if v € C satisfies |y| < e/v/2d and 0 < € < 1, Equation (1.4) has
a unique solution uc(x,w) in L*(Z2). Further, there is a constant Cy4, depending
only on d, such that ||ue(-,w)|le < Cqll flle-

Proof. Suppose u.(z,w) is in L%(Z%) and satisfies (1.4). Let v.(z,w) be defined
by

Ve (2, w) = e 2 [Apuc (7, w) + 2ue(z,w)].

It is easy to see that v.(z,w) € L2(ZY). In view of (2.9) it follows that
(4.2) ue(z,w) = 527’1/ dy G, 2 (x ; y) Ve (Y, w).
z?

Now for i = 1,...,d let us define operators T; on L%(Z2) by

Tiw(x) = &' /Zd dy {Gpﬁgz (xg—y + ei> —Gpe2 (x;y - ei)} w(y).

It is easy to see that 7T} is a bounded operator on L?(ZZ). It follows from (2.10)
that the norm of T; is bounded by

2¢|sin(e; - &€
(1.3 s s [EEHEE
cclommt L1+ —p(§)
Now (4.3) and (1.1) imply that the operator Zle b;(+,w)T; is bounded on L2(Z4)

and has norm satisfying the inequality

d

> b w)T,

i=1

1/2
< 2e {2 sin’(e: - €) }
S sup -
ce[—m ] 1+e2—p(&)

€z
<4s — | = V2d.
- 21;18 {52+222/d}

Observe now that (1.4) implies that v.(z,w) € L*(Z<) satisfies the equation

d

(44) Us(maw) - 7571 Zbi(x/ff,W)Tivs((ﬂ,W) = f(m)

i=1

Hence if |y| < £/v/2d, the function v, (z,w) is uniquely determined by (4.4). In view
of (4.2) it follows that u.(z,w) € L%(Z%) is the unique solution to (1.4). To prove
existence note that (4.4) has a solution v.(x,w) € L*(Z%) provided || < £/v/2d.
If we then define u.(z,w) by (4.2) one can easily see that u.(z,w) satisfies (1.4).

t

In order to obtain Equation (1.11) we follow a development similar to the one
following Lemma 2.3. Thus we put ve(z,w) = u.(z,7_5/.w), € Z% w € Q, and
write v (7, w) = uc(7) + e (z,w), * € Z4, w € Q, where (Y.(x,-)) =0, x € Z4.
It follows that

ue(x) = <1}5(z, )> = <u6(:c, )>, x ezl
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Furthermore, the Fourier transform . (€) of uc(z) satisfies the equation

sin(e; - €§)
22

d
(4.5) Ge(§) Q 1+ 2[1—p(e€)] +27i Y _(b;()
j=1

B <Z b (1) [0 Ee(€ 7o) — €T e, )| >

—f(0), ce [‘”,”r.

e &€

The Fourier transform of ¢ (z,w) is given in terms of 4. (&) by

(4.6) e (& w) = —2ivyii (¢ Zsm (cey - £) UL (et w)

Here VF((,w), 1 <k <d, ¢ € [-m, 7% w e Q, are functions in L? ([-7,7]¢ x Q)
which satisfy the equation

(4.7)

VE(Cw) = ) py)e” VU (¢ myw)

yeZd
+~P Z bi(w) [ SWE (¢, Toe,w) — €77 CTE (¢, 7o w)] + 2 TH (¢, w)

= bp(w) — (bx(), C€[-m 7% weQ, 1<k <d

If we substitute for 1. from (4.6) into (4.5) then we obtain the equation,

£2

d sin(ce; - )
(4.8) ﬂa(f){l +e 21— peg)] + 2%’2(53‘('»7]

2

_ eifeJ'f\If’;(eé,Tej')} >} = fo(9), €€ [W’W]d

Let us assume now that (1.9) holds. Then, following the development at the
beginning of §3, we have that the matrix ¢y.(¢) = [¢y,e,k.67(¢)], 1 < k, k' < d of
(1.11) is given by the formula

bk(')>

(4.9)  @yepp () =
bk’(')>7

d sin(eey, - )
- k- €€ -
- 2wz< bj()——=— {6 UL (e, T, )
jk=1

m

Swe2c P

d

> ()T P

Jj=1

n d
_ Z A2 ZO < lzbj(')ijf2vOP

Jj=1

[e%S) n d
_Z,Yn+2 <[Z bi () T2 0P

n=0 m=0 \ | j=1

m

e—iek{Sk’Ez’CP

d

ij(qu,Ez,CP

Jj=1
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where the operator T}, ¢ is defined by (2.31) and Sy, ¢ by (3.3), with p given by
(1.2). One can see from the proof of Lemma 4.1 that ¢, .(¢) is continuous in ¢ and
analytic in v provided || < /v/2d.

