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On C*-Algebras Associated to Certain
Endomorphisms of Discrete Groups
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ABSTRACT. Let a: G — G be an endomorphism of a discrete amenable group
such that [G : a(G)] < co. We study the structure of the C* algebra generated
by the left convolution operators acting on the left regular representation space,
along with the isometry of the space induced by the endomorphism.

CONTENTS
Introduction 99
The 7-invariant subalgebra 101
2.1.  An abelian subalgebra 104
3. A crossed product representation 105
References 109

1. Introduction

Some interesting examples of non-invertible topological dynamical systems, such
as the m-fold covering of the circle, and the one-sided full symbolic shifts on n
letters, arise as surjective endomorphisms of compact abelian groups.

If H is such an abelian group, and T : H — H is the map, then T induces an
isometry on L?(H,Haar) via the pull-back. The algebra C(H) acts on L? by multi-
plication, and we want to study the structure of the C*-algebra generated by those
multiplication operators and the isometry, which is analogous to (a representation
of) the crossed product algebra in the case of an action of an automorphism.

Such surjective endomorphisms are in duality with injective endomorphisms of
the (discrete) dual groups. Thus this problem can be conveniently reformulated as
studying the structure of the C*-algebra generated by the convolution operators
on the I? space of a discrete group, along with the isometry induced on the space
by the given injective endomorphism of the discrete group. Aside from the fact
that this is technically more convenient, it allows an immediate generalization of
the question by dropping the requirement that the group be commutative.
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The situation is analogous to that arising in the construction of the crossed
product by an endomorphism, however the algebra is not a crossed product by
an endomorphism in the sense alluded to in [C]. The main difference is that the
endomorphism here not implemented by the associated isometry (i.e., if « is the
endomorphism, S is the associated isometry and a is an element of the group C*-
algebra, then SaS* # «(a)), but rather is only intertwined by it (Sa = a(a)S).
Additional conditions relevant to the situation seemed required here, so as to limit
the size of the algebra.

The construction considered in this paper is related to a situation considered
by Deaconu ([De]) concerning self covering maps of compact Hausdorff spaces (the
two situations overlap when our group is abelian, in which case we can dualize
to get a map from the dual group onto itself — see above). Deaconu used a
groupoid approach to that problem. Exel’s approach to the crossed product by an
endomorphism ([E]) places the examples considered in this paper in a more general
framework (see Remark 1.4 below).

Definition 1.1. Let G be a discrete group, and let a : G — G be an injective
homomorphism. We call « pure if ()7, a™(G) = {1}.

We will assume throughout that [G : «(G)] < co.
We consider the universal C*-algebra &, generated by CG and and an isometry

S, satisfying the relations:

1. 80y = da(a)S for z € G.
2. 8%6,S =0if z & a(G).
3. For any complete list of right coset representatives x1,...,z, € G of a(G)

> 6,-155%0,, =1.
=1
Here, §, denotes the image of x in CG.

Remark 1.2. Note that we could fix in relation (3) an arbitrary list of coset rep-
resentatives; relation (1) shows that

> 8, 1880, =Y 5,15575,,

if {z1,..., 20}, {v1,...,yn} are two sets of representatives.

There is an action 7 of T on &, given by
Y (S)=1tS, v(a)=aVaeCG,teTCC.

Remark 1.3. Note that £, has a represenation A\ extending the left regular rep-
resentation of the group G, given by the usual left regular representation on I2(G),
A9)en = &gn, and with A(S)E, = & n), where {&, [h € G} is the standard basis
for 12(G). It is easily verified that this representation satisfies relations (1)—(3). In
particular, this implies that if G is amenable then &, always contains a copy of
C*(G). We shall assume from now on that G is amenable.

Remark 1.4. &, can be described using the language of [E] as the crossed product
of C*(G) by a with transfer operator corresponding to the expectation of C*(G)
onto a(C*(G)) (see [E], Proposition 2.6). We will not make use of results from [E]
in this paper, though.
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2. The ~-invariant subalgebra

Let F denote the ~v-invariant subalgebra. We denote P, = S™S*".

