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On C∗-Algebras Associated to Certain
Endomorphisms of Discrete Groups

Ilan Hirshberg

Abstract. Let α : G → G be an endomorphism of a discrete amenable group
such that [G : α(G)] < ∞. We study the structure of the C∗ algebra generated
by the left convolution operators acting on the left regular representation space,
along with the isometry of the space induced by the endomorphism.
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1. Introduction

Some interesting examples of non-invertible topological dynamical systems, such
as the n-fold covering of the circle, and the one-sided full symbolic shifts on n
letters, arise as surjective endomorphisms of compact abelian groups.

If H is such an abelian group, and T : H � H is the map, then T induces an
isometry on L2(H, Haar) via the pull-back. The algebra C(H) acts on L2 by multi-
plication, and we want to study the structure of the C∗-algebra generated by those
multiplication operators and the isometry, which is analogous to (a representation
of) the crossed product algebra in the case of an action of an automorphism.

Such surjective endomorphisms are in duality with injective endomorphisms of
the (discrete) dual groups. Thus this problem can be conveniently reformulated as
studying the structure of the C∗-algebra generated by the convolution operators
on the l2 space of a discrete group, along with the isometry induced on the space
by the given injective endomorphism of the discrete group. Aside from the fact
that this is technically more convenient, it allows an immediate generalization of
the question by dropping the requirement that the group be commutative.
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The situation is analogous to that arising in the construction of the crossed
product by an endomorphism, however the algebra is not a crossed product by
an endomorphism in the sense alluded to in [C]. The main difference is that the
endomorphism here not implemented by the associated isometry (i.e., if α is the
endomorphism, S is the associated isometry and a is an element of the group C∗-
algebra, then SaS∗ �= α(a)), but rather is only intertwined by it (Sa = α(a)S).
Additional conditions relevant to the situation seemed required here, so as to limit
the size of the algebra.

The construction considered in this paper is related to a situation considered
by Deaconu ([De]) concerning self covering maps of compact Hausdorff spaces (the
two situations overlap when our group is abelian, in which case we can dualize
to get a map from the dual group onto itself — see above). Deaconu used a
groupoid approach to that problem. Exel’s approach to the crossed product by an
endomorphism ([E]) places the examples considered in this paper in a more general
framework (see Remark 1.4 below).

Definition 1.1. Let G be a discrete group, and let α : G ↪→ G be an injective
homomorphism. We call α pure if

⋂∞
n=0 αn(G) = {1}.

We will assume throughout that [G : α(G)] < ∞.

We consider the universal C∗-algebra Eα generated by CG and and an isometry
S, satisfying the relations:

1. Sδx = δα(x)S for x ∈ G.
2. S∗δxS = 0 if x �∈ α(G).
3. For any complete list of right coset representatives x1, . . . , xn ∈ G of α(G)

n∑
k=1

δx−1
k

SS∗δxk
= 1.

Here, δx denotes the image of x in CG.

Remark 1.2. Note that we could fix in relation (3) an arbitrary list of coset rep-
resentatives; relation (1) shows that∑

δx−1
k

SS∗δxk
=

∑
δy−1

k
SS∗δyk

if {x1, . . . , xn}, {y1, . . . , yn} are two sets of representatives.

There is an action γ of T on Eα given by

γt(S) = tS, γt(a) = a ∀a ∈ CG , t ∈ T ⊆ C.

Remark 1.3. Note that Eα has a represenation λ extending the left regular rep-
resentation of the group G, given by the usual left regular representation on l2(G),
λ(g)ξh = ξgh, and with λ(S)ξh = ξα(h), where {ξh |h ∈ G} is the standard basis
for l2(G). It is easily verified that this representation satisfies relations (1)–(3). In
particular, this implies that if G is amenable then Eα always contains a copy of
C∗(G). We shall assume from now on that G is amenable.

Remark 1.4. Eα can be described using the language of [E] as the crossed product
of C∗(G) by α with transfer operator corresponding to the expectation of C∗(G)
onto α(C∗(G)) (see [E], Proposition 2.6). We will not make use of results from [E]
in this paper, though.
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2. The γ-invariant subalgebra

Let F denote the γ-invariant subalgebra. We denote Pn = SnS∗n.

