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Groups Acting on Products of Trees,
Tiling Systems and Analytic K-Theory

Jason S. Kimberley and Guyan Robertson

Abstract. Let T1 and T2 be homogeneous trees of even degree ≥ 4. A BM
group Γ is a torsion-free discrete subgroup of Aut(T1) × Aut(T2) which acts
freely and transitively on the vertex set of T1 × T2. This article studies dy-
namical systems associated with BM groups. A higher rank Cuntz-Krieger
algebra A(Γ) is associated both with a 2-dimensional tiling system and with
a boundary action of a BM group Γ. An explicit expression is given for the
K-theory of A(Γ). In particular K0 = K1. A complete enumeration of possible
BM groups Γ is given for a product homogeneous trees of degree 4, and the
K-groups are computed.
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1. Introduction

The structure of a group which acts freely and cocompactly on a tree is well
understood. Any such a group is a finitely generated free group. By way of contrast,
a group which acts in a similar manner on a product of trees can have remarkably
subtle properties. For example, M. Burger and S. Mozes [BM1, BM2] have proved
rigidity and arithmeticity results analogous to the theorems of Margulis for lattices
in semisimple Lie groups.
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This article will consider a discrete subgroup Γ of Aut(T1)×Aut(T2) where T1,
T2 are homogeneous trees of finite degree. In addition, we require that Γ is torsion-
free and acts freely and transitively on the vertex set of T1 × T2. For simplicity,
refer to such a group as a BM group. BM groups were used in [BM1] to exhibit the
first known examples of finitely presented, torsion-free, simple groups.
A product of two trees may be regarded as the 1-skeleton of an affine building

whose 2-cells are euclidean squares. A BM group Γ acting freely and transitively
on the vertex set of T1 × T2 defines a 2-dimensional tiling system. Associated to
this tiling system there is a C∗-algebra A, which is called a rank-2 Cuntz-Krieger
algebra in [RS1]. This algebra is isomorphic to a crossed product C∗-algebra A(Γ)
arising from a boundary action of Γ. It follows from the results of [RS1] that A(Γ)
is purely infinite, simple, unital and nuclear, and is therefore itself classified by its
K-theory. This provides the motivation for us to examine the K-theory of these
examples in some detail. In Theorem 5.3 we obtain an explicit expression for the K-
theory of A(Γ) analogous to that of [RS2] for algebras associated with Ã2 buildings.
In particular K0 = K1 for this algebra. In Proposition 5.4, the class of the identity
in K0 is shown to be a torsion element.
In Section 6, these issues are examined for several explicit groups. In Section 7

a complete list is given of all BM groups acting on T1 ×T2, where T1, T2 are homo-
geneous trees of degree four. The abelianizations and K-groups are also computed.
After this article was submitted, we became aware of the work of Diego Rattaggi

[Rat], which undertakes a detailed analysis of BM groups, including extensive com-
putations with explicit presentations. We are grateful to him for several helpful
comments on this article.

2. Products of trees and their automorphisms

Given a homogeneous tree T , there is a type map τ defined on the vertices of T
and taking values in Z/2Z. To see this, fix a vertex v0 ∈ T and define

τ(v) = d(v0, v) (mod 2),

where d(u, v) denotes the usual graph distance between vertices of the tree. The
type map partitions the set of vertices into two classes so that two vertices are in
the same class if and only if the distance between them is even. Thus the type map
is independent of v0, up to addition of 1 (mod 2). Since any automorphism of the
tree preserves distances between vertices this observation proves

Lemma 2.1. For each automorphism g of T there exists i ∈ Z/2Z such that, for
every vertex v, τ(gv) = τ(v) + i

Suppose that ∆ is the 2 dimensional cell complex associated with a product
T1 × T2 of homogeneous trees. Then ∆ is an affine building of type Ã1 × Ã1 in
a natural way [R]. Write u = (u1, u2) for a generic vertex of ∆. There is a type
map τ on the vertices of ∆ where

τ(v) = (τ(v1), τ(v2)) ∈ Z/2Z × Z/2Z.

We say that an automorphism g of ∆ is type-rotating if there exists (i1, i2) ∈
Z/2Z × Z/2Z such that, for each vertex v,

τ(gv) = (τ(v1) + i1, τ(v2) + i2).
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The chambers of ∆ are geometric squares and each chamber has exactly one vertex
of each type. We denote by Auttr(∆) the group of type-rotating automorphisms of
∆.

Lemma 2.2. An automorphism g of ∆ is type-rotating if and only if it is a Carte-
sian product of automorphisms of the two trees.

Proof. If we have

g(u1, u2) = (g1u1, g2u2)

for automorphisms gi of Ti then it follows from Lemma 2.1 that g is type-rotating.
Conversely suppose that g is type-rotating. Let (u1, u2) and (u1, u

′
2) be neighbour-

ing vertices in ∆. Then g(u1, u2) = (x1, x2) and g(u1, u
′
2) = (x

′
1, x

′
2) are neighbour-

ing vertices in ∆ and the type-rotating assumption on g means that τ(x1) = τ(x′
1).

Since neighbouring vertices in T1 have distinct types we must have x1 = x′
1. By

induction on d(u2, u
′
2), we see that the first coordinate of g(u1, u2) is independent

of u2 ∈ T2. Similarly, the second coordinate of g(u1, u2) is independent of u1 ∈ T1.
Thus there exist maps g1 of T1 and g2 of T2 such that g(u1, u2) = (g1u1, g2u2).
Since g is an automorphism of ∆ it follows that each gi is an automorphism of Ti.
Thus g = g1 × g2 for some automorphisms gi of Ti. �

Corollary 2.3. Auttr(∆) = Aut(T1)×Aut(T2).

An apartment in ∆ is a subcomplex isomorphic to the plane tessellated by
squares. See [R, p. 184] for some comments on this and alternative ways of looking
at apartments. Denote by V the vertex set of ∆. Any two vertices u, v ∈ V be-
long to a common apartment. The convex hull, in the sense of buildings, between
two vertices u and v is the subset of an apartment containing u and v depicted in
Figure 1. The convex hull of u and v is contained in every apartment of ∆ which

u •

v•

m = 6

n = 3

Figure 1. Convex hull of two vertices.

contains u and v.
Define the distance, d(u, v), between u and v to be the graph theoretic distance

on the one-skeleton of ∆. Any path from u to v of length d(u, v) lies in their convex
hull, and the union of the vertices in such paths is exactly the set of vertices in the
convex hull.
We define the shape σ(u, v) of the ordered pair of vertices (u, v) ∈ V × V to be

the pair (m,n) ∈ N × N as indicated in Figure 1. Note that d(u, v) = m+ n. The
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components of σ(u, v) indicate the relative contributions to d(u, v) from the two
factors. If v = (v1, v2) and w = (w1, w2) are vertices of ∆, the shape from v to w is

σ(v, w) = (d(v1, w1), d(v2, w2))

where d denotes the usual graph-theoretic distance on a tree. An edge in ∆ connects
the vertices v and w if σ(v, w) = (0, 1) or σ(v, w) = (1, 0).

Lemma 2.4. Suppose m1,m2, n1, n2 ∈ N and σ(u,w) = (m1 + m2, n1 + n2) for
vertices u,w ∈ V. Then there is a unique vertex v ∈ V such that

σ(u, v) = (m1, n1) and σ(v, w) = (m2, n2).