Claim 2.1. F =span{d,P,d, | z,y € G,n € N}

Proof. We have an expectation map Er : £, — F defined by

Br(a) = [ et

&, is densely spanned by the words with letters in {S, S*,d,,z € G}, and it is
clear that if w is such a word, then Ex(w) = 0 unless w has the same number of
S’s and S*’s. If w is a word with n S’s and n S*’s, then it is easy to see that it
can be rewritten as a word of the form 0, F,,6,, by using the commutation relations
defining the algebra. ]

Now fix n and let F,, = span{0,P,d, | z,y € G}. It is clear that F,, is a sub-
algebra of F. The spanning elements of F,, satisfy the following multiplication
rule:

yz € a"(Q)

P,
6:1:Pn5yézpn§w = 6wyz ndw .
0 otherwise.

Notice that the words d,P,d, are not all distinct - clearly, 0, Pndy = 0. Ppd,-1,
for any z € a"(G). We can force uniqueness by fixing representatives for the
conjugacy classes of a™(G)\G and always choosing y to be one of them, for example.
A more ‘symmetric’ way will be to introduce the following notation. Let R,, be fixed
sets of representatives of right cosets, chosen so that a(R,,) C R, +1. This is done as
follows: we fix Ry, and then define recursively R, 11 = {a(s)r | s € R, , r € R1}.
We may assume that 1 € R;.

Notation. (z,k,y) = 6yan (k) Pndy, where y € Ry, x € R ked.

In this notation, the multiplication rule assumes the simpler form:

(v, kl,bw) y=2z"1

z, k z,l,w) =
@k, 9)(z 1, w) {0 otherwise.

Note that this multiplication rule is simply that of matrices with entries in CG.
More explicitly, we can define a map Mg, |(CG) — F, by gesy — (71, g,y) where
we index the matrix entries by elements of R,, and e;, denotes the usual matrix
unit. This map will extend to an isomorphism from

(C*(@)) = K (a(G)\G))*" @ C*(G)

onto F,, (by Remark 1.3).

Relation (3) implies that F,41 2 Fy,, and F = U, —; Fn-

Denote by ¢ the inclusion map F,, — F,4+1. We now describe ¢ in terms of the
‘triples’ notation, so that we can effectively identify F,, with the familiar algebra
K(P(a(G)\G))®"®C*(G). Since we have to consider words with P,, and with P,
simultaneously, we’ll put a subscript to keep track of that and denote (z,k,y); =
6,;Pjéaj(k)y, x‘l,y S Rj.

Mg,

-



102 Ilan Hirshberg

Now, (z,k,y)n(z,l,w)nr1 = 0 unless yz € a™(G), in which case the product
i8 dpan (k)yzan+1())Pnr10w. We need to convert this to ‘triples’ notation. Let z =
y~ta™(j). So, now, the product is

5:pa"(kj)a"+1(l)Pn+15w~
Let kj = ga(g) for ¢ € Ry*. Recall that 2 € R, so x = roa(r1)...a" *(r,_1)

n
for some rg,...,7,_1 € Ry *. Therefore za™(q) € R;}_l. So, the above expression

in ‘triples’ notation is:
(xan(q>7 gl7 w)nJrl-
So, we obtain

W,k y)n) = Y (@a™(q),p, @ (8)y)n i1

qERI1
where p € G,s € Ry are given by the equation a(p)s = ¢~ 'k.

Remark 2.2. We know that F,11 & F, ® K(I2(«(G)\G)). Writing F,, & Fo ®
K(P(a(G\G)®", Fri1 & F1 @ K(P(a(G)\G))®™, by looking at the formula for
t, we can see that « = 1y ® id, where (¢ is the inclusion map from Fy to F7.

Theorem 2.3. If G is amenable and « is pure then F is simple.

To prove the theorem, we need a lemma. We first fix some notation.

Denote by tr the von Neumann trace on C*(G) (which is faithful since G was
taken to be amenable). « extends to a unital endomorphism of C*(G), which we
denote by « as well. For a € C*(G) and g € G we denote by a(g) the g-th Fourier
coefficient of a, i.e., a(g) = tr(ady-1). Denote by a*(a) the element of C*(G)
satisfyting m(g) = a(a(g)). Observe that (1,1,1)1c(a)(1,1,1); = a*(a)(1,1,1);
(when here C*(G) is identified with Fp).

Lemma 2.4. If a € C*(G) is an element such that a(1) = 0, then ||a*™(a)| — 0.