Claim 2.1. F = span{δxPnδy | x, y ∈ G, n ∈ N}
Proof. We have an expectation map EF : Eα → F defined by

EF (a) =
∫

T

γt(a)dt.

Eα is densely spanned by the words with letters in {S, S∗, δx, x ∈ G}, and it is
clear that if w is such a word, then EF (w) = 0 unless w has the same number of
S’s and S∗’s. If w is a word with n S’s and n S∗’s, then it is easy to see that it
can be rewritten as a word of the form δxPnδy, by using the commutation relations
defining the algebra. �

Now fix n and let Fn = span{δxPnδy | x, y ∈ G}. It is clear that Fn is a sub-
algebra of F . The spanning elements of Fn satisfy the following multiplication
rule:

δxPnδyδzPnδw =

{
δxyzPnδw yz ∈ αn(G)
0 otherwise.

Notice that the words δxPnδy are not all distinct - clearly, δxPnδy = δxzPnδz−1y

for any z ∈ αn(G). We can force uniqueness by fixing representatives for the
conjugacy classes of αn(G)\G and always choosing y to be one of them, for example.
A more ‘symmetric’ way will be to introduce the following notation. Let Rn be fixed
sets of representatives of right cosets, chosen so that α(Rn) ⊆ Rn+1. This is done as
follows: we fix R1, and then define recursively Rn+1 = {α(s)r | s ∈ Rn , r ∈ R1}.
We may assume that 1 ∈ R1.

Notation. (x, k, y) = δxαn(k)Pnδy, where y ∈ Rn, x ∈ R−1
n , k ∈ G.

In this notation, the multiplication rule assumes the simpler form:

(x, k, y)(z, l, w) =

{
(x, kl, w) y = z−1

0 otherwise.

Note that this multiplication rule is simply that of matrices with entries in CG.
More explicitly, we can define a map M|Rn|(CG) → Fn by gexy �→ (x−1, g, y) where
we index the matrix entries by elements of Rn and exy denotes the usual matrix
unit. This map will extend to an isomorphism from

M|Rn|(C
∗(G)) ∼= K(l2(α(G)\G))⊗n ⊗ C∗(G)

onto Fn (by Remark 1.3).
Relation (3) implies that Fn+1 ⊇ Fn, and F =

⋃∞
n=0 Fn.

Denote by ι the inclusion map Fn → Fn+1. We now describe ι in terms of the
‘triples’ notation, so that we can effectively identify Fn with the familiar algebra
K(l2(α(G)\G))⊗n⊗C∗(G). Since we have to consider words with Pn and with Pn+1

simultaneously, we’ll put a subscript to keep track of that and denote (x, k, y)j =
δxPjδαj(k)y, x−1, y ∈ Rj .
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Now, (x, k, y)n(z, l, w)n+1 = 0 unless yz ∈ αn(G), in which case the product
is δxαn(k)yzαn+1(l)Pn+1δw. We need to convert this to ‘triples’ notation. Let z =
y−1αn(j). So, now, the product is

δxαn(kj)αn+1(l)Pn+1δw.

Let kj = qα(g) for q ∈ R−1
1 . Recall that x ∈ R−1

n , so x = r0α(r1) . . . αn−1(rn−1)
for some r0, . . . , rn−1 ∈ R−1

1 . Therefore xαn(q) ∈ R−1
n+1. So, the above expression

in ‘triples’ notation is:

(xαn(q), gl, w)n+1.

So, we obtain

ι((x, k, y)n) =
∑

q∈R−1
1

(xαn(q), p, αn(s)y)n+1

where p ∈ G,s ∈ R1 are given by the equation α(p)s = q−1k.

Remark 2.2. We know that Fn+1
∼= Fn ⊗ K(l2(α(G)\G)). Writing Fn

∼= F0 ⊗
K(l2(α(G)\G))⊗n, Fn+1

∼= F1 ⊗ K(l2(α(G)\G))⊗n, by looking at the formula for
ι, we can see that ι = ι0 ⊗ id, where ι0 is the inclusion map from F0 to F1.

Theorem 2.3. If G is amenable and α is pure then F is simple.

