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Inductive Limit Algebras from Periodic Weighted
Shifts on Fock Space

David W. Kribs

Abstract. Noncommutative multivariable versions of weighted shift opera-
tors arise naturally as ‘weighted’ left creation operators acting on the Fock
space Hilbert space. We identify a natural notion of periodicity for these N -
tuples, and then find a family of inductive limit algebras determined by the
periodic weighted shifts which can be regarded as noncommutative multivari-
able generalizations of the Bunce-Deddens C∗-algebras. We establish this by
proving that the C∗-algebras generated by shifts of a given period are isomor-
phic to full matrix algebras over Cuntz-Toeplitz algebras. This leads to an
isomorphism theorem which parallels the Bunce-Deddens and UHF classifica-
tion scheme.
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The primary goal of this paper is to initiate the study of noncommutative mul-
tivariable weighted shifts. Almost three decades ago, Bunce and Deddens [3, 4]
introduced a family of inductive limit C∗-algebras generated by periodic unilateral
weighted shift operators. On the other hand, we now know that noncommutative
multivariable versions of unilateral shifts arise in theoretical physics and free prob-
ability theory as the so-called left creation operators acting on the full Fock space
Hilbert space. There is now an extensive body of research for these operators and
the algebras they generate (see [1, 9, 11, 10, 21, 23, 24] for example).
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In this paper, we introduce a family of C∗-algebras which can be regarded as
noncommutative multivariable generalizations of the Bunce-Deddens algebras. In
accomplishing this, based on the creation operators, we introduce the concept of
a noncommutative multivariable weighted shift and discover a satisfying notion of
periodicity based on the structure of Fock space. We characterize these algebras in
terms of inductive limits of full matrix algebras over the Cuntz-Toeplitz and Cuntz
algebras. This leads to a classification theorem which parallels the classification of
UHF algebras by Glimm [16], and the Bunce-Deddens algebras classification [3, 4],
by supernatural numbers.

In the opening section we recall the formulation of Fock space and the creation
operators. We also quickly review the basics of the Cuntz and Cuntz-Toeplitz
algebras. In the second section we introduce noncommutative weighted shifts and
investigate their basic structure. The third section describes a pictorial method for
thinking of these shifts, by using the Fock space ‘tree’ structure. This leads to a
natural notion of periodicity, and then we define the C∗-algebras we study in the
rest of the paper. The final two sections consist of an in-depth analysis of these
algebras. Most importantly, we prove they are isomorphic to inductive limits of
full matrix algebras of distinguished sizes over Cuntz and Cuntz-Toeplitz algebras.
Using this characterization we establish a classification theorem based on K-theory
for the Cuntz algebras.

1. Introduction

We begin by recalling the formulation of the full Fock space Hilbert space and
its associated creation operators. For N ≥ 2, let F

+
N be the unital free semigroup

on N noncommuting letters {1, 2, . . . , N}. We denote the unit in F
+
N by e. One

way to realize N -variable Fock space is as HN = �2(F+
N ). From this point of view,

the vectors {ξw : w ∈ F
+
N} form an orthonormal basis for HN which can be thought

of as a generalized Fourier basis. The left creation operators (also known as the
Cuntz-Toeplitz isometries we will see below) L = (L1, . . . , LN ) are defined on HN

by their actions on basis vectors,

Liξw = ξiw, for 1 ≤ i ≤ N and w ∈ F
+
N .

The Li are isometries with pairwise orthogonal ranges for which the sum of the
range projections satisfies

∑N
i=1 LiL

∗
i = I − Pe, where Pe = ξeξ

∗
e is the rank one

projection onto the span of the vacuum vector ξe. We will discuss a helpful pictorial
method for thinking of the actions of these operators in Section 3.

Most importantly for our purposes, this N -tuple forms the noncommutative
multivariable version of a unilateral shift. This claim is well supported by a number
of facts. For instance, the unilateral shift is obtained for N = 1, and otherwise
each of the Li is unitarily equivalent to a shift of infinite multiplicity. Further,
the study of the Li in operator theory and operator algebras was at least partly
initiated by the dilation theorem of Frazho [15], Bunce [2] and Popescu [22], which
provided the noncommutative multivariable version of Sz.-Nagy’s classical minimal
isometric dilation of a contraction [14]. Namely, every row contraction of operators
on Hilbert space has a minimal joint dilation to isometries, acting on a larger
space, with pairwise orthogonal ranges. The classical Wold decomposition shows
that every isometry breaks up into an orthogonal direct sum of a unitary together
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with copies of the shift. Analogously, Popescu’s version [22] shows that every N -
tuple of isometries with pairwise orthogonal ranges decomposes into an orthogonal
direct sum of isometries which form a representation of the Cuntz C∗-algebra ON

(see below), together with copies of L = (L1, . . . , LN ).
In addition, the wot-closed nonselfadjoint algebras generated by the Li have

been shown by Davidson, Pitts, Arias, Popescu and others to be the appropriate
noncommutative analytic Toeplitz algebras (see [1, 11, 10, 21, 24]). We also mention
that the wot-closed nonselfadjoint algebras generated by the weighted shifts dis-
cussed here have been investigated in [19], where a number of results from the single
variable setting have been generalized, at the same time exposing new noncommu-
tative phenomena. Finally, we note that compressing the creation operators to
symmetric Fock space yields the commutative multivariable shift. The C∗-algebras
generated by weighted versions of which were studied in [6] for instance.