Proof. Such a v ∈ V satisfies d(u,w) = d(u, v)+d(v, w) so it must lie in the convex
hull of u and w. Inside the convex hull existence and uniqueness of v are clear. �
It is a direct consequence of the definitions that every type-rotating automor-

phism g ∈ Aut(∆) preserves shape in the sense that σ(gu, gv) = σ(u, v) for
all u, v ∈ V.

3. Groups which act freely and transitively on the vertices
of ∆

Suppose that Γ ≤ Auttr(∆) acts freely and transitively on the vertex set V. Fix
any vertex v0 ∈ V and let

N = {a ∈ Γ ; d(v0, av0) = 1}.
The Cayley graph of Γ constructed via right multiplication with respect to the
set N has Γ itself as its vertex set and has {(c, ca) ; c ∈ Γ, a ∈ N} as its edge set.
There is a natural action of Γ on its Cayley graph via left multiplication. Using the
convention that an undirected edge between vertices u and v in a graph represents
the pair of directed edges (u, v) and (v, u), it is immediate that the Γ-map c 	→ cv0

from Γ to ∆ is an isomorphism between the Cayley graph of Γ and the one-skeleton
of ∆. In this way we identify Γ with the vertex set V of ∆. Connectivity of ∆
implies that N is a generating set for Γ.
It is traditional to label the directed edge (c, ca) with the generator a ∈ N . More

generally, to the pair (c, d) ∈ Γ × Γ we assign the label c−1d. Equivalently, to the
pair (c, cd) we assign the label d ∈ Γ. Suppose this label is written as a product of
generators; d = a1 . . . aj . Then there is a path (c, ca1, ca1a2, . . . , cd) from c to cd
whose successive edges are labelled a1, . . . , aj . The left translate of (c, cd) by b ∈ Γ
is (bc, bcd) and also carries the label d. Conversely, any pair (c′, c′d) which carries
the label d is the left translate by b = c′c−1 of (c, cd). Thus two pairs carry the
same label if and only if one is the left translate of the other.
We define a shape function on Γ by

σ(b) = σ(v0, bv0)

for b ∈ Γ. The pair (c, cb) has label b and its shape, defined via the identification
of the Cayley graph and the one-skeleton of ∆, is

σ(c, cb) = σ(cv0, cbv0) = σ(v0, bv0) = σ(b).

A different choice of v0 leads to a shape function on Γ which differs from the first
by an inner automorphism of Γ.
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Definition 3.1. [RRS] Suppose that the group Γ ≤ Auttr(∆) acts freely and tran-
sitively on V. Then Γ is called an Ã1 × Ã1 group.

Consider an Ã1 × Ã1 group Γ. Fix a vertex v0 = (v1, v2) ∈ V and suppose
that g = g1 × g2 ∈ Γ. Recall that

σ(g) = σ(v0, gv0) = (d(v1, g1v1), d(v2, g2v2)) .

Consider the generating set

N = {g ∈ Γ ; d(v0, gv0) = 1}
of Γ. Let

A = {a ∈ Γ ; σ(a) = (1, 0)} and B = {b ∈ Γ ; σ(b) = (0, 1)}.(3.1)

Lemma 3.2. Each element g ∈ Γ has a unique reduced expression of the form
g = a1 . . . amb1 . . . bn

and of the form

g = b′1 . . . b
′
na

′
1 . . . a

′
m

for some ai, a
′
i ∈ A and bi, b

′
i ∈ B. Moreover σ(g) = (m,n).

Proof. This follows immediately from Lemma 2.4. �

In [BM1, Section 1], M. Burger and S. Mozes constructed a class of groups which
act freely and transitively on the vertices of a product of trees. It is convenient to
refer to these groups as BM groups. Our aim now is to show that the class of BM
groups coincides with the class of torsion-free Ã1 × Ã1 groups.

Definition 3.3. [BM1, Section 1] A BM group is defined as follows. Choose sets
A,B, with |A| = m, |B| = n where m,n ≥ 4 are even integers. Choose fixed
point free involutions a 	→ a−1, b 	→ b−1 on A,B respectively and a subset R ⊂
A×B ×B ×A with the following properties:
(i) If (a, b, b′, a′) ∈ R then each of (a−1, b′, b, a′−1), (a′−1

, b′−1
, b−1, a−1), and

(a′, b−1, b′−1
, a) belong to R.

(ii) All four 4-tuples in (i) are distinct. Equivalently (a, b, b−1, a−1) /∈ R for
a ∈ A, b ∈ B.

(iii) Each of the four projections of R to a subproduct of the form A×B or B×A
is bijective. Equivalently at least one such projection is bijective.

A BM square is defined to be a set of four distinct tuples as in (ii), that is four
element subsets of A×B ×B ×A of the form

{(a, b, b′, a′), (a−1, b′, b, a′−1), (a′−1
, b′−1

, b−1, a−1), (a′, b−1, b′−1
, a)}.

If (a, b, b′, a′) ∈ R then write ab�b′a′.
A BM group Γ has presentation

Γ = 〈A ∪B ; ab = b′a′ whenever ab�b′a′〉(3.2)

In a subsequent article [BM2], a set of objects (A,B, a 	→ a−1, b 	→ b−1,R)
satisfying the above conditions is called a VH-datum.
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b′ b

a

a′
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................

Figure 2. A geometric square.

Theorem 3.4. A group Γ is a BM group if and only if it is a torsion-free Ã1 × Ã1

group.

Proof. Suppose that Γ is a torsion-free Ã1 × Ã1 group with generating set N =
A ∪ B, where A and B are described by equations (3.1). The map c 	→ c−1 on
N is fixed point free since Γ is torsion-free. Define R to be the set of 4-tuples
(a, b, b′, a′) ∈ A × B × B × A such that ab = b′a′. Condition (i) for a BM group
is clearly satisfied. To verify Condition (ii) note that if (a, b, b−1, a−1) ∈ R then
(ab)2 = 1, contradicting the assumption that Γ is torsion-free. Condition (iii)
follows immediately from Lemma 3.2.
We now prove the converse. Given a BM group Γ we may construct as in [BM1]

a cell complex Y whose fundamental group is Γ. The complex Y has one vertex v
and the cells are geometric squares as in Figure 2. There are |A||B|/4 such cells
whose four edges form a bouquet of four loops meeting at v. The boundary labels
of the directed edges are elements of A ∪ B and edges with the same label are
identified in the complex. Definition 3.3(ii) says that none of the cells of Y is a
projective plane.
By definition, the link of the vertex v in Y is the graph Lk(v,Y) whose vertices

are in 1-1 correspondence with the half-edges incident with v and whose edges are
in 1-1 correspondence with the corners incident at v. In our setup the link Lk(v,Y)
is a complete bipartite graph with vertex set A ∪ B and an edge between each
element of A and each element of B. Intuitively, completeness of this bipartite
graph means that there are no “missing corners”. It follows from [BW, Theorem
10.2] that the universal cover of Y is a product of homogeneous trees ∆ = T1 × T2,
where T1 has valency |A| and T2 has valency |B|. (In the terminology of [BW], Y
is said to be a complete VH complex.) Elements of Γ correspond to edge paths
in Y. By [BW, Lemma 4.3] each g ∈ Γ can be expressed uniquely in each of the
normal forms g = a1 . . . amb1 . . . bn = b′1 . . . b