To prove the theorem, we need a lemma. We first fix some notation.
Denote by tr the von Neumann trace on C∗(G) (which is faithful since G was

taken to be amenable). α extends to a unital endomorphism of C∗(G), which we
denote by α as well. For a ∈ C∗(G) and g ∈ G we denote by â(g) the g-th Fourier
coefficient of a, i.e., â(g) = tr(aδg−1). Denote by α∗(a) the element of C∗(G)

satisfyting α̂∗(a)(g) = â(α(g)). Observe that (1, 1, 1)1ι(a)(1, 1, 1)1 = α∗(a)(1, 1, 1)1
(when here C∗(G) is identified with F0).

Lemma 2.4. If a ∈ C∗(G) is an element such that â(1) = 0, then ‖α∗n(a)‖ → 0.

Proof. We know that the image of CG is dense in C∗(G). Fix ε > 0, and let
a′ ∈ CG satisfy ‖a′ − a‖ < ε. We can assume without loss of generality that
â′(1) = 0. Observe that α∗ is a contraction. Since α is pure, there is some m′

such that for all m ≥ m′, α∗m(a′) = 0 (since all its Fourier coefficients vanish).
Therefore, for all m ≥ m′, ‖α∗m(a)‖ < ε, which is what we wanted to show. �
Corollary 2.5. For all a ∈ C∗(G), α∗n(a) → â(1)1 in norm.

Proof of Theorem 2.3. Suppose J 
 F . We know that

J =
∞⋃

n=0

J ∩ Fn

where we think of Fn as being inside F (the connecting maps are injective). Denote
Jn = J ∩ Fn. Notice that ι(Jn) ⊆ Jn+1, and that Jn

∼= J0 ⊗ K(l2(α(G)\G))⊗n.
By the observation before the lemma, this implies that if a ∈ J0 then α∗(a) ∈ J0

as well.
Suppose J0 �= 0. Let a ∈ J0 be a nonzero positive element. Since tr is faithful,

â(1) = tr(a) > 0. By Corollary 2.5, since J0 is closed, we see that 1 ∈ J0, so J0 is
trivial, and hence Jn are trivial for all n, hence J is trivial, hence F is simple. �
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Examples.
1. Take G = Z, and α to be multiplication by a positive integer N > 1. We

identify δn with the function zn (where z denotes both the complex variable
and the inclusion map T → C). We pick R1 = {0, 1, 2, . . . , N − 1}, and we
identify K(l2(Z/NZ)) with MN , where we label the columns 0, 1, 2, . . . , N −1.

By the above remark, in order to see what the map ι looks like, it is enough
to look at the map from F0

∼= C(T) to F1
∼= MN (C(T)).

The only triples in F0 are of the form (0, n, 0)0 so we simply write them
as zn, and we write (−a, n, b)1, a, b ∈ {0, 1, . . . , N − 1} as znea,b, where ea,b

is the standard matrix unit (the matrix whose entry in the a-th row and b-th
column is 1, and is zero everywhere else).

Since C(T) is generated by z, it suffices to see to where z maps. Translating
the above formula to additive notation and to our special case, and replacing
q by −q for convenience, we see that z maps to

∑N−1
q=0 zpeq,s where p,s are

given by the equation Np + s = q + 1. It is easy to solve this equation: we
have p = 0, s = q + 1 except for the last term, in which case we have p = 1,
s = 0.

Writing this in matrix form, we get

z �→

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 . . . 0 0
0 0 1 0 . . . 0 0
0 0 0 1 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . 1 0
0 0 0 0 . . . 0 1
z 0 0 0 . . . 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

This is the same map which appears in the construction of the Bunce-
Deddens algebras, so F is isomporphic to the Bunce-Deddens algebra corre-
sponding to the supernatural number N∞.

2. Fix a finite group H, let G = H × H × H × . . . (the algebraic sum, so each
element has only finitely many nontrivial terms), and let α be the left shift
α(a1, a2, a3, . . . ) = (1, a1, a2, a3, . . . ). We pick R1 to be H × 1 × 1 × . . . ,
which we identify with H in the obvious way. As in the previous example,
it is enough to understand the map F0 → F1. We denote the images of G

in F0 = C∗(G) by δa,�b, with a ∈ H and �b denoting the tail. The formula
yields in this case: δa,�b �→ δ�b

∑
q∈H eq,qa, i.e., the image is δ�b tensored by

the permutation matrix coming from the image of a under the right regular
representation of H (notice that we write δzex,y = (x−1, z, y), x, y ∈ H).