The C∗-algebras determined by the isometries L = (L1, . . . , LN ) have also been
studied extensively. The C∗-algebra generated by L1, . . . , LN is called the Cuntz-
Toeplitz algebra and is denoted EN . The ideal generated by the rank one projection
I − ∑N

i=1 LiL
∗
i in EN yields a copy of the compact operators. When this ideal is

factored out, the C∗-algebra obtained is the Cuntz algebra ON . It is the universal
C∗-algebra generated by the relations

s∗i sj = δij1 for 1 ≤ i, j ≤ N and
N∑

i=1

sis
∗
i = 1.

Up to isomorphism, ON is the C∗-algebra generated by any N isometries S =
(S1, . . . , SN ) which satisfy these relations, since it is simple.

The K-theory for a C∗-algebra consists of a series of invariants which hold infor-
mation on equivalence classes of projections in the matrix algebras over the algebra.
The K-theory for ON was worked out by Cuntz [5]. In particular, its K0 group is
the finite abelian group K0(ON ) = Z/(N − 1)Z. In connection with classification
results for inductive limits of Cuntz algebras we mention work of Rørdam [25]. We
also note that our isomorphism theorem has overlap with work of Evans [13].

2. Noncommutative weighted shifts

From the discussion in the previous section, we are led to the following definition
for noncommutative multivariable weighted shifts. We shall drop the multivariable
reference for succinctness. We mention that the idea for considering these weighted
shifts came during the author’s preparation of [20], where a related class of N -tuples
was used in the analysis there.

Definition 2.1. We say that an N -tuple of operators S = (S1, . . . , SN ) acting
on a Hilbert space H forms a noncommutative weighted shift if there is a unitary
U : HN → H, operators T = (T1, . . . , TN ) on HN , and scalars {λi,w : 1 ≤ i ≤
N and w ∈ F

+
N} such that Si = UTiU

∗ for 1 ≤ i ≤ N and

Tiξw = λi,wξiw for 1 ≤ i ≤ N and w ∈ F
+
N .

Note 2.2. For brevity, we assume that the weighted shifts T = (T1, . . . , TN ) we
consider actually act on Fock space HN = �2(F+

N ). Further, the proposition below
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will allow us to make the following simplifying assumption on weights throughout
the paper:

Assumption: λi,w ≥ 0 for 1 ≤ i ≤ N and w ∈ F
+
N .

Indeed, every shift is jointly unitarily equivalent to a shift with nonnegative weights:

Proposition 2.3. Suppose T = (T1, . . . , TN ) is a weighted shift with weights {λi,w}.
Then there is a unitary U ∈ B(HN ), which is diagonal with respect to the standard
basis for HN , such that the weighted shift

(UT1U
∗, . . . , UTNU∗)

has weights {|λi,w|}.
Proof. We build the unitary by inductively choosing scalars μw and defining Uξw =
μwξw. Put μe = 1. Let k ≥ 1 and assume the scalars {μw : |w| = k − 1}
corresponding to words of length k − 1 in F

+
N (as the empty word, the unit e is

taken to have length zero) have been chosen. The scalars {μw : |w| = k} are
obtained in the following manner. For iw ∈ F

+
N with |w| = k − 1 and 1 ≤ i ≤ N ,

choose μiw ∈ C of modulus one such that

(μw λi,w) μiw ≥ 0.

Now if 1 ≤ i ≤ N and w ∈ F
+
N are arbitrary, we have(

UTiU
∗) ξw = μw UTiξw = μwλi,wUξiw

=
(
μwλi,wμiw

)
ξiw.

This yields the desired conclusion. �
We next present a direct generalization of the factorization of weighted shift

operators into products of the unilateral shift and diagonal weight operators.

Proposition 2.4. Let T = (T1, . . . , TN ) be a weighted shift. Then each Ti factors
as Ti = LiWi, where Wi is a positive operator which is diagonal with respect to the
standard basis for HN . It follows that the norms of the Ti and the row matrix T
are given by:

(i) ‖Ti‖ = sup{λi,w : w ∈ F
+
N} for 1 ≤ i ≤ N .