5. Proof of Theorem 1.4

The matrix ¢, -(¢) is given by the coefficient of 4™ in the expansion (4.9). Since
the b(7,-) are given by Bernoulli variables, (a) and (b) of Theorem 1.4 follow easily
from (4.9). Next we obtain a formula for g4 .(¢). Let K.(x) be defined by

(5.1) K (z)=Gpz(z—e)—Gyo(r+e), zeZ

For z € Z¢, let 2 be the reflection of x in the plane through the origin with normal
e;. It is clear that

(5-2) K.(2") = —K.(2), x € Z°
For 1 <k <d, ¢ € [-m, )¢, define ax(C), br(¢) by
(5.3) ak.e(¢) = Z [K.(x)]*sgn(z - e,) Z e,
z€Z4 yELk ()
bre(C) = Z [K. ()™ sgn(z - ey) Z e~ ¢
reZd yELR(x)
Note that
(5.4) ke (0) = b (0) = Y [Ke(2)]P (2 - ep).
VA

Then one can see from (4.9) that

(5.5) Ga,e11(C) = [1+ e ) 2a1,(¢) — b1 (C)]-
One also has for 1 < k < d,
(5.6) Qa,e,1,k(C) = 2ax () — br.(C),

Gae1k(C) = €7 [2ap,6(C) = bre(Q)]-

Since ag(0) = b (0) it follows that gs.1,1(0) = 2a1,(0). From (5.2) and (5.4)
we see that ay .(0) = 0 if £ > 1. Hence qa 1 (0) = 0 for k+ k" > 2.

Lemma 5.1. (a) Letd =1 and K C R be a compact set. Then e%a; () con-
verges uniformly for &€ € K to a function a1(€), as € — 0. Similarly £2by - (€)
converges to a function by (§).

(b) Ifd>3 and 1 <k <d, then ay(() converges uniformly for ¢ € [-m, 7] to a
function ax(C), as € — 0. Similarly by -(¢) converges to a function by (¢).

Proof. (a) It is easy to see that for d = 1, n > 0, one has

o]
[1+77— \/2774—772]
V20 +n? ’

r € Z.

Gpn(x) =

Hence if for € > 0, we define v(g) by

(5.7) v(e) =14e* —ey/2+ €2,
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then the function K (z) of (5.1) is given by
(5.8) K. (x)=2v(e)®, 2 €Z, z>0.
Substituting from (5.8) into (5.3) we obtain the identity

8v(e)? 1 e’

a1:(0) = 7= V@ |T=v(@Pe € T T u(e)e

One can see that
i e 1
im — = .
=01 —v(e)e € 324

We conclude that
16

18 + &2
Since for d = 1 one has a1 ¢(¢) = b1,(—¢), the formula (1.13) follows now from the
last equation and (5.5).

(b) This follows from the fact that for d > 3, the limit lim._,o K.(2) = Ko(z)
exists for all € Z%, and the bound (4.1). O

lim 62(1175(65) =
e—0

Lemma 5.2. (a) Ford > 3, one has a1(0) > 0.
(b) For d =2 one has lim._,g a1 ¢(0) = +o0.

Proof. (a) In view of (5.2) and (5.4) it is sufficient to show that Ky(x) > 0 if
r € Z< satisfies ¥ - e; > 0. To see this observe from (2.9) and (5.2) that K.(x)
satisfies the equation

A K. (2) + ?K.(2) = g(z), z€Z% z-e >0,

with Dirichlet boundary condition K .(z) = 0, = -e; = 0. Here g is the function,
g(x) =1, x = ey, g(x) = 0 otherwise. The positivity of Ky(z) follows now from
the maximum principle.