′
na

′
1 . . . a

′
m, for some ai, a

′
i ∈ A and

bi, b
′
i ∈ B. The 1-skeleton of the universal covering space T1 × T2 may therefore

be identified with the Cayley graph of Γ with respect to the generating set A ∪B.
Thus Γ ⊂ Auttr(∆) = AutT1 ×AutT2, and Y = Γ\∆.
Let Γ be a BM group with presentation (3.2). In view of the preceding discussion

we need only show that Γ is torsion-free. The argument for this is well known [Br,
VI.5, p. 161, Theorem], and it was shown to us by Donald Cartwright, in the context
of Ã2 groups. Suppose that 1 �= x ∈ Γ with xn = 1 for some integer n > 0. Let
C(x) denote the cyclic group generated by x. Fix a vertex v0 of the 1 skeleton
of ∆ = T1 × T2. Then Γv0 is the set of vertices of ∆. Now the set C(x)v0 is a
bounded C(x)-stable subset of ∆. Since the complete metric space ∆ satisfies the



Groups Acting on Products of Trees 117

negative curvature condition of [Br, VI.3b], it follows from the Bruhat-Tits Fixed
Point Theorem that there is a C(x)-fixed point p ∈ ∆. Since the action of Γ is free
on the vertices of ∆, p cannot be a vertex. Thus p lies in the interior of an edge
E or a square S in ∆, and either E or S is invariant under C(x). By considering
g−1xg for suitable g ∈ Γ, we may suppose that one vertex of E (respectively S) is
v0.

Case 1. E is invariant under C(x). It follows that E has endpoints v0,xv0 and
that x ∈ A ∪ B satisfies x2 = 1, contradicting the definition of a BM group. We
therefore reduce to:

Case 2. S is invariant under C(x), where S is the square illustrated in Figure 3.
Then xv0 �= v0 (since the action is free) and so xv0 is one of the other three vertices
of S. Thus x = a or x = b′ or x = ab, where a ∈ A,b, b′ ∈ B. If x = a then
xav0 = a2v0 is a vertex of S, which is impossible. Similarly x �= b′. Thus x = ab.
Again x2v0 = ababv0 is a vertex of S. According to Lemma 3.2, the only way this
can happen is if abab = 1. However this contradicts Condition (ii) in Definition 3.3.
This completes the proof of Theorem 3.4. �

b′ b

a

a′
•

•

•

• av0

b′v0

v0

abv0

Figure 3. The square S.

Remark 3.5. The fact that BM groups are torsion-free is an immediate conse-
quence of [BH, Theorem 4.13(2) p. 201]. That much more general result applies to
fundamental groups of spaces of non-positive curvature. They are always torsion-
free.

4. A 2-dimensional subshift associated with a BM group

Identify elements of Γ with vertices of ∆. The set R may be identified with
the set of Γ-equivalence classes of oriented basepointed squares (chambers) in ∆.
We refer to such an equivalence class of squares as a tile. We now construct a
2-dimensional shift system associated with Γ.
The transition matrices are defined as follows. If r = (a, b, b′, a′), s = (c, d, d′, c′) ∈

R then define horizontal and vertical transition matrices M1,M2 as indicated in
Figure 4: that is Mj(s, r) = 1 if r and s represent the labels of tiles in ∆ which lie
as shown in Figure 4, and Mj(s, r) = 0 otherwise. The mn×mn matrices M1,M2

are nonzero {0, 1}-matrices .
It follows thatM1(s, r) = 1 if and only if b = d′ and c �= a−1. (The condition c′ �=

a′−1 is redundant, because two adjacent sides of a square uniquely determine it.)
See Figure 5. It follows that each row or column of M1 has precisely m−1 nonzero
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M1(s, r) = 1 M2(s, r) = 1

r s r

s

Figure 4. Definition of the transition matrices.

entries. A diagram similar to Figure 5 applies to vertical transition matrices, with
the result that each row or column of M2 has precisely n− 1 nonzero entries.

r s

a c

a′ c′

b db′ d′

Figure 5. Definition M1.

We now use R as an alphabet andM1,M2 as transition matrices to build up two
dimensional words as in [RS1]. Let [m,n] denote {m,m+ 1, . . . , n}, where m ≤ n
are integers. If m,n ∈ Z2, say that m ≤ n if mj ≤ nj for j = 1, 2, and when m ≤ n,
let [m,n] = [m1, n1]× [m2, n2]. In Z2, let 0 denote the zero vector and let ej denote
the jth standard unit basis vector. If m ∈ Z2

+ = {m ∈ Z2; m ≥ 0}, let
Wm = {w : [0,m]→ R; Mj(w(l + ej), w(l)) = 1 whenever l, l + ej ∈ [0,m]}

and call the elements of Wm words. Let W =
⋃
m∈Z

2
+
Wm. We say that a word

w ∈ Wm has shape σ(w) = m, and we identify W0 with R in the natural way via
the map w 	→ w(0). Define the initial and final maps o :Wm → R and t :Wm → R
by o(w) = w(0) and t(w) = w(m). In order to apply the theory of [RS1] we need
to show that the matrices M1, M2 satisfy the following conditions:
(H0) Each Mi is a nonzero {0, 1}-matrix .
(H1a) M1M2 =M2M1.
(H1b) M1M2 is a {0, 1}-matrix .
(H2) The directed graph with vertices r ∈ R and directed edges (r, s) whenever

Mi(s, r) = 1 for some i, is irreducible.
(H3) For any nonzero p ∈ Z2, there exists a word w ∈ W which is not p-periodic,

i.e., there exists l so that w(l) and w(l + p) are both defined but not equal.

Lemma 4.1. The matrices M1, M2 satisfy Conditions (H0), (H1a), (H1b) and
(H3).

Proof. (H0): By definition M1 and M2 are {0, 1}-matrices and they are clearly
nonzero.
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(H1a,b): Consider the configuration of Figure 6 consisting of chambers lying in some
apartment of the building. Given the tiles ro, r1, and r, there is exactly one tile r2
which completes the picture. Therefore if (M2M1)(r, ro) > 0 then (M1M2)(r, ro) =
1. Likewise, if (M1M2)(r, ro) > 0, then (M2M1)(r, ro) = 1. Conditions (H1a)
and (H1b) follow.

ro r1

r2 r

Figure 6. A word of shape (1, 1).

(H3): Fix any nonzero p ∈ Z2. Choose m ∈ Z2
+ large enough that the rectangle

[0,m] contains a point l and its p-translate l+ p. We can construct w ∈ Wm which
is not p-periodic, as follows.
Let w(l) ∈ R be chosen arbitrarily. Now for j = 1, 2 there are at least two

choices of r ∈ R such that Mj(r, w(l)) = 1 (respectively Mj(w(l), r) = 1). Thus
one can begin to extend the domain of definition of w in any one of four directions
so that there are at least two choices of w(l ± ej), j = 1, 2. By induction, one can
extend w in many ways to an element of Wm, at each step choosing a particular
direction for the extension. In order to do this, first choose arbitrarily a shortest
path from l to l + p, and then extend step by step along the path. It is important
to note that at each step, w extends uniquely to be defined on a complete rectangle
in Z2, as illustrated in Figure 7. In that Figure, we assume that w is defined on
the rectangle [l,m], and then define w(m + e2) = r, where M2(r, w(m)) = 1. By
Conditions (H1a) and (H1b), there is a unique choice of w(m − e1 + e2) which is
compatible with the values of w(m + e2) and w(m − e1). Continue the process
inductively until w is defined uniquely on the whole rectangle [l,m+ e2].