(ii) ‖T‖ = sup1≤i≤N ‖Ti‖ = sup{λi,w : w ∈ F
+
N and 1 ≤ i ≤ N}.

Proof. For 1 ≤ i ≤ N , the operators Wi are given by the equation

Wiξw = (Tiξw, ξiw)ξw = λi,wξw.

Since Wi ≥ 0, we have T ∗
i Ti = W ∗

i L∗
i LiWi = W 2

i , which is diagonal. Hence,
Wi = (T ∗

i Ti)1/2 and Ti = LiWi. Further, this shows that

‖Ti‖2 = ‖T ∗
i Ti‖ = ‖W 2

i ‖ = sup{‖W 2
i ξw‖ : w ∈ F

+
N}

= sup{λ2
i,w : w ∈ F

+
N}.

On the other hand, the entries of the N × N matrix T ∗T consist of T ∗
i Ti’s

down the diagonal and zero off the diagonal, since the ranges of the Ti are pairwise
orthogonal. Hence, from the above computation

‖T‖ = ‖T ∗T‖1/2 = sup
1≤i≤N

‖Ti‖ = sup
1≤i≤N

{λi,w : w ∈ F
+
N},

which completes the proof. �
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We finish this section by observing that the C∗-algebra generated by a noncom-
mutative weighted shift, which is bounded below in an appropriate sense, contains
the Cuntz-Toeplitz algebra.

Definition 2.5. Let T = (T1, . . . , TN ) be a weighted shift. If each Wi is bounded
away from zero, in other words if

inf{λi,w : 1 ≤ i ≤ N and w ∈ F
+
N} > 0,

we say that T is bounded below.

Corollary 2.6. The C∗-algebra C∗(T1, . . . , TN ) generated by the operators {T1, . . . ,
TN} from a weighted shift T = (T1, . . . , TN ) contains EN = C∗(L1, . . . , LN ) when
T is bounded below.

Proof. From the proof of the previous proposition, we see that Wi is invertible
precisely when inf{λi,w : w ∈ F

+
N} > 0. Thus, T being bounded below implies that

each Wi is invertible. However, Wi = (T ∗
i Ti)1/2 belongs to C∗(Ti), and hence to

C∗(T1, . . . , TN ), thus so does Li = TiW
−1
i for 1 ≤ i ≤ N . �

Note 2.7. We mention that the C∗-algebras C∗(T1, . . . , TN ) generated by the Ti

from a single weighted shift T = (T1, . . . , TN ) are the focus of analysis in [7].

3. Fock space trees and periodicity

In this section we aim to convey to the reader a helpful pictorial method for
thinking of noncommutative weighted shifts. In doing so, we introduce what seems
to be a natural notion of periodicity for these operators. We also define the operator
algebras which will be studied in the rest of the paper.

Recall that N -variable Fock space HN = �2(F+
N ) has the orthonormal basis

{ξw : w ∈ F
+
N}. This basis yields a natural tree structure for Fock space which is

traced out by the creation operators, and more generally by weighted shifts.

Definition 3.1. Let T = (T1, . . . , TN ) be a weighted shift. Let FT be the set of
vertices {w : w ∈ F

+
N}, together with the ‘weighted’ directed edges which correspond

to the directions

{λi,w := w �→ iw
∣∣ for 1 ≤ i ≤ N and w ∈ F

+
N}.

We regard an edge λi,w as lying to the left of another edge λj,w precisely when
i < j. We call FT the weighted Fock space tree generated by T .

Pictorially, with N = 2 as an example, a typical weighted Fock space tree is
given by the following diagram:
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Notice that this structure is really determined by the operators T = (T1, . . . , TN ).
Indeed, given a basis vector ξw, the directed edge λi,w corresponds to the action
of Ti on ξw, namely mapping it to λi,wξiw. Thus, more generally, we have the
following picture for weighted edges leaving a typical vertex in the tree:
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There are a number of conceptual benefits obtained by identifying these trees
with weighted shifts. For instance, this point of view leads to the following notion
of periodicity.

Definition 3.2. Let k ≥ 1 be a positive integer. We say that a weighted shift
T = (T1, . . . , TN ) is of period k if

Tiξw = λi,uξiw for w ∈ F
+
N ,

where w = uv is the unique decomposition of w with 0 ≤ |u| < k and |v| ≡ 0
(mod k).

Note 3.3. Observe that this says the scalars {λi,u : 0 ≤ |u| < k} completely
determine the shift. They can be thought of as a ‘remainder tree top’. For N = 1
the standard notion of periodicity is recovered, since the tree collapses to a single
infinite stalk. For N ≥ 2, it is most satisfying to think of this notion of periodicity
in terms of the tree structure: If T = (T1, . . . , TN ) is period k, then the remainder
tree top, that is the finite top of the tree determined by vertices {w : |w| < k} and
edges {λi,w : |w| < k}, is ‘repeated’ throughout the entire weighted tree.