(b) We shall show that there exists & > 0 and a positive constant ¢, depending
only on « such that for d = 2,

(5.9) lir%KE(nel + mez) > C—a7 |m| <an, n=1,2,---
e— n

To prove (5.9) we use the fact that for d = 1 one has

e 2 [ snn0)sin@)
Ke(n) = 2v(e)" = /0 25sin%(¢/2) + €2

T
Since one also has for d = 2 the representation

cos(m&) sin(n() sin(()
K. (nel +me2 / /0 SlIl C/2 + sin (5/2) +¢ 2d<d€

¢ n>1.

we obtain for d = 2 the formula
4 s
1in(1) K.(nejy +mesy) = f/ v(V2sin(€/2))" cos(mé)de, m,neZ, n>1.
E—> i 0

Now there exist universal positive constants ¢, C' such that

exp[—Cné] < v(V2sin(£/2))" < exp[—eng], n>1, 0<E <.
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We conclude that the LHS of (5.9) is bounded below by

4

T 4
;/0 exp[—Cn¢] d§ = G {1 — exp[-Cmn]},

if m = 0, and by

7/4|m| 0o
2;@/0 exp[—Cn&] d§ — é/ exp[—cné] d€

T Jx/4lm|

24/2 I—e Crn 4 . cmn
=—ql—exp|———|p — —exp|———
Crn P 4|m)| crn P 4lm| |’

if m # 0. The inequality (5.9) clearly follows from the last two identities. The
result follows now from (5.4) and (5.9) since the argument of Part (a) implies
K.(ne; +mes) >0, myneZ, n>0. O

We are left now to prove (c¢) and (d) of Theorem 1.4 for m > 4. In order to do
this we need to obtain a suitable representation of g, .(¢) for general m. We first
consider the situation ¢ = 0. Recall that we are assuming the b;(-) =0, j > 1,
and by (7,-) = Yy, * € Z%, where the variables Y,, = € Z%, are assumed to be i.i.d.
Bernoulli, Y, = +1 with equal probability.

Lemma 5.3. Suppose m > 4 is even. Then ¢meri(0) =0 if k+k > 2 and
Gm.e,1,1(0) has the representation

m—1
(5.10) Gme1a(0)=-2 > (Zma-el> K.(z1) - Ke(Tm_1)

Ty, 1 €ZY
<YOY11Y1’1+12 e YI1+'“+1m—1> .

Proof. First note that by the argument of Lemma 2.8 the representation (4.9) for
¢~,:(0) continues to hold when we delete the projection operator P from the RHS
of the equation. It is easy to see from this that (5.10) holds. If k& > 1 then one
has a similar representation to (5.10) for ¢, ,1,£(0) and ¢ ¢ x1(0) but with e; in
(5.10) replaced by ej. In that case (5.2) implies g e £,1(0) = Gm1,6(0) =0. O

In order to prove (d) of Theorem 1.4 for general m we use (5.10) to obtain a
representation of ¢y, - 1,1(0) as a sum indexed by certain types of graph. We shall
use the terminology of [1]. For ¢ = 2,3, --- let F, be the set of unlabeled, connected,
directed multigraphs on ¢ vertices with the properties:

(A) The graph has no loops.
(B) Each vertex has equal indegree and outdegree.
(C) The degree of each vertex is a multiple of 4.
(D) The number of edges in the graph is 4q.
For a graph G € F, let V[G] denote the vertex set of G and E[G] be the set
of directed edges of G. Each directed edge e has two vertices e, and e_, with the

direction of the edge being from e_ to ey. We associate with G and a directed edge
e € F[G], a number K, (G, e) defined by

(511)  K.(Ge)= > (e -e)dlye,) ] Ke(e, —ue).

{yo€Z4:0eV[G]} e’€E[G], e'#e
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In (5.11) §(x), = € Z? is the Kronecker delta, 5(0) =1, d(x) =0, = # 0.
Lemma 5.4. Let m > 4 be an even integer and ¢ = m/2. Then

(5.12) Gme1n1(0)= > (G e)K(G.e),
GeF,, e€E[G]

for some integers c¢(G,e) depending only on the graph G and the directed edge
e € E[G].