[l,m]

m

l

m+e2

m−e1

m−e1+e2

•

•

•

•

•

Figure 7. w(m+ e2) determines w on the rectangle [l,m+ e2].

Figure 8 illustrates how w is defined on [l, l + p] (where p = (5, 3)), by moving
along a certain path from l to l + p. The values of w on this path are given by a
sequence of tiles. The values of w up to a certain point on the path determine the
values on a rectangle which contains the corresponding initial segment of the path.
At the end of the process, the values of w on the path have completely determined
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the values on [l, l + p]. The final extension from [l, l + p] to the complete rectangle
[0,m] is done similarly.

w(l)

w(p)

Figure 8. Definition of w on the rectangle [l, l + p].

At each step, there are at least two different choices for the extension in any
direction for which w is not already defined. In particular, one can ensure that
w(l + p) �= w(l). Therefore w is not p-periodic. �
Lemma 4.2. Consider the directed graph which has a vertex for each r ∈ R and a
directed edge from r to s for each i such that Mi(s, r) = 1. This graph is irreducible.
i.e., Condition (H2) holds.

Proof. Given ro, rt ∈ R we need to find a directed path starting at ro and ending
at rt.
There are m− 1 letters r1 ∈ R such that M1(r1, ro) = 1. For each such r1 there

are n − 1 letters r ∈ R such that M2(r, r1) = 1. Since M2M1 is a {0, 1}-matrix
(equivalently the paths ro → r1 → r are distinct) it follows that the set

S+(ro) = {r ∈ R ; w(0, 0) = ro and w(1, 1) = r for some w ∈ W(1,1)}
contains (m− 1)(n− 1) elements. See Figure 6. Similarly the set

S−(rt) = {r ∈ R ; w(0, 0) = r and w(1, 1) = rt for some w ∈ W(1,1)}
contains (m − 1)(n − 1) elements. Since m,n ≥ 4, we have |R| = mn < 2(m −
1)(n− 1) and so there exists r ∈ S+(ro)∩S−(rt). It follows that there is a directed
path from ro (to r) to rt, as required. �
Associated with the 2-dimensional shift system constructed above there is a

finitely generated abelian group defined as follows. The block mn × 2mn ma-
trix (I − M1, I − M2) defines a homomorphism ZR ⊕ ZR → ZR. Define C =
coker (I−M1, I−M2) . Thus C can be defined as an abelian group, in terms of gener-
ators and relations:

C = C(Γ) =

〈
r ∈ R; r =

∑
s

Mj(s, r)s, j = 1, 2

〉
.

As we shall see, this group plays an important role in classifying the C∗-algebra
A(Γ) which is studied in the next section. The next observation will be needed
there.

Lemma 4.3. There exists a permutation matrix P : ZR → ZR such that P 2 = I
and

PMjP =M t
j , j = 1, 2.

In particular coker (I−M1, I−M2) = coker (I−Mt
1, I−Mt

2) .
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Proof. Define p : R → R by p((a, b, b′, a′)) = (a′−1
, b′−1

, b−1, a−1). (This cor-
responds to a rotation of the square in Figure 2 through the angle π.) Then
Mj(s, r) = 1 if and only if Mj(p(r), p(s)) = 1. That is Mj(s, r) = Mj(p(r), p(s)).
Let P : ZR → ZR be the corresponding permutation matrix defined by Pep(r) = er,
where {er ; r ∈ R} is the standard basis of ZR. �

5. The boundary action

A sector in ∆ is a π2 -angled sector in some apartment. Two sectors are equivalent
(or parallel) if their intersection contains a sector. See Figure 9, where the equiva-
lent sectors with base vertices x, x′ do not necessarily lie in a common apartment,
but the shaded subsector is contained in them both.

x

x′

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Figure 9. Equivalent sectors containing a common subsector.

The boundary Ω of ∆ is defined to be the set of equivalence classes of sectors
in ∆. Fix a vertex x. For any ω ∈ Ω there is a unique sector [x, ω) in the class ω
having base vertex x, as illustrated in Figure 10 [R, Theorem 9.6].

•x

[x, ω)

Figure 10. A representative sector [x, ω).

Ω is a totally disconnected compact Hausdorff space with a basis for the topology
given by sets of the form

Ω(v) = {ω ∈ Ω : [x, ω) contains v}
where v is any fixed vertex of ∆. It is easy to see that Ω is (non canonically)
homeomorphic to ∂T1 × ∂T2.
Recall from Section 4 that the alphabet R is identified with the set of Γ-

equivalence classes of basepointed chambers in ∆. We refer to such an equivalence
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class as a tile. Each tile has a unique representative labelled square based at a fixed
vertex of ∆, where each edge label is a generator of Γ.
For each vertex y ∈ ∆ the convex hull conv(x, y) is a rectangle R in some apart-

ment. Associated with the rectangle R there is therefore a unique word w ∈ W
defined by the labellings of the constituent squares of R. Conversely, by construc-
tion of the BM group, every word w ∈ W arises in this way. There is thus a natural
bijection between the set of rectangles R in ∆ based at x and the set of words
w ∈ W . Denote by f(w) the basepointed final chamber (square) in the rectangle
R. Thus f(w) has edge labelling corresponding to t(w) ∈ R. The square f(w) is
oriented, with basepoint chosen to be the vertex closest to the origin x. It is worth
recalling that the terminology has been set up so that R = W(0,0). That is, tiles
are words of shape (0, 0).
If w ∈ W , denote by Ω(w) the set of all ω ∈ Ω such that the sector [x, ω) contains

the rectangle in ∆ based at x, corresponding to the word w. Denote by 1Ω(w) the
indicator function of this set. It is clear from the definition of the topology on Ω
that 1Ω(w) ∈ C(Ω).

y

x

[x, ω)

f(w)

Figure 11. The rectangle R = conv(x, y) associated to a word
w ∈ W(4,1), and the sector [x, ω) representing a boundary point
ω ∈ Ω(w).

The group Γ acts on Ω and hence on C(Ω) via γ 	→ αγ , where αγf(ω) = f(γ−1ω),
for f ∈ C(Ω), γ ∈ Γ. The algebraic crossed product relative to this action is the ∗-
algebra k(Γ, C(Ω)) of functions φ : Γ→ C(Ω) of finite support, with multiplication
and involution given by

φ ∗ ψ(γ0) =
∑
γ∈Γ

φ(γ)αγ(ψ(γ−1γ0)) and φ∗(γ) = αγ(φ(γ−1)∗).