In fact, this finite tree top is repeated with a certain exponential growth. For
instance, at the level of the tree corresponding to words w ∈ F

+
N of length nk for

some positive integer n ≥ 1, the top of this finite tree is repeated Nnk times, once
for every word of length nk.

We mention that related tree top constructions play a key role in the paper [18].

Finally, we introduce the operator algebras which we are interested in studying.
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Definition 3.4. For positive integers N ≥ 2 and k ≥ 1, let C∗
N (per k) be the

C∗-algebra (contained in B(HN )) generated by the Ti from all weighted shifts T =
(T1, . . . , TN ) of period k.

It is clear from the picture given by the Fock space trees that if n1|n2, then
C∗

N (per n1) is contained in C∗
N (per n2). Thus, given an increasing sequence of

positive integers {nk}k≥1 with nk|nk+1 for k ≥ 1, we may consider the inductive
limit algebra

A(nk) =
⋃
k≥1

C∗
N (per nk)

determined by this sequence. Let q be the quotient map of B(HN ) onto the Calkin
algebra. We are also interested in describing the inductive limit algebras q(A(nk)).

Note 3.5. The reader may find it helpful to know that C∗
N (per k) is generated by

the Ti from a single weighted shift. This is proved in the next section, using the
matrix decompositions obtained there.

4. Main Theorem

The C∗-algebra C∗
N (per k) generated by the k-periodic weighted shifts can be

described in terms of a full matrix algebra with entries in a Cuntz-Toeplitz algebra.
From the discussion in Section 1, recall the Cuntz-Toeplitz algebra ENk is the
C∗-algebra generated by the creation operators L = (L1, . . . , LNk) acting on Nk-
variable Fock space HNk .

Theorem 4.1. For positive integers N ≥ 2 and k ≥ 1, let dN,k be the total number
of words in F

+
N of length strictly less than k; that is, dN,k = 1 + N + · · · + Nk−1.

Then the algebra C∗
N (per k) of k-periodic weighted shifts is unitarily equivalent to

the algebra MdN,k
(ENk) of dN,k × dN,k matrices with entries in ENk . Further, this

algebra is generated by the Ti from a single shift T = (T1, . . . , TN ).

Remark 4.2. At first glance the Nk appearing in the theorem may seem somewhat
peculiar to the reader. We shall see that it arises from the exponential nature of
periodicity here. We mention that the special case N = 2 and k = 2 of the theorem
is expanded on in Example 4.7.

We shall prove the theorem in several stages. Throughout, N ≥ 2 and k ≥ 1 will
be fixed positive integers. The first step is to decompose Fock space in a manner
which will lead to simple matrix representations of the periodic weighted shifts.

Lemma 4.3. For w ∈ F
+
N with |w| < k, the subspaces Kw of N -variable Fock space

HN given by

Kw = span{ξwv : |v| = km, m ≥ 0},
are pairwise orthogonal and

HN =
∑
|w|<k

⊕Kw.

Further, for |w| < k, the operators Uw : Ke → Kw defined by Uwξv = ξwv, for
|v| = km with m ≥ 0, are unitary. Hence

U :=
∑
|w|<k

⊕Uw : K(dN,k)
e −→ HN
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is a unitary operator.

Proof. The subspaces Kw for |w| < k clearly span HN = �2(F+
N ) since any word

u ∈ F
+
N can be written, in fact uniquely, as u = u1u2, where |u1| < k and k divides

|u2|. To see orthogonality, let w1, w2 be words with |wi| < k, and consider typical
basis vectors ξwivi

for Kwi
, where |vi| = kmi and mi ≥ 0. The only way the inner

product (ξw1v1 , ξw2v2) can be nonzero, is if w1v1 = w2v2, and hence by uniqueness
of factorization we have w1 = w2 and v1 = v2.

The operators Uw as defined are unitary since they send one orthonormal basis
to another. Spatially, these unitaries can be thought of as the restrictions of the
isometries Lw, where Lw := Li1 . . . Lis

when w is the word w = i1 . . . is, to a
distinguished subspace Ke of Fock space. Alternatively, the action of the adjoint
U∗

w on Kw is described by restricting L∗
w to Kw. The last statement of the lemma

is immediate from the spatial decomposition of HN . �

We will distinguish between coordinate spaces of K(dN,k)
e in the following manner:

For w ∈ F
+
N with |w| < k, let

{ ξw
u : u ∈ F

+
N with |u| = km for m ≥ 0}

be the standard basis for the wth coordinate space of K(dN,k)
e , which is given by

U∗Kw = U∗
wKw. Notice that for |v|, |w| < k and |u| = km, the vectors ξw

u and ξv
u

really correspond to the same vector ξu in Ke. Further, the action of U is described
by

Uξw
u = ξwu,(1)

for w, u ∈ F
+
N with |w| < k and |u| = km.