Since a,�b has only finitely many nonzero entries, after sufficiently many
applications of ι to this, we will have a zero-one matrix. ι applied to a
scalar matrix simply embeds it in the standard multiplicity |H| embedding
into the higher matrix algebra. Therefore, the image of each element of the
dense subalgebra CG⊗K(l2(α(G)\G))⊗n ⊆ Fn in F is the same as an image
of a scalar matrix in some higher Fm. Therefore, the images of the scalar
matrices are dense in F , so F =

⋃∞
k=0 M|H|k , with the appropriate inclusion,

and therefore F is isomorphic to the UHF algebra with supernatural number
|H|∞.
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3. Let G = Z2 ∗ Z2 =
〈
a, b | a2 = b2 = 1

〉
, and let α : G → G be given by

α(a) = aba, α(b) = bab. It is easily verified that [G : α(G)] = 3, and
R1 = R−1

1 = {1, a, b} is a list of both left and right coset representatives.
Notice that α(G) is not normal in G in this case. It is known ([B] 6.10.4)
that K0(C∗(G)) ∼= Z3, and K1(C∗(G)) = 0, and that if we denote Pa =
(1 + δa)/2, Pb = (1 + δb)/2, then [1],[Pa],[Pb] generate K0(C∗(G)) as a free
abelian group. Identifying F1 with M3(C∗(G)), and making the first row in
the matrix correspond to 1 ∈ R1, the second to a ∈ R1 and the third to
b ∈ R1, we see that

ι(1) =

⎛⎝ 1 0 0
0 1 0
0 0 1

⎞⎠ ι(δa) =

⎛⎝ 0 1 0
1 0 0
0 0 δb

⎞⎠ ι(δb) =

⎛⎝ 0 0 1
0 δa 0
1 0 0

⎞⎠ .

so

ι(Pa) =

⎛⎜⎝
1
2

1
2 0

1
2

1
2 0

0 0 Pb

⎞⎟⎠ ι(Pb) =

⎛⎝ 1
2 0 1

2

0 Pa 0
1
2 0 1

2

⎞⎠
and therefore the induced map on K0 is given by

ι∗([1]) = 3 · [1] ι∗([Pa]) = [1] + [Pb] ι∗([Pb]) = [1] + [Pa]

which in matrix form is given by⎛⎝ 3 1 1
0 0 1
0 1 0

⎞⎠ .

K0(F) is the inductive limit of the inductive system given by Z3 → Z3 →
Z3 → · · · , where the maps are given by this matrix. This group is isomorphic
to Z

[
1
3

] ⊕ Z ⊕ Z.

2.1. An abelian subalgebra. Let An = span{(x−1, 1, x)n|x ∈ Rn} ⊆ Fn. An is
an abelian finite dimensional algebra (of dimension |Rn|). Notice that if we identify
Fn with C∗(G) ⊗ Mm (where m = |Rn| = [G : αn(G)]), then An is identified
with C1 ⊗ Diag, Diag being the diagonal subalgebra of Mm. Let Δ denote the
standard faithful expectation map Mm → Diag, and let EAn : Fn → An be the
map given by EAn

= tr(·)1 ⊗ Δ, then EAn
is a faithful expectation. Notice that

An ⊆ An+1 and furthermore, the EAn ’s are consistent with the inclusion maps, i.e.,
EAn+1ι = ι�AnEAn . Therefore, this consistent system of faithful expectation maps
passes on to the direct limit, and so we obtain a faithful expectation EA : F → A,
where A is the direct limit of the An’s.

Â, the Gelfand spectrum of A, is homeomorphic to the Cantor set. It can be
thought of as a product of a countable number of copies of R1 with the Tychonof
topology, where there Gelfand transform of (x−1, 1, x)n, where

x = αn−1(rn−1)αn−2(rn−2) · · ·α(r1)r0,

r0, . . . , rn−1 ∈ R1, is the characteristic function of the basic cylindrical clopen set
{r0} × {r1} × · · · × {rn−1} × R1 × R1 × · · · .