The full crossed product algebra C(Ω) � Γ is the completion of the algebraic
crossed product in an appropriate norm. There is a natural embedding of C(Ω)
into C(Ω)�Γ which maps f ∈ C(Ω) to the function taking the value f at the identity
of Γ and 0 elsewhere. The identity element 1 of C(Ω) � Γ is then identified with
the constant function 1(ω) = 1, ω ∈ Ω. There is a natural unitary representation
π : Γ→ C(Ω)�Γ, where π(γ) is the function taking the value 1 at γ and 0 otherwise.
It is convenient to denote π(γ) simply by γ. Thus a typical element of the dense
∗-algebra k(Γ, C(Ω)) can be written as a finite sum

∑
γ fγγ, where fγ ∈ C(Ω),
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γ ∈ Γ. The definition of the multiplication implies the covariance relation
αγ(f) = γfγ−1 for f ∈ C(Ω), γ ∈ Γ.(5.1)

Theorem 5.1. Let A(Γ) = C(Ω) � Γ. Then A(Γ) is isomorphic to the rank-2
Cuntz-Krieger algebra A associated with the alphabet R and transition matrices
M1,M2, as described in [RS1].

The proof of this result is essentially the same as that given in [RS1, Section 7],
in the case of a group of automorphisms of a building of type Ã2.
Here is how the isomorphism is defined. The C∗-algebra A is defined as the

universal C∗-algebra generated by a family of partial isometries {su,v; u, v ∈
W and t(u) = t(v)} satisfying the relations

su,v
∗ = sv,u(5.2a)

su,vsv,w = su,w(5.2b)

su,v =
∑

w∈W ;σ(w)=ej ,
o(w)=t(u)=t(v)

suw,vw, for 1 ≤ j ≤ r(5.2c)

su,usv,v = 0, for u, v ∈ W0, u �= v.(5.2d)

We refer to [RS1, Section 1] for details, in particular for the meaning of the
product of words used in (5.2c).
The isomorphism φ : A → C(Ω)� Γ is defined as follows.
If u, v ∈ W with t(u) = t(v) ∈ R, let γ ∈ Γ be the unique element such that

γf(v) = f(u). The condition t(u) = t(v) means that f(u), f(v) lie in the same Γ-orbit,
so that γ exists. Moreover γ is unique, since Γ acts freely on ∆. Now define

φ(su,v) = γ1Ω(v) = 1Ω(u)γ.(5.3)

The proof of that φ is an isomorphism is exactly the same as the corresponding
result for Ã2 groups given in [RS1, Section 7]. Here are the essential details.
Equation (5.3) does define a ∗-homomorphism of A because the operators of the

form φ(su,v) are easily seen to satisfy the relations (5.2). Since the algebra A is
simple [RS1, Theorem 5.9], φ is injective. Now observe that 1Ω(w) = φ(sw,w). It
follows that the range of φ contains C(Ω). For the sets Ω(w), w ∈ W , form a
basis for the topology of Ω, and so the linear span of {1Ω(w);w ∈ W} is dense in
C(Ω). To show that φ is surjective, it therefore suffices to show that the range of
φ contains Γ. It is clearly enough to show that φ(A) contains the generating set
A ∪B for Γ.
Suppose that a ∈ A. Then

a = a.1 =
∑

w∈W(1,0)

a1Ω(w) ∈ φ(A).

Similarly B ⊂ φ(A). �

In view of Lemmas 4.1, 4.2, the following is an immediate consequence of [RS1,
Proposition 5.11, Theorem 5.9, Corollary 6.4 and Remark 6.5].

Theorem 5.2. The C∗-algebra A(Γ) is purely infinite, simple and nuclear. More-
over it satisfies the Universal Coefficient Theorem.
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It also follows from [RS1] that A(Γ) satisfies the U.C.T., hence it is classified by
its K-theory, together with the class [1] of its identity element in K0. It is therefore
of interest to determine the K-theory of A(Γ). The matrices (I −M1, I −M2) and
(I −M t

1, I −M t
2) define homomorphisms ZR ⊕ ZR → ZR. The K-theory of A(Γ)

can be expressed as follows [RS2], where Gtors denote the torsion part of a finitely
generated abelian group G, and rank(G) denotes the rank of G:

rank(K0(A(Γ))) = rank(K1(A(Γ)))
= rank(coker (I−M1, I−M2) ) + rank(coker (I−Mt

1, I−Mt
2) )

K0(A(Γ))tors ∼= coker (I−M1, I−M2)
tors

K1(A(Γ)tors ∼= coker (I−Mt
1, I−Mt

2)
tors.

Recall that we defined C = C(Γ) = coker (I−M1, I−M2) . The next result there-
fore follows from Lemma 4.3.

Theorem 5.3. If Γ is a BM group then

K0(A(Γ)) = K1(A(Γ)) = C ⊕ Zrank(C).(5.4)

The identity element in A(Γ) is denoted by 1. As is the case for similar algebras
[RS2, Proposition 5.4], [Ro2], the class [1] has torsion in K0(A(Γ)). In the present
setup we can be much more precise. For notational convenience, let α = m

2 , β = n
2

and let ρ = gcd(α− 1, β − 1).
Proposition 5.4. Let [1] be the class in K0(A(Γ)) of the identity element of A(Γ),
where Γ is a BM group. Then ρ · [1] = 0.
(a) If ρ is odd, then the order of [1] is precisely ρ.
(b) If ρ is even, then the order of [1] is either ρ or ρ2 .

The proof of this result depends upon an examination of explicit projections in
A(Γ).
If c is an oriented basepointed square in ∆ with base vertex v0, let Ω(c) denote

the clopen subset of Ω consisting of all boundary points with representative sector
having initial square c and initial vertex v0. The indicator function pc of the set
Ω(c) is continuous and so lies in C(Ω) ⊂ C(Ω)� Γ. See Figure 12. The covariance
relation (5.1) implies that the class of pc in K0(A(Γ)) depends only on the Γ-
equivalence class of the oriented basepointed square c. Recall that we identify such
a Γ-equivalence class with a tile r ∈ R. It is therefore appropriate to denote the
class of pc in K0(A(Γ)) by [r].
Similarly, to each a ∈ A and b ∈ B we can associate elements [a], [b] ∈ K0(A(Γ)).

For example, if a ∈ A, fix a directed edge labelled by the element a ∈ A and consider
the set of all boundary points ω with representative sector having initial square c
containing that edge, as in Figure 12. As above, the class in K0(A(Γ)) of the
characteristic function of this set depends only on the label a, and may be denoted
by [a]. The class [b] ∈ K0(A(Γ)) for b ∈ B is defined similarly.

Recall now the following result:

Lemma 5.5. [R, Lemma 9.4] Given any chamber c ∈ ∆ and any sector S in ∆,
there exists a sector S1 ⊂ S such that S1 and c lie in a common apartment.
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............................... ................

........

.......................

................

•

[v0, ω)

a

b c

v0

Figure 12. A sector representing ω ∈ Ω(c).

It follows by considering parallel sectors in an appropriate apartment that if
e = [v0, v1] is a directed edge in ∆ and if ω ∈ Ω, then ω has a representative sector
S that lies relative to e in one of the two positions in Figure 13, in some apartment
containing them both.

•

S = [v0, ω)

ev0
............................ ................ •

S = [v1, ω)

ev1
............................................

Figure 13. Relative positions of a directed edge and a represen-
tative sector.