Proof. Observe that
Kg(fL'l) e Kg((Em,l) <Y0Yz1Ym1+12 e Y:r1+-~+zm,1> 7é 0,

only if the sequence 0,z1,7; + T2,...,21 + -+ + &1 of points in Z¢ has the
property that it consists of ¢ pairs of points with the property that no two adjacent
points of the sequence are the same. The ¢ pairs of points do not have to be distinct.
Hence we may write

q
(513) qm75,171(0) = —22&1‘,
i=1

where a; corresponds to the term on the RHS of (5.10) where ¢ of the ¢ pairs are
distinct. For a graph G € F, let K/(G,e) be defined in the same way as K (G, e)
except that the summation on the RHS of (5.11) is over all y, € Z% : v € V[G] such
that the ¢ points v, € Z¢ are distinct. Define }",; as the subset of F, consisting
of regular graphs of degree 4 i.e., the degree of each vertex is exactly 4. Now
by (B) of the definition of F, and Euler’s theorem [1] a graph G € F, has an
Eulerian path. Let ¢(G) be the number of Eulerian paths. For a graph G € F,
one can group directed edges into equivalence classes where two directed edges e, e’
are equivalent if there is a graph isomorphism of G taking e to €. Let E'[G] be
this set of equivalence classes. Then we may define K.(G,é) for é € E'[G] by
K[(G,é) = K.(G,e) for any e € é. Then one can see that a, of (5.13) is given by

ag = Z c(G)KL(G,ée).
GeF!, ecE'[q)

Since we can obtain a similar representation for the a;, 1 < i < ¢, we have the
formula (5.12) up to replacing K.(G,e) by K.(G,e). The result therefore holds
if we can show that for any graph G € F, and e € E[G] there exist integers
cae(G'€), G' € Fy, € € E[G'] such that

(5.14) K/ (G,e) = > ca.o(G,e)K (G ¢).
G'eF,, ¢'€E[G"]

The previous identity follows from Mayer’s trick to obtain an expansion for an
non-ideal gas [7]. That is for a function ¢ : Z? — R, one writes

(5.15) exp = > ewi—y)| = [I [+,

1<i<j<N 1<i<j<N

where f; ; = exp[—¢(y; — y;)] — 1, and expands the RHS of (5.15) out. Now (5.14)
follows from (5.15) on taking ¢ to be the function, p(y) =0, y # 0, ¢(0) = +o00. O
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Lemma 5.5. Suppose d =1, ¢ > 2 and G € Fy, e € G. If |G| is the number of
vertices of G, then the limit

(5.16) gii%alG‘KE(G,e) = K(G,e)
exists.

Proof. Evidently it is sufficient to show that (5.16) holds with K.(G, e) replaced
by K.(G,e). Suppose |G| = k < ¢ and label the vertices of G as 1,2,...,k with
e+ =1, e = k. Then

K./(G,e)= Y K:x(G,e),

TESK
where Sy, is the group of permutations on 1,2, ...,k and
K. x(G,e) = > Syowe [ Ke@We, —ver)-
Yr1 <Yr2< - <Yrk e’ €E[G], e'#e

In view of (5.8) there are positive integers N;, 1 < j < k — 1 such that

k—1
KoGo== S sy [ 2% v(e) Vil v,
Yu1 <Yr2 <+ <Yrk Jj=1
Suppose now that wk; = 1, wky = k and k1 < ko. Then
kp—1
(5.17) Ken(Gre) = Keri(Ge),
i=ky
where
k—1
Kgyﬂ,i(G,B) S Z 5(y1)[y7r(i+1) o yfr(i)} H 2NjV(s)Nj[yw(j+1)*y7r(j)]'
Yr1 <Yn2<-<Ynk J=1

It is easy to see now just as in Lemma 5.1 that the limit
1in(1) " K. . i(Ge)
exists. Hence from (5.17) the limit,
(5.18) liH(l) FK. (G, e)
E—

exists if k1 < ka. A similar argument shows that the limit (5.18) also exists if
k1 > kq. It follows then from the previous identities that the limit (5.16) exists. O

Remark 1. Lemma 5.5 proves that (d) of Theorem 1.4 holds with £ = 0. Observe
that the number of graphs in F is of order ¢!. One can see this from an asymptotic
formula for the number A, of labeled 4-regular simple graphs on ¢ vertices [18],

Ag ~ [(dg)le™ "] /[(24)1967).

