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On the asymptotics of certain
Wiener–Hopf-plus-Hankel determinants

Estelle L. Basor and Torsten Ehrhardt

Abstract. In this paper we determine the asymptotics of the determinants of
truncated Wiener–Hopf plus Hankel operators det(WR(a)±HR(a)) as R → ∞
for symbols a(x) = (x2/(1 + x2))β with the parameter β being of small size.
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1. Introduction

For a function a defined on the real line R such that a−1 ∈ L1(R) the truncated
Wiener–Hopf and Hankel operators acting on L2[0, R] with symbol a are defined
by

WR(a) : f(x) �→ g(x) = f(x) +
∫ R

0

k(x− y)f(y) dy,(1)

HR(a) : f(x) �→ g(x) =
∫ R

0

k(x+ y)f(y) dy,(2)
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where k is the Fourier transform of a− 1,

k(x) =
1
2π

∫ ∞

−∞
(a(ξ) − 1)e−iξx dξ.(3)

It is well-known that under the above assumption the operators WR(a) − I and
HR(a) are trace class operators. Hence the determinants

det(WR(a) ±HR(a))

are well-defined.
The purpose of this paper is to determine the asymptotics of these determinants

as R → ∞ for a particular class of even generating functions which have a single
singularity at x = 0. Before explaining the scope of this paper in more detail, let
us briefly review related problems.

The asymptotics of Wiener–Hopf determinants detWR(a) as R → ∞ for suffi-
ciently smooth nonvanishing functions a with winding number zero are described by
the Akhiezer–Kac formula (see, e.g., [14] and the references therein). A more com-
plicated situation occurs when the symbol a possesses singularities such as jumps,
zeros, or poles. Let ûβ and v̂β be the functions

v̂β(x) :=
(

x2

x2 + 1

)β

, ûβ(x) :=
(
x− 0i
x− i

)−β (
x+ 0i
x+ i

)β

.(4)

Notice that v̂β has a zero or a pole at x = 0, (except in the case where the real
part of β is zero and the singularity is of an oscillating type) while ûβ has a jump
discontinuity at x = 0 whose size is determined by the parameter β. If the symbol
is of the Fisher–Hartwig form,

â(x) = b(x)
R∏

r=1

v̂αr (x− xr)ûβr (x− xr),(5)

where |Reαr| < 1/2, |Reβr| < 1/2, x1, . . . , xR ∈ R are distinct, and b is a suffi-
ciently smooth function satisfying the assumptions of the Akhiezer–Kac formula,
then the asymptotics of the determinants are described by the continuous analogue
of the Fisher–Hartwig conjecture. One minor complication is encountered since,
except in special cases, the symbol â does not belong to L1(R), but only to L2(R).
Because then the above operators are only Hilbert–Schmidt one has to consider reg-
ularized determinants det2(I +K) = det(I +K)e−K . The conjectured asymptotic
formula for such Wiener–Hopf determinants reads

det2WR(â) ∼ G2[â]RRΩE, R→ ∞,(6)

where Ω =
∑R

r=1(α
2
R − β2

R), G2[â] is a regularized version of the geometric means
of â, and E is a complicated constant.

Formula (6) has not yet been proved in general (see [15] for the proof in the
special case where αr = 0 for all r), but it is very likely that such a proof can
be accomplished with the help of two main ingredients. One of these is a lo-
calization theorem for Wiener–Hopf determinants, which had to be analogous to
a corresponding (well-known) localization theorem for Toeplitz determinants with
Fisher–Hartwig symbols [14]. (The outline of a possible proof of such a theorem was
communicated to us by A. Böttcher [11], but the details still need to be verified.)
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The localization reduces the problem to symbols that are “pure” Fisher–Hartwig
symbols, that is where R = 1 and b(x) ≡ 1. This last problem was outstanding for a
long time and was recently solved by one of the authors and Widom [8]. They made
use of the so-called Borodin–Okounkov formula [9] (see also [7, 10]) to compare the
asymptotics of det2WR(â) with the (known) asymptotics of a Toeplitz determinant
detTn(a) where R ∼ 2n and n,R → ∞. The Borodin–Okounkov identity is an
exact identity for both the Toeplitz and Wiener–Hopf determinants and made the
comparisons possible.

We will do something very similar in this paper, in the sense that we will also
make a comparison to already known asymptotics. These will involve the discrete
analogue of the sum of the finite Wiener–Hopf and Hankel operators. The discrete
analogues are the Toeplitz and Hankel matrices,

Tn(a) = (aj−k)n−1
j,k=0, Hn(a) = (aj+k+1)n−1

j,k=0.(7)

Here a ∈ L1(T) is a function defined on the unit circle T = {t ∈ C : |t| = 1} with
Fourier coefficients

ak =
1
2π

∫ 2π

0

a(eiθ)e−ikθ dθ, k ∈ Z.

The asymptotics of Toeplitz determinants have a long and interesting history. For
the latest results and more information we refer to [17].

The study of the asymptotics of Toeplitz-plus-Hankel determinants det(Tn(a)±
Hn(a)) was begun recently. The main interest is in even symbols (i.e., a(t) = a(t−1),
t ∈ T). In this case the results for Fisher–Hartwig type symbols are nearly complete
[4]. Some results were obtained also for noneven symbols [3].

Let us now return to the topic of this paper, namely the asymptotics of Wiener–
Hopf-plus-Hankel determinants,

det(WR(â) ±HR(â)).

First of all, the case of smooth, nonvanishing and even functions (i.e, â(x) = â(−x),
x ∈ R) follows from (more general) results in [5]. In regard to Fisher–Hartwig type
symbols only the case of a function â(x) = ûβ(x − 1)û−β(x + 1) (which is a even
piecewise constant function with two jump discontinuities) was treated recently in
[6].

In this paper we consider the case of a function â(x) = v̂β(x), which is an even
function having a zero, a pole, or a singularity of oscillating type at x = 0. In order
to state the main result we introduce

D̂+
R(β) := det

[
WR(v̂β) +HR(v̂β)

]
, D̂−

R(β) := det
[
WR(v̂β) −HR(v̂β)

]
.(8)

The natural assumption on β is that Reβ > −1/2 since then v̂β ∈ L1(R).
Moreover, because WR(v̂β) and HR(v̂β) are analytic operator valued functions with
respect to β, the functions D̂±

R(β) are analytic on the set of all β ∈ C for which
Reβ > −1/2.

Theorem 1.1.
(a) If −1/2 < Reβ < 3/2, then

D̂+
R(β) ∼ e−βRRβ2/2−β/2(2π)β/22−β2+β/2 G(1/2)

G(1/2 + β)
, R→ ∞.(9)



174 Estelle L. Basor and Torsten Ehrhardt

(b) The function D̂−
R(β) admits an analytic continuation onto the set of all β ∈ C

for which Reβ > −3/2. Moreover, if −1 < Reβ < 1/2, then

D̂−
R(β) ∼ e−βRRβ2/2+β/2(2π)β/22−β2−β/2 G(3/2)

G(3/2 + β)
, R→ ∞.(10)

Therein G(z) is the Barnes G-function [1], which is an entire function defined by

G(1 + z) = (2π)z/2e−(z+1)z/2−γEz2/2
∞∏

k=1

(
(1 + z/k)ke−z+z2/(2k)

)
(11)

with γE equal to Euler’s constant. Notice that the Barnes function has the remark-
able property that G(1 + z) = Γ(z)G(z).

The proof of the above theorem will be given in Section 3.6. However, the first
statement in part (b) concerning the analytic continuablity will already follow from
Proposition 3.14 in Section 3.4.

The assumption −1 < Reβ < 1/2 rather than −3/2 < Reβ < 1/2 in part (b)
seems to be too restrictive. Unfortunately, we have not been able to remove it.

It is interesting to observe that Theorem 1.1 implies the asymptotics for Wiener–
Hopf determinants

detW2R(v̂β) ∼ e−2βRRβ2 G(1 + β)2

G(1 + 2β)
, R→ ∞,(12)

which was proved in [8]. To see this one has to use the formula

detW2R(v̂β) = det
[
WR(v̂β) +HR(v̂β)

] · det
[
WR(v̂β) −HR(v̂β)

]
,(13)

which can be easily proved by observing that W2R(v̂β) can be identified with the
block operator (

WR(v̂β) HR(v̂β)
HR(v̂β) WR(v̂β)

)
.

One has also to make use of a consequence of the duplication formula for the Barnes
G-function, which will be stated below in (20).