For any a ∈ A, and any x ∈ G, we have δxaδx−1 ∈ A. Denote this left action
by β: βx(a) = δxaδx−1 . That gives rise to an action of G on Â. Let us describe
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this action. Notice that G acts on R1, where r · x = r′ for the unique r′ ∈ R1 such
that rx ∈ Gr′. Similarly, we have an action on R2, and the action on R1 is the
quotient action (because of the way we constructed R2), and so on. Â ∼= lim←Rn,
so the consistency gives us an action on Â, which is the dual of the action on A. If
ω = (r0, r1, . . . ) ∈ Â (when we identify it with R1×R1×· · · ), then the stabilizer of
ω is the decreasing intersection of the stabilizers of ωn = (r0, . . . , rn) ∈ Rn+1. Write
xn = αn(rn) · · ·α(r1)r0, then the stabilizer of ωn is x−1

n αn+1(G)xn. Therefore the
stabilizer of ω is

⋂∞
n=0 x−1

n αn+1(G)xn.

Lemma 2.6. F ∼= A×β G.

Proof. Any element of the form δxPnδy can be written in the form δt−1Pnδtδz,
for some t ∈ Rn. If we take two such elements, δt−1Pnδtδz, δs−1Pnδsδw, then
their product satisfies δt−1Pnδtδzδs−1Pnδsδw = δt−1Pnδt(δzδs−1Pnδsδz−1)δzδw =
δt−1Pnδtβz(δs−1Pnδs)δzw where β denotes the action of G on A.

So, span{aδx | a ∈ A , x ∈ G} is a dense subalgebra of F , which is isomorphic
to the twisted convolution algebra used in the definition of the crossed product.
Therefore, F is a quotient of the crossed product A ×β G. Let ϕ : A ×β G → F
denote this quotient map. It is clear that EA ◦ ϕ coincides with the canonical
expectation A×β G → A, and therefore kerϕ = 0, which is what we wanted. �

Remark 2.7. When the endomorphism is the multiplication by n map on the
integers, the action of Z on the Cantor set we obtain is the odometer action (with
n digits). This gives us another way to see that the Bunce-Deddens algebras can
be obtained as crossed products by the odometer actions (see [Da]).

3. A crossed product representation

Define Φ : F → F by Φ(a) = SaS∗. Φ is a non-unital injective endomorphism
of F . Following the procedure from [C], we repeat Φ and form a direct system
F (0) −→ F (1) −→ F (2) −→ · · · where the F (n) are just copies of F . We denote
the direct limit by �F , and we denote by �Φ the automorphism of �F induced by Φ.
We denote by P the image of 1F(0) in �F .

Let Ẽα = �F×�Φ Z, then Eα
∼= P ẼαP , so Eα and Ẽα are strongly Morita equivalent.

Notice that in ‘triples’ notation, Φ((x, k, y)n) = (α(x), k, α(y))n+1, and therefore
Φ is unitarily equivalent to the multiplicity one embedding of F into the upper
corner of M[G:α(G)](F) ∼= F , and in particular, it induces an isomorphism on K-
theory, so K(F) ∼= K( �F).

The map Φ, thought of as a map on the inductive system · · · → Fn → Fn+1 →
· · · has the effect of shifting the sequence by 1 (and stabilizing by M|Rn|), and so
the action on K∗(F) will be ι−1

∗ (the action of the shift). The Pimsner-Voiculescu
6-term exact sequence for crossed products by the Z now gives us a procedure to
compute K∗(Eα).

Examples. We return to the examples from the previous section.

1. Let us compute K∗(Eα). It can be seen from the inductive limit description
above that in this case, K0(F) ∼= Z

[
1
N

]
, K1(F) ∼= Z. �Φ induces the identity

map on K1, and the multiplication by 1
N map on K0. An application of the
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Pimsner-Voiculescu sequence yields then that

K0(Eα) ∼= Z ⊕ ZN−1, K1(Eα) ∼= Z.

2. Here the algebra Eα we obtain is isomorphic to the Cuntz algebra On, with
n = |H|.

3. The induced action on K0 is given by⎛⎝ 3 1 1
0 0 1
0 1 0

⎞⎠−1

Applying the Pimsner-Voiculescu sequence yields

K0(Eα) ∼= Z ⊕ Z2, K1(Eα) ∼= Z.

Unlike the first two cases, it is not clear at this time whether Eα is simple.

The expectation EF is the restriction of the faithful canonical expectation map
Ẽα −→ �F from the general theory of crossed products, and therefore it is faithful
as well.