Next we wish to obtain the analogue of Lemma 5.4 for ¢ r(¢) with ¢ €
[—7, 7% and at least one of k, k” being 1. To do this we define for any G € F,, e €
E[G], a function K.(G,e,() by

(5.19)
KE(G’ ¢, C) = Z exp[—iyef : dé(y&r) H Ks(yeg_ - ye’_)~

{y,€Z4veV[G]} e’ €E[G], e'#e
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Note that K. (G, ¢, () is defined similarly to K (G, e) of (5.11) and has the property
K.(G,e,0) =0. For 1 < k < d we define K, 1(G,e,() by

(520) Koi(Goe,Q)= > dwe)| [ Kelwe, —ver)

{y,€Z4:veV[G]} e'€E[G], e e

S esplilue, —ve)-smllue, v )] Y e

e’€E[G], e'F#e YELE(Yer, —ver )

Note that K.(G,e) of (5.11) is given by K.(G,e) = K. 1(G,e,0). In the following
lemma we need to define F, for ¢ = 0,1. The set F; is the single point vertex graph
G with K (G,e,{) = 0. The set Fy is also the single point vertex graph G with
K.(G,e,¢) = 1.

Lemma 5.6. Let m > 4 be an even integer and ¢ = m/2. Define A« 1(C) by

(521) Aper(Q) =) >

¢'=2 GEF,, G'EF,

Z C(Gae7G/7e/)Ks,k(Gu67C)K€(G/7e/7<)>
e€E[G], ¢’€E[G’]

for suitable integers ¢(G,e,G',¢e') depending only on the graphs G,G' and the di-
rected edges e € E[G], € € E[G']. Then

Qm,s,l,l(C) = [1 + 671’514(] Aer,e,l(C)a
Qm,s,l,k(C) - _Am,s,k(<)7 1<k <d,
Qm,e,k,l(C) = eilek.CAm,s,k(C)a 1<k < d.

Proof. We define A,, ./ (¢) as the coefficient of v in the first term on the RHS
of (4.9). Evidently the formulas for ¢ . (¢) in the statement of the lemma
follow from this. We need then to establish (5.21). This follows by the same
argument as in Lemma 5.4. Note now that, unlike in Lemmas 5.3 and 5.4, the pro-
jection operators P in (4.9) make a contribution. Thus we obtain the factorisations

K. (G e,Q)K:(G',€,¢) in (5.21) with G € Fy, G' € Fyr, where ¢/ +¢" =q. O

Lemma 5.7. Suppose d = 1 and K C R is a compact set. Let ¢ > 2 and G €
Fyy € € G. If |G| is the number of vertices of G, then the limits

(5.22) lim 611K (G e, e6) = K(G, e, £)
(5.23) lim elCIK. 1 (G, e e€) = K1 (G, e, €)
exist, uniformly for & € K.

Proof. The proof of (5.22) follows exactly the proof of Lemma 5.5. To prove
(5.23) we proceed similarly. Thus we focus on one term in the summation over
e’ € E[G], ¢ # e in (5.20). As in Lemma 5.5 we fix a permutation m and consider
the sum over yr1 < yr2 < -+ < yxk. Suppose that 7k, = e’ , 7ko = €/ and
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k1 < ko. Then

sg(Yer, — Yer ) > e W =

YEL1 (Yer, —ver )

ko—1 Yr(it1) —Ym(i)—1
Z exp[~i(Yr (i) = Ym(k1))C] Z e3¢
i:k1 z2=0

If we consider a fixed ¢ on the RHS of the previous equation and sum over y,; <
Yno < +++ < Ynk, then we see as in Lemma 5.5 that the contribution of this summa-
tion to (5.23) converges uniformly for £ € K as e — 0. Since we can similarly argue
for all the other contributions we conclude that the uniform limit (5.23) exists. O

It is clear that (d) of Theorem 1.4 follows from Lemmas 5.6 and 5.7.
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