The next step is to point out a relationship between particular Fock space trees.

Definition 4.4. We define a natural bijective correspondence between; the Nk

words of length k in F
+
N on the one hand, and the Nk letters which generate F

+
Nk

on the other, through the function

ϕ : {w ∈ F
+
N : |w| = k} −→ {w ∈ F

+
Nk : |w| = 1}

given by

ϕ(i1i2 . . . ik) = (i1 − 1)Nk−1 + · · · + (ik−1 − 1)N + ik,

for 1 ≤ ij ≤ N and 1 ≤ j ≤ k. This correspondence is also characterized by
associating the words {iw ∈ F

+
N : |w| = k − 1} with the ‘ith block’ of Nk−1

letters in the listing {1, 2, . . . , Nk}. Notice with this ordering that the operators
{Lϕ(w) : w ∈ F

+
N , |w| = k} are the Nk creation operators associated with Nk-

variable Fock space HNk .
The map ϕ extends in a natural way to a bijective identification ϕm of the set

{w ∈ F
+
N : |w| = km} with {w ∈ F

+
Nk : |w| = m} for m ≥ 0. Given w1, . . . , wm ∈

F
+
N with |wi| = k, the extensions are given by

ϕm(w1 . . . wm) = ϕ(w1) . . . ϕ(wm),

The units in F
+
N and F

+
Nk are identified with each other. We will use the nota-

tion ϕ for the extended map as well. This ordering leads to the following spatial
equivalence.
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Lemma 4.5. The map from Ke = span{ξw : w ∈ F
+
N , |w| = km, m ≥ 0} to Nk-

variable Fock space HNk = �2(F+
Nk) which sends a basis vector ξw1...wm ∈ Ke, where

each |wi| = k, to the basis vector ξϕ(w1)...ϕ(wm) ∈ HNk , is unitary.

Proof. This follows directly from the definitions of the space Ke and the map
ϕ. �

This lemma gives us a tight spatial equivalence between the orthogonal direct
sums K(dN,k)

e and H(dN,k)

Nk , which carries through for the weighted shifts. We wish to
preserve the correspondence discussed after Lemma 4.3. In particular, for w ∈ F

+
N

with |w| < k, we let

{ ξw
ϕ(u) : u ∈ F

+
N with |u| = km for m ≥ 0}

be the standard basis for the wth coordinate space of H(dN,k)

Nk . Once again, with this
identification, for |v|, |w| < k and |u| = km, the vectors ξw

ϕ(u) and ξv
ϕ(u) correspond

to the same vector ξϕ(u) in HNk . Finally, we let V : H(dN,k)

Nk → K(dN,k)
e be the

unitary operator which encodes this correspondence and the action of the map
from the previous lemma. For w, u ∈ F

+
N with |w| < k and |u| = km, the action of

V is given by

V ξw
ϕ(u) = ξw

u .(2)

With these Fock space decompositions in hand, we are now ready to focus on
the particular actions of weighted shifts.

Lemma 4.6. For w ∈ F
+
N with |w| < k, let Pw be the orthogonal projection of

H(dN,k)

Nk onto the wth coordinate space of H(dN,k)

Nk , so that I =
∑

|w|<k ⊕Pw. Let
T = (T1, . . . , TN ) be a k-periodic weighted shift acting on HN . Then the opera-
tors AdUV (Ti) = V ∗U∗TiUV act on H(dN,k)

Nk and have the following block matrix
decompositions:

(i) For |w| < k − 1 and |v| < k,

Pv

(
AdUV (Ti)

)
Pw =

{
λi,wIH

Nk
if v = iw

0 if v 
= iw.

(ii) For |w| = k − 1 and |v| < k,

Pv

(
AdUV (Ti)

)
Pw =

{
λi,wLϕ(iw) if v = e
0 if v 
= e.

Proof. We first prove case (i). From the preceding discussion, the vectors ξw
ϕ(u),

where u ∈ F
+
N with |u| = km, form an orthonormal basis for the range of Pw.

Further, from equations (1) and (2) we have

UV ξw
ϕ(u) = Uξw

u = ξwu.

Lastly, as T = (T1, . . . , TN ) is k-periodic, we have Tiξwu = λi,wξiwu. Since |w| <
k − 1, these facts lead us to the following computation:

Pv

(
AdUV (Ti)

)
ξw
ϕ(u) = PvV ∗U∗Tiξwu

= λi,wPvV ∗U∗ξ(iw)u

= λi,wPvξiw
ϕ(u) = λi,wδv,iw ξiw

ϕ(u),
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where δv,iw is equal to 1 if v = iw, and is 0 otherwise. But recall that the vectors
ξw
ϕ(u) and ξiw

ϕ(u) both correspond to the same vector ξϕ(u) in HNk . Thus, case (i) is
established.