An outline of the paper is as follows. In the next section, we review the asymp-
totics in the discrete case. The final section (Section 3) is divided into several sub-
sections and contains the proof of Theorem 1.1. We first (Sections 3.1 and 3.2) re-
view the basic operator theory facts that are needed and proceed then (Sections 3.3
and 3.4) with identifying the determinants D̂±

n (β) and their discrete analogues with
different kinds of determinants. In Section 3.5 we prove some theorems concerning
the strong and trace class convergence of certain operators that naturally occur in
our proof. Lemma 3.15 is really the basic formula that allows us to compare the
desired determinants with those of the discrete analogues. Finally, in Section 3.6,
we will complete the proof of the main results, and, for completeness sake, we will
compute some Fredholm determinants that occur and may be interesting in other
settings.

We end this introduction by pointing out that the asymptotics of the determi-
nants of Wiener–Hopf-plus-Hankel operators with the type of discontinuity consid-
ered have important applications. The computation of such asymptotics is a crucial
step in the work of the second author’s recent proof of the complete asymptotics
of the Fredholm determinant of the sine kernel [18] (see also [16, 23]). It is also
true that such operators occur in the Laguerre random matrix ensemble in a very
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natural way when one considers special parameters (ν = ±1/2 for Bessel operators;
see [5]). Computing the asymptotics for singular symbols yields information about
certain discontinuous random variables.

2. The asymptotics in the discrete case

In what follows we are going to recall the results about the asymptotics of the
determinants

D+
n (β) := det

[
Tn(vβ) +Hn(vβ)

]
, D−

n (β) := det
[
Tn(vβ) −Hn(vβ)

]
,(14)

as n→ ∞, which were established in [3]. Therein vβ is the function

vβ(eiθ) := (2 − 2 cos θ)β , Reβ > −1/2.(15)

Let us also introduce the function

uβ(eiθ) := eiβ(θ−π), 0 < θ < 2π.(16)

It is easily seen that D±
n (β) are analytic in β for Reβ > −1/2. In the following the-

orem we will provide some information about the analytic continuability of D±
n (β)

with respect to β and about the asymptotics of D±
n (β) as n→ ∞ for fixed β.

Theorem 2.1.
(a) For each n ≥ 1 the function D+

n (β) is analytic in β on

U+ := C \ {−1/2,−3/2,−5/2, . . . }.
Moreover, for β ∈ U+,

D+
n (β) ∼ nβ2/2−β/2 (2π)β/2 2−β2/2 G(1/2)

G(1/2 + β)
, n→ ∞.(17)

(b) For each n ≥ 1 the function D−
n (β) is analytic in β on

U− := C \ {−3/2,−5/2,−7/2, . . . }.
Moreover, for β ∈ U−,

D−
n (β) ∼ nβ2/2+β/2(2π)β/2 2−β2/2 G(3/2)

G(3/2 + β)
, n→ ∞.(18)

Proof. From the proof of Thm. 7.7 in [3], it follows that

det
[
Tn(vβ) ±Hn(vβ)

]
det
[
Tn(u−β) ∓Hn(u−β)

] =
n−1∏
k=0

Γ(1 + 2β + k)Γ(1 − β + k)
k! Γ(1 + β + k)

=
G(1 + 2β + n)G(1 − β + n)
G(1 + n)G(1 + β + n)

G(1 + β)
G(1 + 2β)G(1 − β)

.

(Notice the different meaning of the notation uβ used there.) Furthermore, the
proof of Thms. 6.2 and 6.3 in [3] implies that det

[
Tn(uα) +Hn(uα)

]
is equal to

(2π)α/2 2α2/2+1 G(1/2 − α)G(1 + α)G(1 − α)

G(1/2)

G(2n)G(2n − 2α)

G(2n + 1 − α)G(2n − 1 − α)

×G(n + 3/2 − α)G(n + 1)G(n + 1 − α)G(n − 1/2 − α/2)G(n − α/2)2G(n + 1/2 − α/2)

G(n + 1/2 − α)2G(n + 1/2)G(n)G(n + 1 − 2α)G(n − α)G(n + α + 1)
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and det
[
Tn(uα) −Hn(uα)

]
is equal to

(2π)α/2 2α2/2+1 G(3/2 − α)G(1 + α)G(1 − α)

G(3/2)

G(2n)G(2n − 2α)

G(2n + 1 − α)G(2n − 1 − α)

× G(n + 3/2)G(n + 1)G(n + 1 − α)G(n − 1/2 − α/2)G(n − α/2)2G(n + 1/2 − α/2)

G(n + 1/2 − α)G(n + 1/2)2G(n)G(n + 1 − 2α)G(n − α)G(1 + α + n)
.

Combining these results we obtain

D+
n (β) = (2π)−β/2 2β2/2+1 G(3/2 + β)G(1 + β)2

G(3/2)G(1 + 2β)
G(2n)G(2n+ 2β)

G(2n+ 1 + β)G(2n− 1 + β)

× G(n+ 3/2)G(n− 1/2 + β/2)G(n+ β/2)2G(n+ 1/2 + β/2)
G(n)G(n+ 1/2)2G(n+ 1/2 + β)G(n+ β)

and

D−
n (β) = (2π)−β/2 2β2/2+1 G(1/2 + β)G(1 + β)2

G(1/2)G(1 + 2β)
G(2n)G(2n+ 2β)

G(2n+ 1 + β)G(2n− 1 + β)

× G(n+ 3/2 + β)G(n− 1/2 + β/2)G(n+ β/2)2G(n+ 1/2 + β/2)
G(n)G(n+ 1/2)G(n+ 1/2 + β)2G(n+ β)

.

Using the duplication formula for the G-function [1, p. 291],

G(z)G(z + 1/2)2G(z + 1) = G(1/2)2πz2−2z2+3z−1G(2z),(19)

it now follows that

G(1/2 + β)G(1 + β)2G(3/2 + β)
G(1 + 2β)

= (2π)β2−2β2
G(1/2)G(3/2)(20)

and
G(2n)G(2n + 2β)

G(2n + 1 + β)G(2n − 1 + β)
= 2β2−1 ×

G(n)G(n + 1/2)2G(n + 1)G(n + β)G(n + 1/2 + β)2G(n + 1 + β)

G(n − 1/2 + β/2)G(n + β/2)2G(n + 1/2 + β/2)2G(n + 1 + β/2)2G(n + 3/2 + β/2)
.

Hence

D+
n (β) = (2π)β/2 2−β2/2 G(1/2)

G(1/2 + β)

× G(n+ 3/2)G(n+ 1)G(n+ 1 + β)G(n+ 1/2 + β)
G(n+ 1/2 + β/2)G(n+ 1 + β/2)2G(n+ 3/2 + β/2)

and

D−
n (β) = (2π)β/2 2−β2/2 G(3/2)

G(3/2 + β)

× G(n+ 1/2)G(n+ 1)G(n+ 1 + β)G(n+ 3/2 + β)
G(n+ 1/2 + β/2)G(n+ 1 + β/2)2G(n+ 3/2 + β/2)

.
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From these identities it can be concluded that D±
n (β) can be continued analytically

to all of U±. Notice that the zeros in the denominator cancel with the zeros of the
term G(n+ 1 + β) in the numerator.

In order to obtain the asymtotic result, we apply the formula
R∏

r=1

G(1 + xr + n)
G(1 + yr + n)

∼ nω/2, n→ ∞,(21)

which holds under the assumption x1 + · · · + xR = y1 + · · · + yR and with the
constant ω = x2

1 + · · · + x2
R − y2

1 − · · · − y2
R. This asymptotic formula was proved,

e.g., in Lemma 6.1 of [3]. �

Once again it is interesting to remark that from the asymptotics established in
the previous theorem and from the identity

detT2n(vβ) = D+
n (β)D−

n (β)(22)

the well-known asymptotics

detT2n(vβ) ∼ (2n)β2 G(1 + β)2

G(1 + 2β)
(23)

follow by using the consequence (20) of the duplication formula for the Barnes
function. As in the case of (13) formula (22) can be proved by identifying the
symmetric matrix T2n(vβ) with a two-by-two block matrix having the entries Tn(vβ)
and Hn(vβ).

3. Proof of the main results

3.1. Preliminary facts. An operator A acting on a Hilbert space H is called
a trace class operator if it is compact and if the series consisting of the singular
values sn(A) (i.e., the eigenvalues of (A∗A)1/2 taking multiplicities into account)
converges. The norm

‖A‖1 =
∑
n≥1

sn(A)(24)

makes the set of all trace class operators into a Banach space, which forms also a
two-sided ideal in the algebra of all bounded linear operators on H. Moreover, the
estimates ‖AB‖1 ≤ ‖A‖1‖B‖ and ‖BA‖1 ≤ ‖A‖1‖B‖ hold, where A is a trace class
operator and B is a bounded operator with the operator norm ‖B‖.