Proof. We know that the image of CG is dense in C*(G). Fix e > 0, and let
a' € CG satisty ||a’ — a]| < e. We can assume without loss of generality that
d’(l) = 0. Observe that a* is a contraction. Since « is pure, there is some m/
such that for all m > m/, a*(a’) = 0 (since all its Fourier coefficients vanish).
Therefore, for all m > m/, ||a*™(a)|| < €, which is what we wanted to show. O

Corollary 2.5. For all a € C*(G), a*™(a) — a(1)1 in norm.
Proof of Theorem 2.3. Suppose J <F. We know that

J=Inzr
n=0

where we think of F,, as being inside F (the connecting maps are injective). Denote
Jn = J N F,. Notice that ¢(J,) € Jnt1, and that J, = Jo @ K(12(a(G)\G))®™.
By the observation before the lemma, this implies that if a € Jy then a*(a) € Jo
as well.

Suppose Jy # 0. Let a € Jy be a nonzero positive element. Since tr is faithful,
a(1) = tr(a) > 0. By Corollary 2.5, since Jp is closed, we see that 1 € Jy, so Jp is
trivial, and hence 7, are trivial for all n, hence J is trivial, hence F is simple. [
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Examples.

1. Take G = Z, and « to be multiplication by a positive integer N > 1. We
identify d,, with the function z" (where z denotes both the complex variable
and the inclusion map T — C). We pick Ry = {0,1,2,...,N — 1}, and we
identify K(1>(Z/NZ)) with My, where we label the columns 0,1,2,..., N —1.

By the above remark, in order to see what the map ¢ looks like, it is enough
to look at the map from Fy = C(T) to F; = My (C(T)).

The only triples in Fy are of the form (0,7,0)¢ so we simply write them
as z", and we write (—a,n,b)1, a,b € {0,1,...,N — 1} as z"e,p, where e,
is the standard matrix unit (the matrix whose entry in the a-th row and b-th
column is 1, and is zero everywhere else).

Since C(T) is generated by z, it suffices to see to where z maps. Translating
the above formula to additive notation and to our special case, and replacing
q by —q for convenience, we see that z maps to Zévzz)l ZPeq.s where p,s are
given by the equation Np + s = g+ 1. It is easy to solve this equation: we
have p =0, s = ¢ + 1 except for the last term, in which case we have p = 1,

s =0.
Writing this in matrix form, we get
0100 ... 00
001 0 ... 00
0001 ... 00
2 S
0000 ... 10
000 0 ... 01
z 00 0 ... 00

This is the same map which appears in the construction of the Bunce-
Deddens algebras, so F is isomporphic to the Bunce-Deddens algebra corre-
sponding to the supernatural number N°.

2. Fix a finite group H, let G = H x H x H x ... (the algebraic sum, so each
element has only finitely many nontrivial terms), and let « be the left shift
alay,ag,as,...) = (1,a1,az2,as,...). We pick Ry to be H x 1 x 1 x ...,
which we identify with H in the obvious way. As in the previous example,
it is enough to understand the map Fy — F;. We denote the images of G
in Fo = C*(G) by d,7 with a € H and b denoting the tail. The formula
yields in this case: 6,5 +— 053 cpr €qqa; 1€, the image is &5 tensored by
the permutation matrix coming from the image of a under the right regular
representation of H (notice that we write d.e, , = (z71,2,y), z,y € H).

Since a,l_; has only finitely many nonzero entries, after sufficiently many
applications of ¢ to this, we will have a zero-one matrix. ¢ applied to a
scalar matrix simply embeds it in the standard multiplicity |H| embedding
into the higher matrix algebra. Therefore, the image of each element of the
dense subalgebra CG @ K(I2(a(G)\G))®™ C F,, in F is the same as an image
of a scalar matrix in some higher F,,. Therefore, the images of the scalar
matrices are dense in F, so F = UZ’;O M, g, with the appropriate inclusion,
and therefore F is isomorphic to the UHF algebra with supernatural number
H].
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3. Let G = Zy * Zy = (a,b]a® =b*>=1), and let o : G — G be given by
ala) = aba, a(b) = bab. It is easily verified that [G : a(G)] = 3, and
Ry = Ry = {1,a,b} is a list of both left and right coset representatives.
Notice that «(G) is not normal in G in this case. It is known ([B] 6.10.4)
that Ko(C*(G@)) = Z2, and K;(C*(G)) = 0, and that if we denote P, =
(14 04)/2, Py = (1 + 0p)/2, then [1],[P,],[Ps] generate Ko(C*(G)) as a free
abelian group. Identifying F; with M5(C*(G)), and making the first row in
the matrix correspond to 1 € Ry, the second to a € R; and the third to
b € Ry, we see that

1 00 01 0 0 0 1
(=101 0 W)= 1 0 o0 Ws)=10 6, 0
00 1 0 0 6 1 0 0
SO
32 0 3003
WP)=14 %2 0 (P)=10 P, O
0 0 P 3 0 3

and therefore the induced map on Kj is given by
W) =3-11]  w(Pf]) =01+[B]  w(P]) =[]+ [P
which in matrix form is given by
3 1 1
0 0 1
010
Ko(F) is the inductive limit of the inductive system given by Z3 — Z3 —

73 — -, where the maps are given by this matrix. This group is isomorphic
toZ[3]| ®Z B L.