Let pe denote the characteristic function of the set of points ω ∈ Ω such that e
is contained in [v0, ω), as in the left hand diagram. Let pe denote the characteristic
function of the set of points ω ∈ Ω such that e is contained in [v1, ω), as in the right
hand diagram. It follows that pe, pe are idempotents in A(Γ) and 1 = pe+pe. If the
edge e has label a ∈ A (respectively b ∈ B) then in K0(A(Γ)), [pe] = [a] and [pe] =
[a−1] (respectively [pe] = [b] and [pe] = [b−1]).
We therefore obtain

[1] = [a] + [a−1], a ∈ A

= [b] + [b−1], b ∈ B.
(5.5)

The relations (5.5) imply that

α[1] =
∑
a∈A

[a],

β[1] =
∑
a∈B

[b].

Also, each boundary point ω has a unique representative sector based at a fixed
vertex v0 with initial edges as in Figure 12. It follows that
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[1] =
∑
a∈A

[a] =
∑
b∈B

[b].

Therefore

[1] = α[1] = β[1],

from which it follows that ρ · [1] = 0, thus proving the first assertion in Proposi-
tion 5.4.
In order to obtain a lower bound for the order of the class [1] in K0(A(Γ)) we

need to use the fact (proved in [RS2]) that the map r 	→ [r] is a monomorphism
from the abstract group

C =

〈
r ∈ R; r =

∑
s

Mj(s, r)s, j = 1, 2

〉
onto a direct summand of K0(A(Γ)). The class [1] is the image of the element
e =

∑
r∈R

r under this map. Moreover each column of the matrix M1 (respectively

M2) has (m− 1) (respectively (n− 1)) nonzero terms. (See Section 4.)
Let k = 2ρ = gcd(m − 2, n − 2), and define a map φ : C → Z/kZ by φ(r) =

1 + Z/kZ. The map φ is well defined since each relation in the presentation of
C expresses a generator r as a sum of (m − 1) or (n − 1) other generators. Also
φ(e) = mn+Z/kZ = 4+Z/kZ, since (m−2)(n−2) = mn−2(m−2)−2(n−2)−4.
There are now two cases to consider:
(a) Suppose that ρ is odd. Then φ(e) has order ρ in Z/kZ. Therefore the order

of e in C is divisible by ρ and hence equal to ρ.
(b) Suppose that ρ is even. Then φ(e) has order ρ2 in Z/kZ. Therefore the order

of e in C is divisible by ρ
2 . �

Remark 5.6. It is tempting to conjecture that the order of the class [1] is al-
ways precisely ρ. As we shall see below, there is some supporting evidence for
this. There is also computational evidence that rank(C) = rank(H2(Γ)), that is
rank(K0(A(Γ))) = 2 rank(H2(Γ)).

Remark 5.7. Recall from Theorem 5.2 that A(Γ) is a p.i.s.u.n. C∗-algebra satis-
fying the UCT. Furthermore, by Theorem 5.3,

K0(A(Γ)) = K1(A(Γ)) = Z2n ⊕ T

where T is a finite abelian group. It follows from [Ro1, Proposition 7.3] that A(Γ)
is stably isomorphic to A1 ⊗A2, where A1, A2 are simple rank one Cuntz-Krieger
algebras and K0(A2) = K1(A2) = Z.

6. Examples

In this section we consider some examples of BM groups Γ and the results of
the computations for the group C = C(Γ). It is useful to relate our results to the
Euler-Poincaré characteristic χ(Γ), which is the alternating sum of the ranks of the
groups Hi(Γ). The finite cell complex Γ\∆ is aK(Γ, 1) space and Γ has homological
dimension at most two, so that H2(Γ) is free abelian and Hi(Γ) = 0 for i > 2 . It
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follows that χ(Γ) coincides with the usual Euler-Poincaré characteristic of the cell
complex Y = Γ\∆. Explicitly, χ(Γ) = (α− 1)(β − 1), where m = 2α and n = 2β.

Example 6.1. Suppose that Γ is a direct product of free groups of ranks α and
β, acting on a product ∆ of homogeneous trees of degrees m = 2α and n = 2β
respectively. Then direct computation shows that

K0(A(Γ)) = Z2αβ ⊕ (Z/(β − 1)Z)α ⊕ (Z/(α− 1)Z)β ⊕ Z/ρZ

where ρ = gcd(α−1, β−1) is the order of the class [1]. For this group, H2(Γ) = Zαβ ,
and the conjectures of Remark 5.6 are verified.
In this example A(Γ) is actually isomorphic in a natural way to a tensor product

of Cuntz-Krieger algebras. In fact, by a result of J. Spielberg [Ro1, Section 1],
the action of a free group Fα on the boundary of its Cayley graph gives rise a
Cuntz-Krieger algebra A(Fα). It is easy to check that A(Γ) ∼= A(Fα) ⊗ A(Fβ).
(Cf. Remark 5.7.) The formula for K0(A(Γ)) can thus also be verified using the
Künneth Theorem for tensor products.

Example 6.2. Consider some specific examples studied in [M, Section 3]. If p, l ≡
1 (mod 4) are two distinct primes, Mozes constructs a lattice subgroup Γp,l of
G = PGL2(Qp)×PGL2(Ql). The building ∆ of G is a product of two homogeneous
trees T1, T2 of degrees (p + 1) and (l + 1) respectively. The group Γp,l is a BM
group which acts freely and transitively on the vertex set of ∆, but Γp,l is not a
product of free groups. In fact Γp,l is an irreducible lattice in G.
Here is how Γp,l is constructed [M]. LetH(Z) = {α = a0+a1i+a2j+a3k; aj ∈ Z},

the ring of integer quaternions. Let ip be a square root of −1 in Qp and define

ψ : H(Z)→ PGL2(Qp)× PGL2(Ql)

by

ψ(a0 + a1i+ a2j + a3k) =
([

a0 + a1ip a2 + a3ip
−a2 + a3ip a0 − a1ip

]
,

[
a0 + a1il a2 + a3il
−a2 + a3il a0 − a1il

])
.

Let Γ̃p,l = {α = a0+a1i+a2j+a3k ∈ H(Z); a0 ≡ 1 (mod 2), aj ≡ 0 (mod 2), j =
1, 2, 3, |α|2 = prls}. Then Γp,l = ψ(Γ̃p,l) is a torsion-free cocompact lattice in G.
Let

A =
{
a = a0 + a1i+ a2j + a3k ∈ Γ̃p,l; a0 > 0, |a|2 = p

}
,

B =
{
b = b0 + b1i+ b2j + b3k ∈ Γ̃p,l; b0 > 0, |b|2 = l

}
.