A sequence of bounded linear operators An on a Hilbert space H is said to
converge strongly on H to an operator A if Anx→ Ax for all x ∈ H.

A useful property is that if B is a trace class operator, if An → A and C∗
n → C∗

strongly on H, then AnBCn → ABC in the trace norm. Therein C∗ stands for the
Hilbert space adjoint of the operator C.

If A is a trace class operator, then the operator trace “trace(A)” and the operator
determinant “det(I +A)” are well-defined. For more information concerning these
concepts we refer to [20].

A sequence of bounded linear operators An defined on a Hilbert space H is called
stable if the operators An are invertible for all sufficiently large n and if

sup
n≥n0

‖A−1
n ‖ < ∞.



178 Estelle L. Basor and Torsten Ehrhardt

Lemma 3.1. Let An be a sequence of bounded linear operators on a Hilbert space
such that An → A strongly, and assume that A is invertible. Then A−1

n → A−1

strongly if and only if the sequence An is stable.

Proof. The “if” part follows easily from the estimate

‖A−1
n x−A−1x‖ ≤ ‖A−1

n ‖ · ‖(A−An)A−1x‖.
The “only if” part follows from the Banach–Steinhaus Theorem. �

In what follows we consider some concrete classes of bounded linear operators.
For a function a ∈ L∞(T) with Fourier coefficients {an}∞n=−∞, the Toeplitz and

Hankel operators are bounded linear operators acting on 
2 = 
2(Z+) defined by
the infinite matrices

T (a) = (aj−k)∞j,k=0, H(a) = (aj+k+1)∞j,k=0.(25)

The connection to n× n Toeplitz and Hankel matrices is given by

PnT (a)Pn
∼= Tn(a), PnH(a)Pn

∼= Hn(a),(26)

where Pn is the finite rank projection operator defined on 
2 by

Pn : (x0, x1, . . . ) ∈ 
2 �→ (x0, . . . , xn−1, 0, . . . ) ∈ 
2.(27)

Toeplitz and Hankel operators satisfy the following well-known formulas:

T (ab) = T (a)T (b) +H(a)H (̃b),(28)

H(ab) = T (a)H(b) +H(a)T (̃b),(29)

where b̃(t) := b(t−1), t ∈ T.
For a functions a ∈ L∞(R) the Wiener–Hopf operator and the Hankel operator

acting on L2(R+) are defined by

W (a) = P+FM(a)F−1P+|L2(R+),(30)

H(a) = P+FM(a)F−1ĴP+|L2(R+),(31)

where F stands for the Fourier transform acting on L2(R), M(a) stands for the
multiplication operator on L2(R), P+ = M(χR+), and (Ĵf)(x) = f(−x). If a ∈
L1(R) ∩ L∞(R), then W (a) and H(a) are integal operators on L2(R) with the
kernels k(x− y) and k(x+ y), respectively, where k(x) is the Fourier transform (3)
of a. We remark that

W (ab) = W (a)W (b) +H(a)H (̃b),(32)

H(ab) = W (a)H(b) +H(a)W (̃b),(33)

where b̃(x) := b(−x), x ∈ R. Moreover,

WR(a) = PRW (a)PR|L2[0,R], HR(a) = PRH(a)PR|L2[0,R],(34)

where PR = M(χ[0,R]).
It is important to note that Wiener–Hopf and Hankel operators are related to

their discrete analogues by a unitary transform S : 
2 → L2(R+),

T (a) = S∗W (â)S, H(a) = S∗H(â)S,(35)
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where the symbols are related by

â(x) = a

(
1 + ix

1 − ix

)
.(36)

(The use of the same notation for the continuous and the discrete Hankel operators
should not cause confusion.) For sake of further reference, let us introduce the
mapping

Φ : A ∈ L(L2(R+)) �→ S∗AS ∈ L(
2).(37)

The unitary transform S is given explicitly by the composition S = FUF−1
d , where


2
F−1

d−→ H2(T) U−→ H2(R) F−→ L2(R+).

Therein H2(T) and H2(R) are the Hardy spaces with respect to T and R,

H2(T) =
{
f ∈ L2(T) : fk = 0 for all k < 0

}
,

H2(R) =
{
f ∈ L2(R) : (Ff)(x) = 0 for all x < 0

}
,

F−1
d : {xn}∞n=0 �→ f(t) =

∑∞
n=0 xnt

n is the inverse discrete Fourier transform, and

(Uf)(x) =
1√

π(1 − ix)
f

(
1 + ix

1 − ix

)
.

Under the unitary transform Fd : H2(T) → 
2, the Toeplitz and Hankel operators
can be identified with operators acting on H2(T),

T (a) ∼= PM(a)P |H2(T), H(a) ∼= PM(a)JP |H2(T),(38)

where P is the Riesz projection on L2(T), M(a) is the multiplication operator on
L2(T), and (Jf)(t) = t−1f(t), t ∈ T.

A sequence of functions an ∈ L∞(T) is said to converge to a ∈ L∞(T) in measure
if for each ε > 0 the Lebesgue measure of the set{

t ∈ T : |an(t) − a(t)| ≥ ε
}

converges to zero.

Lemma 3.2. Assume that an ∈ L∞(T) are uniformly bounded and converge to
a ∈ L∞(T) in measure. Then

T (an) → T (a) and H(an) → H(a)

strongly on 
2, and the same holds for the adjoints.

Proof. We use the identification (38). If an converges in measure to a and is
uniformly bounded, then an also converges to a in the L2-norm. Hence for all
f ∈ L∞, we have anf → af in the L2-norm. Using an approximation argument
and the uniform boundedness of an, it follows that M(an) → M(a) strongly on
L2(T). Hence the corresponding Toeplitz and Hankel operators converge strongly
on H2(T), too. Since T (an)∗ = T (a∗n) and H(an)∗ = H(ã∗n), this holds also for the
adjoints. �



180 Estelle L. Basor and Torsten Ehrhardt

3.2. Invertibility of operators I ± H(uβ). In this section we prove that op-
erators of the form I ±H(uβ) are invertible for certain β. We think of the Hankel
operators as discrete ones acting on 
2 (or, equivalently, on H2(T)). Obviously,
these invertibility results can be extended with the help of (36) and (37) to opera-
tors I ±H(ûβ) where continuous Hankel operators acting on L2(R+) are involved.

For τ ∈ T and β ∈ C we introduce the functions

ηβ(t) = (1 − t)β , ξβ(t) = (1 − 1/t)β ,(39)

where these functions are analytic in an open neighborhood of

{z ∈ C : |z| ≤ 1, z �= 1} and {z ∈ C : |z| ≥ 1, z �= 1} ∪ {∞}, resp.,

and the branch of the power function is chosen in such a way that ηβ(0) = 1 and
ξβ(∞) = 1. Notice that

vβ(t) = ηβ(t)ξβ(t), uβ(t) = ηβ(t)ξ−β(t), uβ+n(t) = (−t)nuβ(t).(40)

The essential spectrum spessA of a bounded linear operatorA defined on a Hilbert
space is the set of all λ ∈ C for which A− λI is not a Fredholm operator, that is,
not invertible modulo the compact operators.

Proposition 3.3. Let β ∈ C. Then:

(a) I +H(uβ) is Fredholm on 
2 if and only if Reβ /∈ 1
2 + 2Z.

(b) I −H(uβ) is Fredholm on 
2 if and only if Reβ /∈ −1
2 + 2Z.

Proof. We use a result of Power [21] in order to determine the essential spectrum
of the Hankel operator operators H(uβ). It says that the essential spectrum is a
union of line segments in the complex plane, namely

spessH(b) = [0, ib−1] ∪ [0,−ib1] ∪
⋃
τ∈T

Imτ>0

[
−i
√
bτ bτ , i

√
bτ bτ

]
.(41)

Therein we use the notation

bτ = (b(τ + 0) − b(τ − 0))/2 with b(τ ± 0) = lim
ε→±0

b(τeiε).

This result can also be obtained from the more general results contained in [22] and
[14, Sect. 4.95–102].

Clearly, bτ = 0 for b = uβ if τ �= 1. In the case τ = 1 we have b1 = −i sin(βπ).
Hence

spessH(uβ) = [0,− sin(πβ)],

from which the assertion is easy to conclude. �

Lemma 3.4. Let β ∈ C and Reβ > −1/2. Then detTn(vβ) �= 0 for all n ≥ 1.