2.1. An abelian subalgebra. Let A,, = span{(z~1,1,2),|z € R,} C F,. A, is
an abelian finite dimensional algebra (of dimension |R,,|). Notice that if we identify
Fn with C*(G) ® M, (where m = |R,| = [G : a"(G)]), then A, is identified
with C1 ® Diag, Diag being the diagonal subalgebra of M,,. Let A denote the
standard faithful expectation map M,, — Diag, and let E4  : F, — A, be the
map given by E4, = tr(-)1 ® A, then E4, is a faithful expectation. Notice that
A, C A1 and furthermore, the E 4, ’s are consistent with the inclusion maps, i.e.,
Ea, .t =t[a,E.4,. Therefore, this consistent system of faithful expectation maps
passes on to the direct limit, and so we obtain a faithful expectation E4 : F — A,
where A is the direct limit of the A,,’s.

A, the Gelfand spectrum of A, is homeomorphic to the Cantor set. It can be
thought of as a product of a countable number of copies of R; with the Tychonof
topology, where there Gelfand transform of (z~%,1,),, where

n—l( n—2(

=0 Trn_1)Q Tn—2) - a(r))ro,

70, ---,Tn—1 € Ry, is the characteristic function of the basic cylindrical clopen set
{ro} x {ri} x - x{rp_1} x Ry x Ry X ---.

For any a € A, and any = € G, we have §,ad,-1 € A. Denote this left action
by 3: Bz(a) = dzad,—1. That gives rise to an action of G on A. Let us describe
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this action. Notice that G acts on Ry, where r - x = 7’ for the unique ' € Ry such
that rz € Gr’. Similarly, we have an action on Rs, and the action on R; is the
quotient action (because of the way we constructed Rs), and so on. A=lim_ R,
so the consistency gives us an action on /17 which is the dual of the action on A. If
w = (rg,71,...) € A (when we identify it with Ry X Ry x ---), then the stabilizer of
w is the decreasing intersection of the stabilizers of w,, = (r¢,...,7) € Ry41. Write
Tp = a™(ry) - a(r))re, then the stabilizer of w, is x,'a" "1 (G)x,. Therefore the
stabilizer of w is (o, z, 'a" T (G)xy,.

Lemma 2.6. F = A x3G.

Proof. Any element of the form §,P,d, can be written in the form d6;-1 P, 0:0.,
for some t € R,. If we take two such elements, ;~1P,0:0,, 051 P,040,, then
their product satisfies ;-1 P;,010,05-1 P50y = 04-1Pp04(0.0,-1P,050,-1)0,0, =
04-1 P04, (05-1P05)0 ., where 8 denotes the action of G on A.

So, span{ad, | a € A, x € G} is a dense subalgebra of F, which is isomorphic
to the twisted convolution algebra used in the definition of the crossed product.
Therefore, F is a quotient of the crossed product A xg G. Let ¢ : A xg G — F
denote this quotient map. It is clear that E 4 o ¢ coincides with the canonical
expectation A xg G — A, and therefore kerp = 0, which is what we wanted. O

Remark 2.7. When the endomorphism is the multiplication by n map on the
integers, the action of Z on the Cantor set we obtain is the odometer action (with
n digits). This gives us another way to see that the Bunce-Deddens algebras can
be obtained as crossed products by the odometer actions (see [Dal).

3. A crossed product representation

Define ® : F — F by ®(a) = SaS*. ® is a non-unital injective endomorphism
of F. Following the procedure from [C], we repeat ® and form a direct system
FO 7 5 F® . ... where the F™ are just copies of F. We denote
the direct limit by F , and we denote by ® the automorphism of F induced by ®.
We denote by P the image of 17 in F.

Let E’; = Fx &2, then £, = P:S';P, so &, and g; are strongly Morita equivalent.