Now suppose that |w| = k − 1. Again, k-periodicity gives us Tiξwu = λi,wξiwu.
In this case |iw| = k, hence the definition of U and V from (1) and (2) yields:

Pv

(
AdUV (Ti)

)
ξw
ϕ(u) = PvV ∗U∗Tiξwu

= λi,wPvV ∗U∗ξ(iw)u

= λi,wPvV ∗ξe
iwu

= λi,wPvξe
ϕ(iwu) = λi,wδv,e ξe

ϕ(iwu).

However, from the definition of ϕ, we have ϕ(iwu) = ϕ(iw)ϕ(u), since |iw| = k.
Therefore,

Pv

(
AdUV (Ti)

)
ξw
ϕ(u) = λi,wδv,eLϕ(iw)ξ

e
ϕ(u).

Once again, the vectors ξw
ϕ(u) and ξe

ϕ(u) both correspond to ξϕ(u) in HNk . This
establishes case (ii), and completes the proof. �

Proof of Theorem 4.1. We define an injective homomorphism of C∗-algebras π :
C∗

N (per k) → MdN,k
(ENk) by π(Ti) = AdUV (Ti), for every k-periodic weighted

shift T = (T1, . . . , TN ). The map π is clearly an injective homomorphism since it
is a unitary equivalence. Further, it follows from case (i) in Lemma 4.6, that all
the matrix units in MdN,k

(ENk) can be obtained in the image of π, by judicious
choice of scalars λi,w’s and appropriate matrix multiplication. From case (ii) in that
lemma, we see that the Nk creation operators which generate ENk can be obtained
in certain matrix entries. Since all the matrix units are present in the image, these
creation operators can be moved around to every entry. Therefore, it follows that
π is also surjective, and hence defines a ∗-isomorphism.

Lastly, it is not hard to see from the matrix decompositions of Lemma 4.6 that
the algebra C∗

N (per k) is generated by the Ti from a single shift T = (T1, . . . , TN ).
For instance, from work in [7] it follows that any shift will do for which the Nk

numeric k-tuples corresponding to the weights on each path of length k in the
associated tree are different. �

Before continuing, we discuss a special case of the theorem which may help to
clarify some of the technical issues.

Example 4.7. Consider the case when N = 2 and k = 2. Then C∗
2(per 2) is the

C∗-algebra generated by the Ti from all 2-periodic shifts T = (T1, T2). The theorem
shows that this algebra is unitarily equivalent to the matrix algebra M3(E4). Let
us expand on this point.

Such 2-tuples act on the Fock space H2, which has orthonormal basis {ξw :
w ∈ F

+
2 }. As in the previous section, the remainder tree top which determines the

weighted Fock space tree for a given 2-periodic shift T = (T1, T2) is generated by
six scalars {a, b, c, d, e, f} as follows:

T1ξe = a ξ1, T1ξ1 = c ξ12 , T1ξ2 = e ξ12.

and

T2ξe = b ξ2, T2ξ1 = d ξ21, T2ξ2 = f ξ22 .
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Thus, for example, the action of T1 on basis vectors is given by

T1ξw =

⎧⎨
⎩

a ξ1w if |w| is even
c ξ1w if w = 1v and |v| is even
e ξ1w if w = 2v and |v| is even.

In the proof of the theorem for this case, 2-variable Fock space H2 = �2(F+
2 )

decomposes into a direct sum H2 = Ke⊕K1⊕K2 of d2,2 = 1+2 = 3 subspaces, each
of which may be naturally identified with (22 =)4-variable Fock space H4 = �2(F+

4 ).
Take Ke for example. It is given by

Ke = span
{

ξe, {ξ12 , ξ12, ξ21, ξ22}, {ξw : w ∈ F
+
2 , |w| = 4}, . . .

}
.

The unitary equivalence produced by this spatial identification yields the follow-
ing block matrix form for our given 2-periodic shift T = (T1, T2), with respect to
the decomposition H2 = Ke ⊕K1 ⊕K2 � H4 ⊕H4 ⊕H4,

T1 �
⎡
⎣ 0 cL1 eL3

aI 0 0
0 0 0

⎤
⎦ and T2 �

⎡
⎣ 0 dL2 fL4

0 0 0
bI 0 0

⎤
⎦ ,

where {L1, L2, L3, L4} are the standard creation operators on H4.
Since we have complete freedom in C∗

2(per 2) on the choices of scalars a, b, c, d, e, f ,
it is now easy to see why it is unitarily equivalent to the matrix algebra M3(E4).
Further, it follows from these matrix decompositions that C∗

2(per 2) is generated,
for instance, by {T1, T2} with a = b = 1, c = 1/2, d = 1/4, e = 1/8, f = 1/16.