Proof. This follows from the formula

detTn(vβ) =
G(1 + β)2

G(1 + 2β)
· G(1 + n)G(1 + 2β + n)

G(1 + β + n)2
,

which was proved, e.g., in [14] (see also [12] and [2]). �
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Let Pn,m (n ≤ m) stand for the set of all trigonometric polynomials of the form

p(t) =
m∑

k=n

pkt
k.(42)

We also introduce the Hardy space

H2(T) =
{
f ∈ L2(T) : fk = 0 for all k > 0

}
.(43)

which consists of those functions f for which f ∈ H2(T). Notice that f ∈ H2(T) if
and only if f̃ ∈ H2(T). In the proof of the following we will use the identification
(38).

Proposition 3.5. Let β ∈ C and n ∈ Z. Then:
(a) If Reβ ∈ (−3/2, 1/2], then

dim ker(I +H(uβ−2n)) = max{0,−n}.(44)

(b) If Reβ ∈ (−1/2, 3/2], then

dim ker(I −H(uβ−2n)) = max{0,−n}.(45)

Proof. We will treat the operators A = I + H(uβ−2n) and B = I − H(uβ−2n)
simultaneously. For the sake of easy reference we will speak of Case A and Case B,
respectively.

Assume that Reβ ∈ (−3/2, 3/2) and let f+ be in the kernel of ker(I±H(uβ−2n)).
Then

f+ ∓ t−2n−2uβ+1f̃+ = t−1f− ∈ t−1H2(T).

We multiply with ξβ+1t
n+1 and it follows that

f0 := ξβ+1t
n+1f+ ∓ t−n−1ηβ+1f̃+ = tnξβ+1f− ∈ tnH1(T).

Notice that ξβ+1 ∈ H2(T). Obviously, f̃0 = ∓f0. Comparing the Fourier coeffi-
cients, it follows that the right-hand side is zero if n < 0.

We claim that the right-hand side is also zero in the case n ≥ 0. In this case it
follows first that f0 = qn, where qn ∈ P−n,n and q̃n = ∓qn. Hence

tn+1f+ ∓ t−n−1uβ+1f̃+ = ξ−β−1qn.(46)

We distinghish three cases.

Case 1: Reβ ∈ (−3/2,−1/2). The last equation implies

η−β−1t
n+1f+ ∓ ξ−β−1t

−n−1f̃+ = ξ−β−1η−β−1qn,(47)

where ξ−β−1 ∈ H2(T), η−β−1 ∈ H2(T). For k = −n, . . . , n, the k-th Fourier
coefficient of ξ−β−1η−β−1qn is zero. This condition is equivalent to an equation
T2n+1(ξ−β−1η−β−1)q̂n = 0, where q̂n is the vector consisting of the Fourier coeffi-
cients of qn. From Lemma 3.4 it follows that qn = 0.

Case 2: Reβ ∈ [−1/2, 1/2). Since ξ−β−1 �∈ L2(T), Equation (46) implies that
qn(1) = 0. Write qn(t) = (1 − t)qn−1(t) with qn−1 ∈ P−n,n−1. Multiplying (47)
with (1 − t−1), we obtain

−η−βt
nf+ ∓ ξ−βt

−n−1f̃+ = ξ−βη−βqn−1.(48)
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Since ξ−β ∈ H2(T) and η−β ∈ H2(T), for k = −n, . . . , n − 1 the k-th Fourier
coefficient of ξ−βη−βqn−1 is zero. This condition leads us to Tn(ξ−βη−β)q̂n−1 = 0
with q̂n−1 consisting of the Fourier coefficients of qn−1. Again Lemma 3.4 implies
that qn−1 = 0. Hence qn = 0 as desired.

Case 3: Reβ ∈ [1/2, 3/2). Since ξ−β �∈ L2(T), Equation (46) implies that qn(1) =
q′n(1) = 0. Write qn(t) = (1 − t)(1 − t−1)qn−1 with P−n+1,n−1. Multipliying (47)
with (1 − t)(1 − t−1) it follows that

−η−β+1t
nf+ ± ξ−β+1t

−nf̃+ = ξ−β+1η−β+1qn−1.(49)

Notice that ξ−β+1 ∈ H2(T) and η−β+1 ∈ H2(T). As before, but now with the
Toeplitz matrix T2n−1(ξ−β+1η−β+1), we obtain qn = 0.

After having proved that qn = 0 in all cases we can conclude that Equations
(47), (48) and (49) hold in all cases with the right-hand side equal to zero. It is
now appropriate to distinguish again between several cases, but in a different way.

Case (i): −1/2 < Reβ < 1/2. From (48), i.e., −η−βt
nf+ ∓ ξ−βt

−n−1f̃+ = 0, we
obtain f+ = 0 if n ≥ 0. If n < 0, then the general solution is f+ = ηβpn with
pn ∈ P0,−2n−1 and pn(t) = ±t−2n−1p̃n(t). Notice that ηβ ∈ H2(T) and that the
set of those polynomials pn is a linear space of dimension −n.

Case (ii): −3/2 < Reβ < −1/2 and Case A. From (47), i.e.,

η−β−1t
n+1f+ − ξ−β−1t

−n−1f̃+ = 0,

it follows f+ = 0 if n ≥ 0. If n < 0, then the general solution is given by f+ =
ηβ+1pn with pn ∈ P0,−2n−2 and pn(t) = t−2n−2p̃n(t). The dimension of the space
consisting of those polynomials pn is −n.

Case (iii): 1/2 < Reβ < 3/2 and Case B. From (49), i.e.,

η−β+1t
nf+ + ξ−β+1t

−nf̃+ = 0,

we obtain f+ = 0 in case n ≥ 0. If n < 0, then the general solution is given
by f+ = ηβ−1pn with pn ∈ P0,−2n and pn(t) = −t−2np̃n(t). The space of those
polynomials is −n.

Case (iv): Reβ = −1/2. Here we proceed as in Case (i) and obtain that the
solution is of the form f+ = ηβpn if n < 0. However, ηβ �∈ L2(T), which implies
that pn(t) = (1 − t)pn−1(t). Hence the general solution is f+ = ηβ+1pn−1 with
pn−1 ∈ P0,−2n−2 and pn−1(t) = ∓t−2n−2p̃n−1(t). The dimension of the space of all
solutions is −n in Case A and −n− 1 in Case B.

Case (v): Reβ = 1/2. Here we proceed as in Case (iii) and obtain that the solution
is of the form f+ = ηβ−1pn if n < 0. Since ηβ−1 �∈ L2(T), we can write pn(t) =
(1 − t)pn−1(t). Hence the general solution is f+ = ηβpn−1 with pn−1 ∈ P0,−2n−1

and pn−1(t) = ±t−2n−1p̃n−1(t). The dimension of the space of all solutions is −n
both in Case A and in Case B.

The statement of the proposition follows easily from Cases (i)–(v). �

Theorem 3.6. Let β ∈ C. Then:
(a) I +H(uβ) is invertible of 
2 if and only if Reβ < 1/2 and Reβ /∈ 1

2 + 2Z.
(b) I −H(uβ) is invertible of 
2 if and only if Reβ < 3/2 and Reβ /∈ 3

2 + 2Z.
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Proof. The Fredholm criteria are contained in Proposition 3.3. The dimension
of the kernel and cokernel of I ± H(uβ) is given by Proposition 3.5. Notice that
H(uβ)∗ = H(uβ). �

3.3. The determinants of the discrete operators. For β ∈ C and r ∈ [0, 1)
we introduce the functions

vβ,r(t) := (1 − r/t)β(1 − rt)β , uβ,r(t) := (1 − r/t)−β(1 − rt)β , t ∈ T.(50)

We will use these functions as approximations of the functions vβ and uβ . Recalling
(40) notice that we can write

vβ(t) = (1 − 1/t)β(1 − t)β , uβ(t) = (1 − 1/t)−β(1 − t)β , t ∈ T.

Lemma 3.7.

(a) If −3/2 < Reβ < 1/2, then (I +H(uβ,r))−1 → (I +H(uβ))−1 strongly on 
2

as r → 1.
(b) If −1/2 < Reβ < 3/2, then (I −H(uβ,r))−1 → (I −H(uβ))−1 strongly on 
2

as r → 1.

Proof. We first remark that uβ,r is bounded in the L∞-norm with respect to r
and converges in measure to uβ as r → 1. Hence H(uβ,r) → H(uβ) strongly on 
2

as r → 1. In order to prove the strong convergence of the inverses of I ±H(uβ,r)
it is thus necessary and sufficient to show that the sequence I ±H(uβ,r) is stable.