Then A contains p + 1 elements and B contains l + 1 elements. The images A,
B of A,B in Γp,l generate free groups Γp, Γl of orders p+1

2 , l+1
2 respectively and

Γp,l itself is generated by A ∪ B. The product T1 × T2 is the Cayley graph of Γp,l
relative to this set of generators.
The group Γp,l is a BM group and ρ = 1

2 gcd(p − 1, l − 1) is even. Explicit
computations, using the formula (5.4) and the MAGMA computer algebra package,
show that the order of [1] is ρ in each of the 28 groups Γp,l where p, l ≡ 1 (mod 4)
are two distinct primes ≤ 61.
The normal subgroup theorem [BM2, Theorem 4.1] can be applied to Γp,l, if the

Legendre symbol ( pl ) = 1. For, using the notation of [BM2, Section 2.4] and [BM3,
Remarks following Proposition 1.8.1], the group H∞

p = PSL2(Qp) has finite index
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in Hp = prp(Γp,l). Moreover Hp is locally ∞ transitive. Thus the hypotheses of
[BM2, Theorem 4.1] are satisfied.
Applying [BM2, Theorem 4.1] to the commutator subgroup [Γp,l,Γp,l] of Γp,l

shows that the abelianization H1(Γp,l) = Γp,l/[Γp,l,Γp,l] is finite.
The Euler-Poincaré characteristic of Γp,l is χ = χ(Γp,l) =

(p−1)(l−1)
4 . Thus

χ(Γp,l) = rankH0(Γp,l)+rankH2(Γp,l) and so H2(Γp,l) = Zχ−1. Explicit computa-
tions for the same range of values of p, l as above shows that the second conjecture
of Remark 5.6 is also verified in these cases.
Another experimental observation is the following. Checking through a large

number of values of the pairs of primes (p, l) congruent to 1 mod 4, one sees that
the abelianization of Γp,l seems to depend only the greatest common divisor r =
gcd((p− 1)/4, (l − 1)/4, 6). In fact we conjecture that

H1(Γp,l) =


Z/2Z ⊕ (Z/4Z)3 if r = 1,
(Z/2Z)3 ⊕ (Z/8Z)2 if r = 2,
Z/2Z ⊕ Z/3Z ⊕ (Z/4Z)3 if r = 3,
(Z/2Z)3 ⊕ Z/3Z ⊕ (Z/8Z)2 if r = 6.

The validity of this formula was checked for all values of the pair (p, l) up to
(73, 97), and for several other values.

7. BM groups with degrees m = n = 4

A BM group acts on a product of homogeneous trees T1 × T2, where T1 has
degree m = 2α ≥ 4 and T2 has degree n = 2β ≥ 4. We now examine the simplest
case m = n = 4.
Recall that a BM square is a set of four distinct tuples

{(a, b, b′, a′), (a−1, b′, b, a′−1), (a′−1
, b′−1

, b−1, a−1), (a′, b−1, b′−1
, a)}.

contained in A× B × B × A, as in Definition 3.3(i),(ii). In the presentation (3.2),
a BM group has 4αβ generators and a set of relations which we call a set of BM
relations. Possible sets of BM relations correspond to those unions of αβ BM
squares whose images under a projection chosen from Definition 3.3(iii) are disjoint.
Choose once and for all such a projection, say (a, b, b′, a′) 	→ (a, b). Consider

the graph G whose vertices are the BM squares and whose edges join BM squares
having disjoint images under the chosen projection. Possible sets of BM relations
correspond to cliques (complete subgraphs) of size αβ in the graph G. The com-
puter algebra package MAGMA contains a dynamic programming algorithm due
to [MPW] for finding all cliques of a given size.
For α = β = 2 there are 541 cliques in G of size 4. Say that two of the cor-

responding presentations are equivalent if one may be obtained from the other by
permuting the generators. There are precisely 52 equivalence classes of presenta-
tions. In the tables below we list 52 representative presentations, together with
the structure of the groups H1(Γ) and C(Γ). For BM groups Γ with semi-degrees
α = β = 2, we have χ(Γ) = 1. Thus rankH1(Γ) = rankH2(Γ). Therefore the
tables show that the conjectures of Remark 5.6 are verified for all such groups.
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In the tables, each of the 52 groups arising from these presentations is assigned a
name Γ = 2× 2.j. Using an algorithm due to C. C. Sims [S], which is implemented
in the MAGMA package, we have found the indices and lengths of all conjugacy
classes of subgroups with index at most 8 in each of these 52 groups. From these
data we have checked that the only possible isomorphisms between 2 × 2.j and
2× 2.k occur if both j and k lie in one of the following sets:

{1, 17}, {3, 19}, {4, 30}, {5, 10}, {7, 21}, {26, 46}, {27, 29, 45}, {28, 43, 47}, {42, 44}.
Thus, amongst the 52 groups 2× 2.j, there are at least 41 non-isomorphic groups.
The quotient complexes Y = (T1×T2)/Γ corresponding to the groups Γ = 2×2.j

with j in any of these sets are not homeomorphic, as can be seen by considering the
fundamental groups of one point deletion subspaces of Y. One therefore obtains 52
pairwise non-homeomorphic complexes Y. Of course, this does not imply that the
groups Γ are non-isomorphic. In fact, we have discovered Tietze transformations
showing that, if {j, k} is contained in any one of the listed sets, except for {4, 30}
or {5, 10}, then the corresponding groups are isomorphic. There are thus at most
43 non-isomorphic groups. We do not know whether the groups 2× 2.j and 2× 2.k
are isomorphic in the two cases {j, k} = {4, 30} and {j, k} = {5, 10}. Note that the
shift system group C(Γ) depends only on Γ and not on the presentation of Γ.
The following notation is used in the tables. The group Γ is generated by A∪B

where A = {1,−1, 2,−2} and B = {3,−3, 4,−4}. The fixed point free involution
on each of these sets is given by x 	→ −x. Thus x−1 is denoted −x. Moreover the
relations are written in the form abb′a′ = 1 rather than the form ab = b′a′ used in
Definition 3.3. For example, the first relation for the presentation of group 2× 2.01
is (1)(3)(1)(3)−1 = 1. The tables are simplified by use of the abbreviations:

m [a, b, ...] means Zm ⊕ Z/aZ ⊕ Z/bZ ⊕ . . . ;
(j)a means a, a, ..., a with j repetitions.

Group Presentation H1 (Γ) C (Γ)

2x2.01
+1 +3 +1 −3 +1 +4 +1 −4
+2 +3 +2 −3 +2 +4 +2 −4

2[(2) 2] 2[(2) 4]

2x2.02
+1 +3 +1 −3 +1 +4 +1 −4
+2 +3 +2 −3 +2 +4 −2 +4

1[(3) 2] 1[(3) 4]

2x2.03
+1 +3 +1 −3 +1 +4 +1 −4
+2 +3 +2 −3 +2 +4 −2 −4

2[(2) 2] 2[(2) 4]

2x2.04
+1 +3 +1 −3 +1 +4 +1 −4
+2 +3 +2 +4 +2 −3 +2 −4

1[2, 4] 1[2, 4, 8]

2x2.05
+1 +3 +1 −3 +1 +4 +1 −4
+2 +3 −2 +3 +2 +4 −2 +4

1[(3) 2] 1[(3) 4]

2x2.06
+1 +3 +1 −3 +1 +4 +1 −4
+2 +3 −2 +3 +2 +4 −2 −4

2[(2) 2] 2[(2) 4]

2x2.07
+1 +3 +1 −3 +1 +4 +1 −4
+2 +3 −2 −3 +2 +4 −2 −4

3[2] 3[4]

2x2.08
+1 +3 +1 −3 +1 +4 +1 −4
+2 +3 −2 +4 +2 +4 −2 +3

2[2] 2[2, 4]

2x2.09
+1 +3 +1 −3 +1 +4 +1 −4
+2 +3 −2 +4 +2 +4 −2 −3

1[(2) 2] 1[(2) 2, 4]

2x2.10
+1 +3 +1 −3 +1 +4 −1 +4
+2 +3 +2 −3 +2 +4 −2 −4

1[(3) 2] 1[(3) 4]

2x2.11
+1 +3 +1 −3 +1 +4 −1 +4
+2 +3 +2 +4 +2 −3 +2 −4

0[(2) 2, 4] 0[(2) 4, 8]