Notice that in ‘triples’ notation, ®((x, k, y)n) = (a(x), k, a(y))n+1, and therefore
® is unitarily equivalent to the multiplicity one embedding of F into the upper
corner of Mig.q(q)(F) = F, and in particular, it induces an isomorphism on K-
theory, so K(F) = K(F).

The map @, thought of as a map on the inductive system --- — F,, — Fp41 —
-+ has the effect of shifting the sequence by 1 (and stabilizing by Mg, |), and so
the action on K, (F) will be ¢! (the action of the shift). The Pimsner-Voiculescu
6-term exact sequence for crossed products by the Z now gives us a procedure to
compute K, (&,)-

Examples. We return to the examples from the previous section.

1. Let us compute K,(&,). It can be seen from the inductive limit description
above that in this case, Ko(F) = Z [+], K1(F) = Z. ® induces the identity
map on K7, and the multiplication by % map on Ky. An application of the
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Pimsner-Voiculescu sequence yields then that
Ko(Ea) 2XZ® Zn_1, Ki(€E,) =2 Z.

2. Here the algebra &, we obtain is isomorphic to the Cuntz algebra O,,, with

n=|H|.
3. The induced action on Kj is given by
301 1\ "
0 0 1
0 1 0

Applying the Pimsner-Voiculescu sequence yields
Ko(la) 272 ® Zs, Ki(&E,) 2 Z.
Unlike the first two cases, it is not clear at this time whether &, is simple.

__The expectation Er is the restriction of the faithful canonical expectation map
&, — F from the general theory of crossed products, and therefore it is faithful
as well.

Denote E = Ejqo0 Er : £, — A. This is also a faithful expectation.

Let 7 be a nondegenerate representation of &,. m[4 is a representation of A,
and as such is given by a spectral measure A on A. We henceforth view vectors of
the representation space H, as sections over A. Since Fis simple, assuming 7 # 0,
m must be faithful when restricted to F, and therefore it must be faithful when
restricted to A as well, so we must have Supp(A) = ./i, and therefore

(@) = sup{la(w)| |w € A}.

We know that S, d, normalize A (i.e., SAS* C A, S*AS C A, 6,455 C A for all
xz € G), and therefore the semigroup generated by those elements acts (partially)
on A. Denote by p- U the action of this semigroup on /l, where p € Aand U is in
the semigroup.

Observation 3.1. Let U be as above, and let £ € H,, then supp(U§) C suppé-U.

Proof. It suffices to verify this for £ such that supp¢ is a cylindrical subset of A
of the form B = {r;} x {ra} x --- x {r,} x Ry X Ry x ---. For the purpose of

this proof, we freely identify elements of 4 with functions in C(A). So, £ = xgBE.
Notice that U*U € A. Write f = U*U € C(A). So, U = UUUE = UfE =
Ufxs§ = Uxsf§ = (UxpU")UE = xp.vUS, and supp xp.vUE C Supp xp.u =
B-U =suppé - U which is what we wanted. ([l

For 2 € G we can associate an element (z¢,1,...) of R (= A) by requiring
that = € a"™Y(G)a™(zy,) - - - a(x1)xg. Clearly this is well defined.

Definition 3.2. We call the above sequence the R-sequence of x, and denote it by
R(x).

This gives us a map R : G — A.

Lemma 3.3. The map R is injective.
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Proof. We must show that if R(z) = R(y), z,y € G, then z = y. R(z) = R(y) is
equivalent to saying that a™(G)z = a™(G)y for all n € N, i.e., zy~* € a™(G) for
all n, and since o was assumed to be pure, we obtain zy~! = 1. ([l

Definition 3.4. We say that the endomorphism « is totally normal if a™(G) is
normal in G for all n.

From now on, we assume that « is totally normal. Notice that this implies
that the action of G on A is free (from the remarks in the previous section).

We define maps W} : R — R? (for n > k) by taking W}(z1,..., %, 14) to be
the element of R} corresponding to the coset representative of

ortaley ) o @ )a T (@ngn) o ol@ra2) T

From the normality codition, it follows that ¥% is |R;|*~to-1. Furthermore, the
following diagram commutes.

\I]n+1
R;L—HH_I k R;H_l
wl lﬂ
n
n-+k vy n
Rl Rl

where the 7’s denote the projections onto the first n 4+ k£ and n coordinates, respec-
tively.