Using the results of [19] one can prove that I ±H(uβ,r) is stable if and only if
the operators

I ±H(uβ) and I ±H(u−β,−1)

are invertible, where u−β,−1(t) := u−β(−t). Introducing the operator

W : {xn}∞n=0 ∈ 
2 �→ {(−1)nxn}∞n=0 ∈ 
2

and noting that

W 2 = I and WH(a)W = −H(b)(51)

with b(t) := a(−t), t ∈ T, it follows that I ±H(u−β,−1) is invertible if and only if
the operator I ∓H(u−β) is invertible. Applying Theorem 3.6 completes the proof.

In order to give some more details about the derivation of the above stability
criterion from [19] we rely on the notation introduced there. What we have to do
is to apply Theorem 2.1 and Theorem 2.2 of [19] in the setting where kλ equals the
harmonic extension (1.8). The corresponding functions K(x) and f(eiθ) (see (2.4))
evaluate to K(x) = 1/(π(1 + x2)) and f(eiθ) = (θ + π)/(2π), |θ| < π. Hence the
functions aτ (τ ∈ T) that are associated to each function a ∈ PC (see (2.5)) are
given by

aτ (eiθ) = a(τ + 0)
π + θ

2π
+ a(τ − 0)

π − θ

2π
, −π < θ < π.

We need those functions in the case a = log uβ .
The setting of Theorem 2.2 is with

Aλ = I ±H(exp(kλ(log uβ)))
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(since kλ(log uβ) = log uβ,r with λ = −1/ log r). The homomorphisms evaluate
with the help of Theorem 2.1 to:

Ψ0[Aλ] = I ±H(exp(log uβ)) = I ±H(uβ).(i)

Ψ1[Aλ] = I ±H(exp(log uβ)1) = I ±H(u−β,−1), and(ii)

Ψ−1[Aλ] = I ∓H(exp(log uβ)−1) = I.

Ψτ,τ [Aλ] =
(
I 0
0 I

)
±
(

0 PM(exp(log uβ)τ )Q

QM(exp ˜(log uβ)τ )P 0

)
(iii)

=
(
I 0
0 I

)
.

Observe that (log uβ)τ is a constant except for τ �= 1 since uβ has only a disconti-
nuity at 1. For τ = 1 we have

(log uβ)1(eiθ) = −iβππ + θ

2π
+ iβπ

π − θ

2π
= −iβθ, −π < θ < π.

Hence exp((log uβ)1(eiθ)) = e−iβθ = u−β(ei(θ+π)) = u−β,−1(eiθ), |θ| < π, which
settles (ii).

The invertibility of the operators in (i)–(iii) (which is necessary and sufficient
for the stability of the sequence Aλ = I ±H(uβ,r)) is nothing else than what was
stated above. This completes the derivation. �

A simple conclusion of the previous lemma is the following result:

Proposition 3.8. Let n ≥ 1 be fixed.
(a) If −3/2 < Reβ < 1/2, then

det
[
Pn(I +H(uβ,r))−1Pn

]→ det
[
Pn(I +H(uβ))−1Pn

]
, r → 1.

(b) If −1/2 < Reβ < 3/2, then

det
[
Pn(I −H(uβ,r))−1Pn

]→ det
[
Pn(I −H(uβ))−1Pn

]
, r → 1.

Let W(T) denote the Wiener algebra, which is the Banach algebra of all functions
defined on the unit circle with Fourier coefficients satisfying

∞∑
n=−∞

|an| <∞.(52)

A canonical Wiener–Hopf factorization in W(T) is a representation of the form

a(t) = a−(t)a+(t), t ∈ T,(53)

such that the functions a± and their inverses belong to W(T) and such that the
n-th Fourier coefficients of the functions a±1

+ (t) and a±1
− (t−1) vanish for each n < 0.

It is well-known [14] that a function a ∈ W(T) possesses a canonical Wiener–Hopf
factorization in W(T) if and only if a is nonzero on all of T and has winding number
zero. This is equivalent to the condition that a possesses a logarithm log a ∈ W(T).

Under this last condition we can define

G[a] := exp
( 1

2π

∫ 2π

0

log a(eiθ) dθ
)

(54)

as the geometric mean of a.
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Proposition 3.9. Let a ∈ W(T) be an even function which possesses a canonical
Wiener–Hopf factorization a(t) = a−(t)a+(t). Define ψ(t) = ã+(t)a−1

+ (t). Then
I ±H(ψ) is invertible on 
2 and

det
[
Tn(a) ±Hn(a)

]
= G[a]n det

[
Pn(I ±H(ψ))−1Pn

]
.(55)

Proof. First of all notice that from (28)(
T (a) ±H(a)

)(
T (a−1) ±H(a−1)

)
=
(
T (a−1) ±H(a−1)

)(
T (a) ±H(a)

)
= I.

Moreover, using (29) it follows that

T (a−1) ±H(a−1) = T (a−1
− )(I ±H(ψ))T (a−1

+ ).

Notice that also from (28)

T (a±)T (a−1
± ) = T (a−1

± )T (a±) = I.

Hence I ±H(ψ) is invertible and

T (a) ±H(a) = T (a+)(I ±H(ψ))−1T (a−).

Now we multiply from the left and right with Pn, and observing that T (a+) and
T (a−) are lower and upper triangular matrices we obtain

Tn(a) ±Hn(a) = Tn(a+)
(
Pn(I ±H(ψ))−1Pn

)
Tn(a−).

Since detTn(a±) = ([a±]0)n and [a+]0[a−]0 = exp([log a+]0 + [log a−]0) = G[a] we
conclude the desired assertion. �

Proposition 3.10. Let n ≥ 1 be fixed.
(a) If −1/2 < Reβ < 3/2, then

D+
n (β) = det

[
Pn(I +H(u−β))−1Pn

]
.(56)

(b) If −3/2 < Reβ < 1/2, then

D−
n (β) = det

[
Pn(I −H(u−β))−1Pn

]
.(57)

Proof. We apply the previous proposition with a(t) = vβ,r(t) (where 0 ≤ r < 1).
Noting that a+(t) = (1 − rt)β , ψ(t) = u−β,r(t) and G[a] = 1 we obtain

det
[
Tn(vβ,r) ±Hn(vβ,r)

]
= det

[
Pn(I ±H(u−β,r))−1Pn

]
for all β ∈ C. For Reβ > −1/2, we have that vβ,r → vβ in the L1-norm. Hence the
limit as r → 1 of the left-hand side of the previous identity is (for n fixed) equal to
det[Tn(vβ) ±Hn(vβ)]. From Proposition 3.8 we obtain the limit of the right-hand
side and thus the identities (56) and (57).

In order to justify identity (57) in the case −3/2 < Reβ ≤ −1/2 in (b) we argue
by analyticity (see Theorem 2.1). Notice that the analyticity of the determinant
of the right-hand side follows essentially from the fact that the mapping β ∈ C �→
H(uβ) ∈ L(
2) is an analytic operator-valued function. �

Obviously, the previous result in connection with Theorem 2.1 allows us to de-
termine the asymptotics of the determinants det[Pn(I ±H(u−β))−1Pn] as n → ∞
in the case where −1/2 < ±Reβ < 3/2. This will be one of the cornerstones in the
proof of the main result (see Section 3.6).
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3.4. The determinants of the continuous operators. In this subsection we
will establish the continuous analogues to the results of the previous subsection.
We introduce the functions

v̂β,ε(x) :=
(
x2 + ε2

x2 + 1

)β

, ûβ,ε(x) :=
(
x− εi

x− i

)−β (
x+ εi

x+ i

)β

,(58)

where β ∈ C and ε ∈ (0, 1]. These functions will approximate the functions v̂β and
ûβ , respectively, which were defined in (4).

Proposition 3.11. Let R > 0 be fixed.
(a) If −3/2 < Reβ < 1/2, then

det
[
PR(I +H(ûβ,ε))−1PR

]→ det
[
PR(I +H(ûβ))−1PR

]
, ε→ 0.

(b) If −1/2 < Reβ < 3/2, then

det
[
PR(I −H(ûβ,ε))−1PR

]→ det
[
PR(I −H(ûβ))−1PR

]
, ε→ 0.

Proof. We first write

PR(I ±H(ûβ,ε))−1PR = PR ∓ PR(I ±H(ûβ,ε))−1H(ûβ,ε)PR.