From Theorem 4.1 it follows that when we factor out the ideal of compact oper-
ators from C∗

N (per k), simple C∗-algebras are obtained. The key point being that
the Cuntz-Toeplitz algebra is the extension of the compacts by the Cuntz algebra.

Corollary 4.8. Let q be the quotient map of B(HN ) onto the Calkin algebra. Then
for N ≥ 2 and k ≥ 1, the algebra q(C∗

N (per k)) is ∗-isomorphic to the matrix algebra
MdN,k

(ONk). In particular, it is a simple C∗-algebra.

It follows that the inductive limit algebras q(A(nk)) defined in the previous
section are simple and have real rank zero.

Corollary 4.9. Let N ≥ 2 and let {nk}k≥1 be an increasing sequence of positive
integers such that nk divides nk+1 for k ≥ 1. Then the inductive limit algebra
q(A(nk)) is simple and has real rank zero.

Proof. Every ideal in q(A(nk)) is the closed union of ideals of the subalgebras
q(C∗

N (per nk)). Thus, simplicity follows immediately from the previous corollary.
These algebras have real rank zero because, as observed in [25], the class of C∗-
algebras of real rank zero is closed under tensoring with finite dimensional C∗-
algebras, forming direct sums, and forming inductive limits. The Cuntz algebras
ONnk have real rank zero since they are purely infinite. �

We finish this section by pointing out the connection between our results and
the single variable setting results of Bunce-Deddens.

Remark 4.10. The focus of this paper is on the noncommutative multivariable
setting; however, we remark that the proof of Theorem 4.1 goes through as pre-
sented for N = 1. Namely, the C∗-algebra generated by all unilateral weighted
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shift operators of period k is isomorphic to Mk(E1), where E1 is the C∗-algebra
generated by the unilateral shift, also realized as the algebra of Toeplitz operators
with continuous symbol [3, 4]. The proof presented here recaptures this result for
N = 1, although from a different perspective. In particular, the Bunce-Deddens
proof heavily relies on the associated function theory which is omnipresent in the
single variable case. Conceptually speaking the proof here is more spatially ori-
ented.

While more effort is required to prove Theorem 4.1 for N ≥ 2, the simplicity in
Corollary 4.6 is more easily obtained as compared to the single variable case. The
basic point is that ON is simple for N ≥ 2, while for N = 1 it is the C∗-algebra
generated by the bilateral shift operator, the algebra of continuous functions on the
unit circle, which is not simple. Nonetheless, the inductive limit algebras q(A(nk))
turn out to be simple for N = 1, and thus our results on these algebras for N ≥ 2
can be regarded as a noncommutative multivariable generalization of their result.

5. Classification

In this section, we establish an isomorphism theorem for the limit algebras dis-
cussed in the previous two sections. Let {nk}k≥1 be an increasing sequence of
positive integers with nk dividing nk+1 for k ≥ 1. Then for each prime p, there is
a unique αp in N∪ {∞} which is the supremum of the exponents of p which divide
nk as k → ∞. The supernatural number determined by the sequence {nk}k≥1 is
the formal product δ(nk) =

∏
p prime pαp . Given two such sequences {nk}k≥1 and

{mj}j≥1, it follows that δ(nk) = δ(mj) precisely when: for all k ≥ 1, there is a
j ≥ 1 with nk|mj ; and for all j ≥ 1, there is a k ≥ 1 with mj |nk.

Supernatural numbers have been used to classify UHF algebras [16], and Bunce-
Deddens algebras [3, 4]. They also distinguish between the inductive limit algebras
of the current paper, as do the associated K0 groups.

Theorem 5.1. Let N ≥ 2 be a positive integer. Let {nk}k≥1 and {mj}j≥1 be
increasing sequences of positive integers for which nk|nk+1 and mj |mj+1 for j, k ≥
1. Then the following are equivalent:

(i) The supernatural numbers δ(nk) and δ(mj) are the same.
(ii) The algebras A(nk) and A(mj) are equal.
(iii) The algebras q(A(nk)) and q(A(mj)) are equal.
(iv) If B(nk) is an inductive limit of Cuntz algebras determined by a sequence

Bn1 → Bn2 → . . . such that Bnk
∼= MdN,nk

(ONnk ), and B(mj) is similarly
defined, then B(nk) and B(mj) are ∗-isomorphic.

(v) The groups K0(B(nk)) and K0(B(mj)) are isomorphic.