2x2.12
+1 +3 +1 −3 +1 +4 −1 +4
+2 +3 −2 +3 +2 +4 +2 −4

0[(4) 2] 0[(2) 2, (3) 4]

2x2.13
+1 +3 +1 −3 +1 +4 −1 +4
+2 +3 −2 +3 +2 +4 −2 −4

1[(3) 2] 1[(3) 4]

2x2.14
+1 +3 +1 −3 +1 +4 −1 +4
+2 +3 −2 −3 +2 +4 −2 −4

2[(2) 2] 2[(2) 4]

2x2.15
+1 +3 +1 −3 +1 +4 −1 +4
+2 +3 −2 +4 +2 +4 −2 +3

1[(2) 2] 1[(2) 4]

2x2.16
+1 +3 +1 −3 +1 +4 −1 +4
+2 +3 −2 +4 +2 +4 −2 −3

1[(2) 2] 1[(2) 4]
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2x2.17
+1 +3 +1 −3 +1 +4 −1 −4
+2 +3 +2 −3 +2 +4 −2 −4

2[(2) 2] 2[(2) 4]

2x2.18
+1 +3 +1 −3 +1 +4 −1 −4
+2 +3 +2 +4 +2 −3 +2 −4

1[2, 4] 1[2, 4, 8]

2x2.19
+1 +3 +1 −3 +1 +4 −1 −4
+2 +3 −2 −3 +2 +4 +2 −4

2[(2) 2] 2[(2) 4]

2x2.20
+1 +3 +1 −3 +1 +4 −1 −4
+2 +3 −2 −3 +2 +4 −2 +4

2[(2) 2] 2[(2) 4]

2x2.21
+1 +3 +1 −3 +1 +4 −1 −4
+2 +3 −2 −3 +2 +4 −2 −4

3[2] 3[4]

2x2.22
+1 +3 +1 −3 +1 +4 −1 −4
+2 +3 −2 +4 +2 +4 −2 +3

2[2] 2[2, 4]

2x2.23
+1 +3 +1 −3 +1 +4 −1 −4
+2 +3 −2 +4 +2 +4 −2 −3

1[(2) 2] 1[(2) 2, 4]

2x2.24
+1 +3 +1 −3 +1 +4 +2 +4
+1 −4 +2 −4 +2 +3 +2 −3

1[2, 4] 1[(2) 2, 8]

2x2.25
+1 +3 +1 −3 +1 +4 +2 +4
+1 −4 +2 −4 +2 +3 −2 −3

1[2, 4] 1[(2) 2, 8]

2x2.26
+1 +3 +1 −3 +1 +4 +2 −4
+1 −4 +2 +4 +2 +3 +2 −3

2[2] 2[(2) 2]

2x2.27
+1 +3 +1 −3 +1 +4 +2 −4
+1 −4 +2 +4 +2 +3 −2 −3

2[2] 2[(2) 2]

2x2.28
+1 +3 +1 −3 +1 +4 +2 −4
+1 −4 −2 +4 +2 +3 +2 −3

2[2] 2[(2) 2]

2x2.29
+1 +3 +1 −3 +1 +4 +2 −4
+1 −4 −2 +4 +2 +3 −2 −3

2[2] 2[(2) 2]

2x2.30
+1 +3 +1 +4 +1 −3 +1 −4
+2 +3 +2 +4 +2 −3 +2 −4

1[2, 4] 1[2, 4, 8]

2x2.31
+1 +3 +1 +4 +1 −3 +1 −4
+2 +3 +2 −4 +2 −3 +2 +4

0[2, (2) 4] 0[(2) 2, (2) 8]

2x2.32
+1 +3 +1 +4 +1 −3 +1 −4
+2 +3 −2 −3 +2 +4 −2 −4

2[4] 2[2, 8]

2x2.33
+1 +3 +1 +4 +1 −3 +1 −4
+2 +3 −2 +4 +2 +4 −2 +3

2[2] 2[2, 4]

2x2.34
+1 +3 +1 +4 +1 −3 +1 −4
+2 +3 −2 +4 +2 +4 −2 −3

1[(2) 2] 1[(2) 2, 4]

2x2.35
+1 +3 +1 +4 +1 −3 +1 −4
+2 +3 −2 −4 +2 +4 −2 −3

1[2, 4] 1[(2) 2, 8]

2x2.36
+1 +3 +1 +4 +1 −3 +2 −3
+1 −4 +2 −4 +2 +3 +2 +4

0[4, 8] 0[(2) 2, 4, 8]

2x2.37
+1 +3 +1 +4 +1 −3 +2 −3
+1 −4 −2 −4 +2 +3 +2 −4

0[(2) 2, (2) 3] 0[(2) 4, (2) 3]

2x2.38
+1 +3 +1 +4 +1 −3 +2 −4
+1 −4 +2 −3 +2 +3 +2 +4

1[8] 1[(2) 2, 8]

2x2.39
+1 +3 +1 +4 +1 −3 +2 −4
+1 −4 −2 −3 +2 +3 −2 +4

1[2] 1[(3) 2]

2x2.40
+1 +3 +1 +4 +1 −3 +2 −4
+1 −4 −2 −3 +2 +3 −2 −4

0[(2) 2, 3] 0[(2) 2, 4, 3]

2x2.41
+1 +3 −1 −3 +1 +4 −1 −4
+2 +3 −2 −3 +2 +4 −2 −4

4[] 4[]

2x2.42
+1 +3 −1 −3 +1 +4 −1 −4
+2 +3 −2 +4 +2 +4 −2 +3

3[] 3[2]

2x2.43
+1 +3 −1 −3 +1 +4 −1 −4
+2 +3 −2 +4 +2 +4 −2 −3

2[2] 2[(2) 2]

2x2.44
+1 +3 −1 +4 +1 +4 −1 +3
+2 +3 −2 +4 +2 +4 −2 +3

3[] 3[2]

2x2.45
+1 +3 −1 +4 +1 +4 −1 +3
+2 +3 −2 +4 +2 +4 −2 −3

2[2] 2[(2) 2]

2x2.46
+1 +3 −1 +4 +1 +4 −1 +3
+2 +3 −2 −4 +2 +4 −2 −3

2[2] 2[(2) 2]

2x2.47
+1 +3 −1 +4 +1 +4 −1 −3
+2 +3 −2 +4 +2 +4 −2 −3

2[2] 2[(2) 2]

2x2.48
+1 +3 −1 +4 +1 +4 +2 +3
+1 −4 +2 −3 +2 +4 −2 +3

2[] 2[(2) 2]

2x2.49
+1 +3 −1 +4 +1 +4 +2 +3
+1 −4 +2 −3 +2 +4 −2 −3

1[2] 1[2, 4]

2x2.50
+1 +3 −1 +4 +1 +4 +2 −3
+1 −4 +2 +3 +2 +4 −2 +3

1[4] 1[(2) 2, 4]

2x2.51
+1 +3 +2 +4 +1 −3 +2 −4
+1 +4 +2 +3 +1 −4 +2 −3

2[2] 2[2, 4]

2x2.52
+1 +3 +2 +4 +1 −3 +2 −4
+1 +4 +2 −3 +1 −4 +2 +3

1[(2) 2] 1[(2) 2, 4]
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