Noting that W 2
R = PR, WRPR = PRWR = WR, where WR := H(eixR), it follows

that
det
[
PR(I ±H(ûβ,ε))−1PR

]
= det[PR ∓Aε],

where
Aε := WR(I ±H(ûβ,ε))−1H(ûβ,ε)WR.

We claim that H(ûβ,ε)WR is a trace class operator, which converges in the trace
norm to H(ûβ)WR as ε → 0. In order to see this we apply the transform Φ (see
(37)) and obtain

Φ[H(ûβ,ε)WR] = H(uβ,r)H(hR), Φ[H(ûβ)WR] = H(uβ)H(hR),

where hR(t) := exp(R(t − 1)/(t + 1)), r = (1 − ε)/(1 + ε). Let f1, f2 be smooth
functions on T satisfying f1 + f2 = 1 such that f1(t) vanishes on a neighborhood
of t = 1 and f2(t) vanishes on a neighborhood of t = −1. By applying (29) we
decompose

H(uβ,r)H(hR) = H(uβ,r)
[
T (f1) + T (f2)

]
H(hR)(59)

=
[
H(uβ,rf̃1) − T (uβ,r)H(f̃1)

]
H(hR)

+H(uβ,r)
[
H(f2hR) −H(f2)T (h̃R)

]
.

A similar identity where uβ,r is replaced with uβ can also be established. Notice
that f2hR is a smooth function because hR has its only singularity at t = −1.
Analogously, the functions uβ,rf̃1 and uβ f̃1 are smooth, and the derivative of uβ,rf̃1
converges uniformly to the derivative of uβ f̃1 as r → 1.

Using, for instance, the estimate

‖H(a)‖1 ≤
∞∑

n=1

|an| · ‖H(tn)‖1 =
∞∑

n=1

n |an| ≤ C · ‖a′‖∞,

which follows from determining the trace norm of H(tn) and from partial inte-
gration, it is easily seen that all Hankel operators appearing within the brackets
of (59) are trace class and that H(uβ,rf̃1) → H(uβ f̃1) in the trace norm. Since
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H(uβ,r) → H(uβ) and T (uβ,r) → T (uβ) strongly on 
2 (see Lemma 3.2) we con-
clude that H(uβ,r)H(hR) → H(uβ)H(hR) in the trace norm. Hence H(ûβ,ε)WR is
a trace class operator which converges in the trace norm to H(ûβ)WR.

Using Lemma 3.7 and the transform Φ we conclude that (I ± H(ûβ,ε))−1 con-
verges strongly to (I±H(ûβ))−1 as ε→ 0. Hence Aε → A in the trace norm where
A is the trace class operator

A := WR(I ±H(ûβ))−1H(ûβ)WR.

Thus we obtain det[PR ∓Aε] → det[PR ∓A], which proves the assertion. �

Let W(R) be the set of all functions â defined on R such that a ∈ W(T) where

a

(
1 + ix

1 − ix

)
:= â(x), x ∈ R.(60)

For a function â ∈ W(R) which possesses a logarithm log â ∈ L1(R) ∩ W(R), the
geometric means is well-defined by

G[â] := exp
(

1
2π

∫ ∞

−∞
log â(x) dx

)
.(61)

Notice that the logarithm is uniquely determined.
We say that â(x) = â−(x)â+(x), x ∈ R, is a canonical Wiener–Hopf factorization

in W(R) if a(t) = a−(t)a+(t), t ∈ T, is a canonical Wiener–Hopf factorization in
W(T), where the functions a and a± are defined according to (60).

Lemma 3.12. Let a ∈ W(R) be a function which possesses a canonical Wiener–
Hopf factorization a(x) = a−(x)a+(x) in W(R) and a logarithm log a ∈ L1(R) ∩
W(R). Then WR(a−)WR(a+) − PR is a trace class operator on L2[0, R] and

det
[
WR(a−)WR(a+)

]
= G[a]R.(62)

Proof. We can assume without loss of generality that the factors are normal-
ized such that (log a±)(∞) = 0. Obviously, log a ∈ L1(R) ∩ W(R) implies that
log a ∈ L2(R) ∩ W(R). Notice that Lp(R) ∩ W(R) are Banach algebras without
unit elements. Since the Riesz projection with respect to the upper half-plane is
bounded on L2(R) ∩W(R) it follows

log a± ∈ L2(R) ∩W(R), a± − 1 ∈ L2(R) ∩W(R).

Hence WR(a± − 1) are Hilbert–Schmidt operators, while WR(a± − 1 − log a±) are
trace class operators. The latter is true since a± − 1 − log a± ∈ L1(R). On the
other hand WR(log a) = WR(log a+) +WR(log a−) is also a trace class operator.

For Hilbert–Schmidt operators K,L for which K + L is a trace class operator
the identity

det
[
(I +K)(I + L)

]
= det

[
(I +K)e−K

]
det
[
(I + L)e−L

]
exp

[
trace(K + L)

]
holds, which can be proved by an approximation argument. We use this identity in
the setting K = WR(a−) − I and L = WR(a+) − I and remark that the operator

K + L = WR(a− − 1) +WR(a+ − 1)

= WR(a− − 1 − log a−) +WR(a+ − 1 − log a+) +WR(log a)
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is trace class. Noting that WR(a±) = eWR(log a±), which implies

det
[
(I +K)e−K

]
= detWR(a−)eWR(1−a−) = exp

[
traceWR(log a− + 1 − a−)

]
,

det
[
(I + L)e−L

]
= detWR(a+)eWR(1−a+) = exp

[
traceWR(log a+ + 1 − a+)

]
,

it follows that det
[
(I +K)(I + L)

]
equals the exponential of

traceWR(log a− + 1 − a−) + traceWR(log a+ + 1 − a+) + trace(K + L)

= traceWR(log a).

Since the trace of WR(log a) is equal to R times the Fourier transform of log a
evaluated at the point ξ = 0, the assertion follows easily. �

In regard to the proof of the previous lemma we remark that in general log a± /∈
L1(R). In particular, WR(a±) − PR need not be trace class operators.

Proposition 3.13. Let a ∈ W(R) be an even function which possesses a canonical
Wiener–Hopf factorization a(x) = a−(x)a+(x) in W(R). Suppose that log a ∈
L1(R) ∩ W(R) and define ψ(x) = ã+(x)a−1

+ (x). Then I ± H(ψ) is invertible on
L2(R+), the operator PR(I ±H(ψ))−1PR − PR is trace class on L2[0, R], and

det
[
WR(a) ±HR(a)

]
= G[a]R det

[
PR(I ±H(ψ))−1PR

]
.

Proof. We can prove in the same way as in Proposition 3.9 that I ± H(ψ) is
invertible, and we derive the identity

W (a) ±H(a) = W (a+)(I ±H(ψ))−1W (a−).

Since a± are appropriate Wiener–Hopf factors, we have PRW (a+) = WR(a+) and
W (a−)PR = WR(a−). Hence

WR(a) ±HR(a) = WR(a+)
(
PR(I ±H(ψ))−1PR

)
WR(a−).

Because the operators WR(a±) are invertible and since both WR(a) +HR(a) and
WR(a−)WR(a+) are identity plus trace class, it is easy to conclude (for instance
by moving WR(a−) to the left-hand side) that PR(I ±H(ψ))−1PR is identity plus
trace class, too. In particular, we obtain

det
[
WR(a) ±HR(a)

]
= det

[
WR(a−)WR(a+)PR(I ±H(ψ))−1PR

]
= det

[
WR(a−)WR(a+)

] · det
[
PR(I ±H(ψ))−1PR

]
,

which implies the assertion by employing Lemma 3.12. �

Proposition 3.14.

(a) If −1/2 < Reβ < 3/2, then

D̂+
R(β) = e−βR det

[
PR(I +H(û−β))−1PR

]
.(63)

(b) The function D̂−
R(β) admits an analytic continuation onto the set of all β ∈ C

for which Reβ > −3/2. Moreover, if −3/2 < Reβ < 1/2, then

D̂−
R(β) = e−βR det

[
PR(I −H(û−β))−1PR

]
.(64)
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Proof. We already know that D̂±
R(β) are analytic functions on the set of all β ∈ C

for which Reβ > −1/2. Moreover, the right-hand side in (64) is analytic for −3/2 <
Reβ < 1/2. This follows from the fact that H(ûβ) is an operator-valued analytic
function in β ∈ C and that the inverses of I−H(û−β) exist for −3/2 < Reβ < 1/2.
Hence in order to prove statement (b) it suffices to prove the identity (64) for
−1/2 < Reβ < 1/2.