Therefore those maps form a consistent system, and so we get maps on the
projective limit Wy, : A— A

Let o be the probability product measure on A (thought of as RY), where the

measure on each factor is the one giving all points the same measure (ﬁ) The

canonical maps A — R for m € N induce product push-forward probability
measures f,, on R} (assigning the measure 1/|R1|™ to each point). The fact that
the maps W} are |R;|f—to-1 implies that they are measure preserving with those
measures, and therefore the maps Wy are all measure perserving.

Definition 3.5. We say that a point w € R}l = A is tail intersecting if there is
some nontrivial x € G such that wz is a tail of w.

Lemma 3.6. Ifw is tail intersecting then there is some k such that Ui (w) € R(G)
(i.e., is an R-sequence for some group element).

Proof. Suppose w = (x1,x2,...), and there is some y € G such that wy =
(Tk, Tk41,-..). Then for each n € N, we must have

—1

n e

y€a"(@artaley") o o

)" T (k) - 0 Xg2) Thg1s

and therefore, we must have ¥ (w) = R(y). O
Corollary 3.7. {w | w is not tail intersecting} is dense in RY.

Proof. Since R(G) is countable, and the measure y is nonatomic, it has y-measure
0. Since the W; are measure preserving, we see that u(lJ, ¥; ' (R(G))) = 0, and
therefore its complement, which contains the set in which we’re interested, has full
measure, and in particular is dense. (I

Lemma 3.8. For all a € &,, |7(a)|| > ||7(E(a))|l-
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Before proving the lemma, we state and prove its main consequence.
Theorem 3.9. IfG is amenable and « is pure and totally normal then £, is simple.

Proof of Theorem 3.9 (assuming Lemma 3.8). Let 7 be a representation of &,
and let a € ker(m) be a positive element, then E(a) # 0, since F is faithful. By the
lemma, E(a) € ker(w), so ker(7) N F # 0, and therefore ker(w) D F, so 1 € ker(w),
so m = 0. So any nonzero representation of £, must be faithful, i.e., &, is simple. [

Proof of Lemma 3.8. By the remarks preceeding the lemma, it suffices to show

that ||7w(a)| > |L7(;)(w)| for a dense collection of w € A. It also suffices to verify
it for a dense collection of a € &,. So we assume that a is taken from the *-
algebra generated by S and the d,, + € G. Each such element is in the span of
the semigroup from above. Notice that if w is not tail intersecting then the only
semigroup elements that fix it are the idempotents which have it in their domain.
‘We pick w to be in this dense set.

We can decompose the representation space H, into a direct sum H, = L? (fl, v)®
H', where supp(r) = A, and A acts on L2(A, v) by multiplication (by the Gelfand
transform). We also assume, without loss of generality, that 1/(.,21) = 1. Suppose w
corresponds to the sequence 71,79, 73, .... Denote B, = {r1} x {ra} x -+ x {r,} x

Ry X Ry X -+, let &, be the vector xp, ®0, and let &, $a_ Denote §o=x,4®0

GAR
(and notice that [|£o]] = 1), so &, = m(x B, )&o-
For any a € A, we have

a(w) = lim (7m(a)é,, &) = lim

n— o0 n—oo ||£n||2

(m(xB,axB,)%:&o)

If U in the semigroup is not a projection, then because of our choice of w, for
sufficiently large n, B, N (B, - U) = 0, so xp,Uxs, = 0. Also, notice that the
intersection of the semigroup with A is exactly the projections. Therefore, for an
element a in this dense subalgebra and for such an w, for all sufficiently large n we
have (7 (x5, ax5,)é, &) = (7(xB,E(a)xs,), o) So,

—

[m(a)ll = [(w(a)n, &n) | = [ (w(E(a))n, &n) | — [E(a)(w)]

which is what we wanted. O

Remark 3.10. A groupoid approach could have been used in this case. We repre-
sented the ~-invariant subalgebra as a crossed product with an action of a discrete
group on a compact Hausdorff set, and therefore it can be viewed as the groupoid
algebra of the associated transformation groupoid. We could then present &, as the
groupoid algebra of a groupoid which is the restriction of the semi-direct product
groupoid of the above transformation groupoid by an action of the integers (cf. [R]).
Equivalently, we could view this groupoid as a certain restriction of the universal
groupoid associated to the inverse semigroup generated by G and S (cf. [Pa]). In
this language, we showed that under our conditions, the groupoid thus obtained is
essentially principal ([R]) with no invariant sets in the unit space. The proof of the
last lemma is essentially that of [R], with the simplifications that arise from the
fact that our situation is less general.
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