Denote E = EA ◦ EF : Eα −→ A. This is also a faithful expectation.

Let π be a nondegenerate representation of Eα. π�A is a representation of A,
and as such is given by a spectral measure Λ on Â. We henceforth view vectors of
the representation space Hπ as sections over Â. Since F is simple, assuming π �= 0,
π must be faithful when restricted to F , and therefore it must be faithful when
restricted to A as well, so we must have supp(Λ) = Â, and therefore

‖π(a)‖ = sup{|â(ω)| | ω ∈ Â}.
We know that S, δx normalize A (i.e., SAS∗ ⊆ A, S∗AS ⊆ A, δxAδ∗x ⊆ A for all

x ∈ G), and therefore the semigroup generated by those elements acts (partially)
on Â. Denote by p · U the action of this semigroup on Â, where p ∈ Â and U is in
the semigroup.

Observation 3.1. Let U be as above, and let ξ ∈ Hπ, then supp(Uξ) ⊆ supp ξ ·U .

Proof. It suffices to verify this for ξ such that supp ξ is a cylindrical subset of Â
of the form B = {r1} × {r2} × · · · × {rn} × R1 × R1 × · · · . For the purpose of
this proof, we freely identify elements of A with functions in C(Â). So, ξ = χBξ.
Notice that U∗U ∈ A. Write f = U∗U ∈ C(Â). So, Uξ = UU∗Uξ = Ufξ =
UfχBξ = UχBfξ = (UχBU∗)Uξ = χB·UUξ, and suppχB·UUξ ⊆ suppχB·U =
B · U = supp ξ · U which is what we wanted. �

For x ∈ G we can associate an element (x0, x1, . . . ) of RN
1 (∼= Â) by requiring

that x ∈ αn+1(G)αn(xn) · · ·α(x1)x0. Clearly this is well defined.

Definition 3.2. We call the above sequence the R-sequence of x, and denote it by
R(x).

This gives us a map R : G −→ Â.

Lemma 3.3. The map R is injective.
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Proof. We must show that if R(x) = R(y), x, y ∈ G, then x = y. R(x) = R(y) is
equivalent to saying that αn(G)x = αn(G)y for all n ∈ N, i.e., xy−1 ∈ αn(G) for
all n, and since α was assumed to be pure, we obtain xy−1 = 1. �
Definition 3.4. We say that the endomorphism α is totally normal if αn(G) is
normal in G for all n.

From now on, we assume that α is totally normal. Notice that this implies
that the action of G on Â is free (from the remarks in the previous section).

We define maps Ψn
k : Rn+k

1 → Rn
1 (for n > k) by taking Ψn

k (x1, . . . , xn+k) to be
the element of Rn

1 corresponding to the coset representative of

x−1
1 α(x−1

2 ) · · ·αn−1(x−1
n )αn−1(xn+k) · · ·α(xk+2)xk+1.

From the normality codition, it follows that Ψn
k is |R1|k–to–1. Furthermore, the

following diagram commutes.

Rn+k+1
1

Ψn+1
k−−−−→ Rn+1

1

π

⏐⏐� ⏐⏐�π

Rn+k
1

Ψn
k−−−−→ Rn

1

where the π’s denote the projections onto the first n+k and n coordinates, respec-
tively.

Therefore those maps form a consistent system, and so we get maps on the
projective limit Ψk : Â → Â.

Let μ be the probability product measure on Â (thought of as RN
1 ), where the

measure on each factor is the one giving all points the same measure
(

1
|R1|

)
. The

canonical maps Â −→ Rm
1 for m ∈ N induce product push-forward probability

measures μm on Rm
1 (assigning the measure 1/|R1|m to each point). The fact that

the maps Ψn
k are |R1|k–to–1 implies that they are measure preserving with those

measures, and therefore the maps Ψk are all measure perserving.

Definition 3.5. We say that a point ω ∈ RN
1
∼= Â is tail intersecting if there is

some nontrivial x ∈ G such that ωx is a tail of ω.

Lemma 3.6. If ω is tail intersecting then there is some k such that Ψk(ω) ∈ R(G)
(i.e., is an R-sequence for some group element).