We apply Proposition 3.13 with a(x) = v̂β,ε(x). The corresponding Wiener–Hopf
factors are

a±(x) =
(
x± εi

x± i

)β

,

whence we obtain ψ(x) = ã+(x)a−1
+ (x) = û−β,ε(x). Noting that G[a] = e−β(1−ε) it

follows that

det
[
WR(v̂β,ε) ±HR(v̂β,ε)

]
= e−βR(1−ε) det

[
PR(I ±H(ûβ,ε))−1PR

]
.

Passing to the limit ε→ 0 and applying Proposition 3.11 the assertion follows. �
It is obvious from the previous proposition that we can determine the asymptotics

of D̂±
R(β) from the asymptotics of the determinant det

[
PR(I ± H(û−β))−1PR

]
and vice versa. This is the second ingredient in the proof of the main result (see
Section 3.6).

3.5. Asymptotic relation between discrete and continuous operators. In
this section we are going to prove that (for certain fixed β)

det
[
Pn(I ±H(uβ))−1Pn

] ∼ det
[
PR(I ±H(ûβ))−1PR

]
as n→ ∞, R→ ∞ and R = 2n+O(1).

We start with a couple of auxiliary results. The first result is one of the ingre-
dients to the proof of the Borodin–Okounkov identity as given in [7, 10].

Lemma 3.15. Let A be a trace class operator on a Hilbert space H and assume
that I +A is invertible. Let P be a projection on H and let Q = I − P . Then

det
[
P (I +A)−1P

]
=

det(I +QAQ)
det(I +A)

.(65)

Proof. We write (I +A)−1 = I − (I +A)−1A and extend the operator appearing
on the left-hand side in the operator determinant by the projection Q,

P (I +A)−1P +Q = I − P (I +A)−1AP.

It follows that

det
[
P (I +A)−1P

]
= det

[
I − P (I +A)−1AP

]
= det

[
I − (I +A)−1AP

]
= det(I +A)−1 · det

[
I +A−AP

]
= det(I +A)−1 · det

[
I +QAQ

]
,

which is the desired assertion. �
Lemma 3.16. For −1 < σ < 1, the trace norm of the integral operator with the
kernel

k(x, y) =
f1(x)f2(y)
x+ y
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on L2(M), where M ⊂ R+, is at most a constant times the square root of∫
M

|f1(x)|2 dx

x1+σ
·
∫

M

|f2(x)|2 dx

x1−σ
.

Proof. We can write this operator as a product K1K2 where K1 : L2(R+) →
L2(M) and K2 : L2(M) → L2(R+) have the kernels

k1(x, η) = f1(x)e−xηησ/2, k2(ξ, y) = f2(y)e−yξξ−σ/2.

The operators K1 and K2 are Hilbert–Schmidt and their norms can be estimated
appropriately. �

Let Kβ,ε,n and K̂β,ε,R be the integral operators on L2[ε, 1] with the kernels

Kβ,ε,n(x, y) = − sin(πβ)
π

(
(1 + x)(x− ε)
(1 − x)(x+ ε)

(1 + y)(y − ε)
(1 − y)(y + ε)

)β/2

(66)

×
(

1 − x

1 + x

)2n 1
x+ y

,

K̂β,ε,R(x, y) = − sin(πβ)
π

(
(1 + x)(x− ε)
(1 − x)(x+ ε)

(1 + y)(y − ε)
(1 − y)(y + ε)

)β/2
e−2Rx

x+ y
.(67)

Proposition 3.17. Let −1 < Reβ < 1. Then Kβ,ε,n and K̂β,ε,R are trace class
operators on L2[ε, 1] and

det(I ±QnH(uβ,r)Qn) = det(I ±Kβ,ε,n), r = 1−ε
1+ε ,(68)

det(I ±QRH(ûβ,ε)QR) = det(I ± K̂β,ε,R),(69)

where Qn = I − Pn and QR = I − PR.

Proof. The fact that Kβ,ε,n and K̂β,ε,R are trace class operators follows from
Lemma 3.16 (with σ = 0).

Let us first prove identity (68). The operator QnH(uβ,r)Qn can be identified
with the matrix kernel

k(j, k) =
1

2πi

∫
T

(
1 − rt

1 − rt−1

)β

t−2−j−k−2n dt

=
1

2πi

∫
T

(
1 − rt−1

1 − rt

)β

tj+k+2n dt.

= − 1
π

∫ ∞

−∞

(
(ξ + i)(ξ − iε)
(ξ − i)(ξ + iε)

)β (
i− ξ

i+ ξ

)j+k+2n
dξ

(i+ ξ)2
.

Therein we have employed first the substitution t �→ t−1 and then t = i−ξ
i+ξ , r = 1−ε

1+ε .
The integrand is analytic in the upper half-plane cut along the segment [iε, i]. We
deform the path of integration to this segment described back and forth. The
expression in parentheses is real and negative. The limit of its argument from the
left equals −π and from right equals π. We obtain (with the substitution ξ = iη)

k(j, k) = −2 sin(πβ)
π

∫ 1

ε

(
(1 + η)(η − ε)
(1 − η)(η + ε)

)β (1 − η

1 + η

)j+k+2n
dη

(1 + η)2
.
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This operator can be written as UV where U : L2[ε, 1] → 
2(Z+) and V : 
2(Z+) →
L2[ε, 1] are given by

U(j, ξ) = −2 sin(πβ)
π

(
1 − ξ

1 + ξ

)j−β/2(
ξ − ε

ξ + ε

)β/2 1
(1 + ξ)

,

V (η, k) =
(

1 − η

1 + η

)2n+k−β/2(
η − ε

η + ε

)β/2 1
(1 + η)

.

Under the assumption −1 < Reβ < 1, the operators U and V are Hilbert–Schmidt.
The operator V U is the integral operator with the kernel

h(η, ξ) = −2 sin(πβ)
π

(
(η − ε)(ξ − ε)
(η + ε)(ξ + ε)

)β/2

× 1
(1 + ξ)(1 + η)

∞∑
k=0

(
1 − η

1 + η

)k+2n−β/2(1 − ξ

1 + ξ

)k−β/2

= − sin(πβ)
π

(
(η − ε)(ξ − ε)
(η + ε)(ξ + ε)

(1 − η)(1 − ξ)
(1 + η)(1 + ξ)

)β/2(1 − η

1 + η

)2n 1
ξ + η

.

Hence V U = Kβ,ε,n.
Now we turn to the proof of (69). Since ûβ,ε − 1 ∈ L2(R), the operator

QRH(ûβ,ε)QR can be identified with an integral operator with the kernel

k(x, y) = lim
M→∞

1
2π

∫ M

−M

[(
(ξ − i)(ξ + εi)
(ξ + i)(ξ − εi)

)β

− 1

]
e−iξ(2R+x+y) dξ

= lim
M→∞

1
2π

∫ M

−M

[(
(ξ + i)(ξ − εi)
(ξ − i)(ξ + εi)

)β

− 1

]
eiξ(2R+x+y) dξ.

The integrand is analytic in the upper half-plane cut along the segment [iε, i] and
decays as O(ξ−1e−2R Im ξ) as ξ → ∞, Im ξ ≥ 0. We deform the path of integration
to this segment described back and forth. The expression in parentheses is real and
negative. The limit of its argument from the left equals −π and from right equals
π. Hence we obtain

k(x, y) = − sin(πβ)
π

∫ 1

ε

(
(1 + η)(η − ε)
(1 − η)(η + ε)

)β

e−(2R+x+y)η dη.