Proof. To see (i) ⇒ (ii), observe the division property associated with (i) shows
that each nk divides some mj . Thus,

C∗
N (per nk) ⊆ C∗

N (per mj) ⊆ A(mj)

for k ≥ 1. Whence, A(nk) ⊆ A(mj). The converse inclusion follows by symmetry.
The implications (ii) ⇒ (iii) and (iv) ⇒ (v) are obvious. Since B(nk) ∼= q(A(nk))
and B(mj) ∼= q(A(mj)) by Corollary 4.8, we have (iii) ⇒ (iv).
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It remains to establish the implication (v) ⇒ (i). Recall the K0 group of ON is
the finite abelian group K0(ON ) = Z/(N − 1)Z of order N − 1. Hence,

K0(MdN,nk
(ONnk )) = K0(ONnk ) = Z/(Nnk − 1)Z.

Since B(nk) is the inductive limit of the algebras Bnk
, we have

K0(B(nk)) = lim−→ K0(Bnk
).

There are similar facts for K0(B(mj)) = lim−→ K0(Bmj ).
For k ≥ 1, let gk ∈ K0(B(nk)) be an element of order Nnk − 1. Let Γ :

K0(B(nk)) → K0(B(mj)) be a group isomorphism. Then Γ(gk) ∈ K0(B(mj)),
and it follows that the order of Γ(gk) must divide Nmj − 1 for some j ≥ 1. (Every
element of K0(B(mj)) has this property.)

However, for positive integers N ≥ 2 and k ≥ 1, recall that

dN,k = 1 + N + · · · + Nk−1 =
Nk − 1
N − 1

.

Thus we have just observed that dN,nk
divides dN,mj . But this implies that nk

divides mj . Indeed, suppose dN,mj
= c dN,nk

for some positive integer c. Consider
the base Nnk expansion of c given by c = c0 + c1N

nk + · · · + cl(Nnk)l, where
0 ≤ ci < Nnk for 0 ≤ i ≤ l. By comparing coefficients in dN,mj

= c dN,nk
, we get

each ci = 1 and mj − 1 = lnk + nk − 1. Whence, mj = (l + 1)nk, and nk divides
mj .

By symmetry, every mj divides some nk. Hence by the remarks preceding the
theorem, this shows that the supernatural numbers δ(nk) and δ(mj) are identical.

�
Remark 5.2. After preparing this article, the author became aware of related
work of Evans [13] on Cuntz-Krieger algebras. The most notable overlap between
our papers is that the equivalence of conditions (i) and (v) in the previous theorem
follows from the Cuntz algebra case of Theorem 4.3 from [13]. We also point out
that a related notion of periodicity is used to define certain inductive limits of
Cuntz-Krieger algebras in [13]. In the Cuntz algebra case, we see it is a more
restrictive version; requiring scalars {ck : k ≥ 0} such that λi,w = ck for 1 ≤ i ≤ N
and all |w| = k. Thus the periodicity introduced here is new, as is our main result
Theorem 4.1.

We finish by pointing out that, not surprisingly, as for the Bunce-Deddens al-
gebras, the algebras here are not almost finite dimensional. We need the following
easy generalization of a theorem of Halmos.

Lemma 5.3. For 1 ≤ i ≤ N , the operator Li is not quasitriangular.

Proof. In [17], Halmos proves that the unilateral shift is not quasitriangular. How-
ever, as he points out before proving this result, the proof really only depends on
the operator of concern being an isometry, with adjoint having nontrivial kernel.
The Li clearly have this property since L∗

i annihilates the vacuum vector. �
We can follow the lines of the Bunce-Deddens proof to show these algebras are

not AF.

Theorem 5.4. The algebras A(nk) and q(A(nk)) are not approximately finite di-
mensional.
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Proof. Suppose there are finite dimensional C∗-algebras {Bl}l≥1 for which Bl ⊆
Bl+1 and q(A(nk)) =

⋃
l≥1 Bl. Then given ε > 0, there is a Bi ∈ ⋃

l≥1 Bl with
‖q(Li)−Bi‖ < ε. Choose Ai ∈ A(nk) such that q(Ai) = Bi. Then ‖q(Li−Ai)‖ < ε,
so there is a compact operator Ci with ‖Li − Ai − Ci‖ < ε. But Bi belongs to a
finite dimensional C∗-algebra, hence there is a nontrivial polynomial p with p(Bi) =
p(q(Ai)) = 0. Thus Ai is polynomially compact, and as such, it is quasitriangular.
(This was proved initially in [12].) In particular, Ai + Ci is quasitriangular, so
that Li belongs to the norm closure of the quasitriangular operators, and is itself
quasitriangular [17]. This contradicts the previous lemma. Thus q(A(nk)) is not
approximately finite dimensional. The proof that A(nk) is not AF is easier. �
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