Proof. Suppose ω = (x1, x2, . . . ), and there is some y ∈ G such that ωy =
(xk, xk+1, . . . ). Then for each n ∈ N, we must have

y ∈ αn(G)x−1
1 α(x−1

2 ) · · ·αn−1(x−1
n )αn−1(xn+k) · · ·α(xk+2)xk+1,

and therefore, we must have Ψk(ω) = R(y). �
Corollary 3.7. {ω | ω is not tail intersecting} is dense in RN

1 .

Proof. Since R(G) is countable, and the measure μ is nonatomic, it has μ-measure
0. Since the Ψk are measure preserving, we see that μ(

⋃
k Ψ−1

k (R(G))) = 0, and
therefore its complement, which contains the set in which we’re interested, has full
measure, and in particular is dense. �
Lemma 3.8. For all a ∈ Eα, ‖π(a)‖ ≥ ‖π(E(a))‖.
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Before proving the lemma, we state and prove its main consequence.

Theorem 3.9. If G is amenable and α is pure and totally normal then Eα is simple.

Proof of Theorem 3.9 (assuming Lemma 3.8). Let π be a representation of Eα,
and let a ∈ ker(π) be a positive element, then E(a) �= 0, since E is faithful. By the
lemma, E(a) ∈ ker(π), so ker(π) ∩ F �= 0, and therefore ker(π) ⊇ F , so 1 ∈ ker(π),
so π = 0. So any nonzero representation of Eα must be faithful, i.e., Eα is simple. �

Proof of Lemma 3.8. By the remarks preceeding the lemma, it suffices to show
that ‖π(a)‖ ≥ |Ê(a)(ω)| for a dense collection of ω ∈ Â. It also suffices to verify
it for a dense collection of a ∈ Eα. So we assume that a is taken from the *-
algebra generated by S and the δx, x ∈ G. Each such element is in the span of
the semigroup from above. Notice that if ω is not tail intersecting then the only
semigroup elements that fix it are the idempotents which have it in their domain.
We pick ω to be in this dense set.

We can decompose the representation space Hπ into a direct sum Hπ = L2(Â, ν)⊕
H ′, where supp(ν) = Â, and A acts on L2(Â, ν) by multiplication (by the Gelfand
transform). We also assume, without loss of generality, that ν(Â) = 1. Suppose ω
corresponds to the sequence r1, r2, r3, . . . . Denote Bn = {r1}× {r2}× · · · × {rn}×
R1 ×R1 × · · · , let ξ′n be the vector χBn

⊕ 0, and let ξn = ξ′
n

‖ξ′
n‖ . Denote ξ0 = χÂ⊕ 0

(and notice that ‖ξ0‖ = 1), so ξ′n = π(χBn)ξ0.
For any a ∈ A, we have

â(ω) = lim
n→∞ 〈π(a)ξn, ξn〉 = lim

n→∞
1

‖ξn‖2
〈π(χBnaχBn)ξ0, ξ0〉

If U in the semigroup is not a projection, then because of our choice of ω, for
sufficiently large n, Bn ∩ (Bn · U) = ∅, so χBnUχBn = 0. Also, notice that the
intersection of the semigroup with A is exactly the projections. Therefore, for an
element a in this dense subalgebra and for such an ω, for all sufficiently large n we
have 〈π(χBnaχBn)ξ0, ξ0〉 = 〈π(χBnE(a)χBn)ξ0, ξ0〉. So,

‖π(a)‖ ≥ | 〈π(a)ξn, ξn〉 | = | 〈π(E(a))ξn, ξn〉 | → |Ê(a)(ω)|
which is what we wanted. �

Remark 3.10. A groupoid approach could have been used in this case. We repre-
sented the γ-invariant subalgebra as a crossed product with an action of a discrete
group on a compact Hausdorff set, and therefore it can be viewed as the groupoid
algebra of the associated transformation groupoid. We could then present Eα as the
groupoid algebra of a groupoid which is the restriction of the semi-direct product
groupoid of the above transformation groupoid by an action of the integers (cf. [R]).
Equivalently, we could view this groupoid as a certain restriction of the universal
groupoid associated to the inverse semigroup generated by G and S (cf. [Pa]). In
this language, we showed that under our conditions, the groupoid thus obtained is
essentially principal ([R]) with no invariant sets in the unit space. The proof of the
last lemma is essentially that of [R], with the simplifications that arise from the
fact that our situation is less general.
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