This operator can be written as a product UV , where U : L2[ε, 1] → L2(R+) and
V : L2(R+) → L2[ε, 1] are given by

U(x, ξ) = − sin(πβ)
π

(
(1 + ξ)(ξ − ε)
(1 − ξ)(ξ + ε)

)β/2

e−xξ,

V (η, y) =
(

(1 + η)(η − ε)
(1 − η)(η + ε)

)β/2

e−(2R+y)η.
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Under the assumption −1 < Reβ < 1, the operators U and V are Hilbert–Schmidt
operators. The operator V U has the kernel

h(η, ξ) = − sin(πβ)
π

(
(1 + η)(η − ε)
(1 − η)(η + ε)

(1 + ξ)(ξ − ε)
(1 − ξ)(ξ + ε)

)β/2 ∫ ∞

0

e−(2R+x)η−xξ dx

= − sin(πβ)
π

(
(1 + η)(η − ε)
(1 − η)(η + ε)

(1 + ξ)(ξ − ε)
(1 − ξ)(ξ + ε)

)β/2
e−2Rη

η + ξ
,

which is the operator K̂β,ε,R. �

Proposition 3.18. Let −1 < ±Reβ < 1/2. Then

det
[
PR(I ±H(ûβ))−1PR

]
det
[
Pn(I ±H(uβ))−1Pn

] = lim
ε→0

det(I ± K̂β,ε,R)
det(I ±Kβ,ε,n)

.(70)

Proof. Applying Lemma 3.15 with P = Pn, A = ±H(uβ,r), and P = PR, A =
±H(ûβ,ε), respectively, and Proposition 3.17, it follows that

det
[
Pn(I ±H(uβ,r))−1Pn

]
=

det(I ±Kβ,ε,n)
det(I ±H(uβ,r))

,(71)

det
[
PR(I ±H(ûβ,ε))−1PR

]
=

det(I ± K̂β,ε,R)
det(I ±H(ûβ,ε))

,(72)

where r = 1−ε
1+ε . By (35) and (36) the operators H(uβ,r) and H(ûβ,ε) are unitarily

equivalent. The invertibility of I ± H(uβ,r) for r sufficiently close to 1 follows
from Lemma 3.7. Hence the fractions on the right-hand side of (71) and (72) are
well-defined for r → 1 and ε→ 0.

In fact, one can even say more. From Proposition 3.9 with ψ chosen as in the
proof Proposition 3.10, it follows that I ± H(uβ,r) is invertible for all r ∈ [0, 1).
Similarly, from Proposition 3.13 with ψ chosen as in in proof of Proposition 3.14,
it follows that I ±H(ûβ,ε) is invertible for all ε > 0.

Taking the quotient of (71) and (72) and passing to the limit ε → 0 we obtain
the desired assertion by using Propositions 3.8 and 3.11. �

One remark is in order concerning the nonvanishing of the denominators of the
fractions in (70). First of all, a careful examination of the expression for D±

n (β)
as stated in the proof of Theorem 2.1 combined with the exact formulas of Propo-
sition 3.10 imply that the determinants det

[
Pn(I ± H(uβ))−1Pn

]
are nonzero for

all n ≥ 1 and β satisfying −3/2 < ±Reβ < 1/2. From Proposition 3.8 we can
conclude that det

[
Pn(I ± H(uβ,r))−1Pn

]
are nonzero for r sufficiently close to 1.

Formula (71) now implies that also det(I ±Kβ,ε,n) is nonzero for ε→ 0.
Our next step is to determine the limit ε → 0 on the right-hand side of (70).

Before we are able to do this, we have to establish a couple of auxiliary results.
Some of them will be needed only later on in order to analyze the expression which
is obtained for the limit.
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Let K0
β , Kβ,n and K̂β,R stand for the integral operators on L2[0, 1] with the

following kernels:

K0
β(x, y) = − sin(πβ)

π

1
x+ y

,(73)

Kβ,n(x, y) = − sin(πβ)
π

(
1 − x

1 + x

)2n−β/2(1 − y

1 + y

)−β/2 1
x+ y

,(74)

K̂β,R(x, y) = − sin(πβ)
π

(
1 − x

1 + x

)−β/2(1 − y

1 + y

)−β/2
e−2Rx

x+ y
.(75)

Moreover, let H0
β and Hβ stand for the integral operators with the following kernels

on L2[1,∞),

H0
β(x, y) = − sin(πβ)

π

1
x+ y

,(76)

Hβ(x, y) = − sin(πβ)
π

(
x− 1
x+ 1

)β/2(
y − 1
y + 1

)β/2 1
x+ y

.(77)

Finally, let Yε stand for the unitary operator

f(x) ∈ L2[ε, 1] �→ √
εf(εx) ∈ L2[1, ε−1],(78)

and let Π[a,b] stand for the projections operator f(x) �→ χ[a,b](x)f(x), which is
thought of acting on appropriate spaces L2(M), M ⊂ R.

In what follows we will prove that the above integral operators are bounded
and that certain differences between them are even trace class. Moreover, certain
invertibility results will be established, too.

Lemma 3.19. The operators K0
β and H0

β are bounded. Moreover, for Reβ /∈
±1/2 + 2Z, the operators I ±K0

β and I ±H0
β are invertible,(

I ± Π[ε,1]K
0
βΠ[ε,1]

)−1

→ (I ±K0
β)−1, ε→ 0,

strongly on L2[0, 1], and(
I ± YεΠ[ε,1]K

0
βΠ[ε,1]Y

∗
ε

)−1

→ (I ±H0
β)−1, ε→ 0,

strongly on L2[1,∞).

Proof. The operator on L2(R+) with the kernel π−1(x + y)−1 is a bounded self-
adjoint operator with spectrum equal to [0, 1]. Indeed, by a substitution x �→ e−x,
y �→ e−y it is easily seen that this operator is unitary equivalent to the integral
operator on L2(R) with the kernel (2π)−1sech ((x − y)/2). This is a convolution
operator with the symbol sech (πξ), ξ ∈ R, and thus its spectrum equals [0, 1].

The restrictions of this operator onto the spaces L2[0, 1], L2[ε, 1], L2[1, ε−1] and
L2[1,∞) are also bounded selfadjoint operators with spectrum contained in (in fact,
equal to) the interval [0, 1].

Hence under the above conditions on the parameter β, the operators

I ±K0
β , I ±H0

β , I ± Π[ε,1]K
0
βΠ[ε,1], I ± YεΠ[ε,1]K

0
βΠ[ε,1]Y

∗
ε
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are all bounded, and (in the last two cases) the norms of their inverses do not
depend on ε. It remains to observe that

Π[ε,1]K
0
βΠ[ε,1] → K0

β and YεΠ[ε,1]K
0
βΠ[ε,1]Y

∗
ε = Π[1,ε−1]H

0
βΠ[1,ε−1] → H0

β

strongly on L2[0, 1] and L2[1,∞), respectively, as ε→ 0. �

The following lemma shows, in particular, that the operators Kβ,n, K̂β,R and
Hβ are bounded for certain β.

Lemma 3.20. If Reβ < 1, then the operators

Kβ,n −K0
β and K̂β,R −K0

β

are trace class operators and

Kβ,n − K̂β,R → 0

in the trace norm as R→ ∞, n→ ∞, R = 2n+O(1). If Reβ > −1, then

Hβ −H0
β

is a trace class operator.

Proof. The assertion that Kβ,n −K0
β and Kβ,R −K0

β are trace class operators can
be proved by considering “intermediate” operators with the kernel

− sin(πβ)
π

(
1 − y

1 + y

)−β/2 1
x+ y

,

and by applying Lemma 3.16. Similarly, the fact that Hβ −H0
β is trace class can

be proved by introducing the operator with the kernel

− sin(πβ)
π

(
1 − y

1 + y

)β/2 1
x+ y

.

Finally, the trace norm of Kβ,n− K̂β,R can be estimated by a constant times the
square root of∫ 1

0

(
1 − y

1 + y

)−Re β
dy

y1/2
·
∫ 1

0

(
1 − x

1 + x

)−Re β
∣∣∣∣∣
(

1 − x

1 + x

)2n

− e−2Rx

∣∣∣∣∣
2
dx

x3/2
.

The first integral is finite, and the second one can be split (for each 0 < δ < 1) into
an integral from 0 to δ and an integral from δ to 1. The integral from δ to 1 is finite
and converges to zero as n,R → ∞. In the integral from 0 to δ we estimate the
first term in the integrand by a constant (depending on δ) and make a substitution
x �→ x/(4n) to obtain an upper estimate

Cδn
1/2

∫ 4nδ

0

∣∣∣∣∣
(

1 − x/(4n)
1 + x/(4n)

)2n

− e−xR/(2n)

∣∣∣∣∣
2
dx

x3/2
.

This equals

Cδn
1/2

∫ 4nδ

0

∣∣∣e−x+O(x2/n) − e−x+O(x/n)
∣∣∣2 dx

x3/2
.
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Omitting the constant Cδ, we split this integral into

n1/2

∫ n1/3

0

∣∣∣e−x+O(x2/n) − e−x+O(x/n)
∣∣∣2 dx

x3/2

= n1/2

∫ n1/3

0

e−2xO

(
x2

n4/3

)
dx

x3/2
= O(n−5/6)

and

n1/2

∫ 4nδ

n1/3

∣∣∣e−x+O(x2/n) − e−x+O(x/n)
∣∣∣2 dx

x3/2

= n1/2

∫ 4nδ

n1/3

∣∣∣e−x+O(δx) − e−x+O(δ)
∣∣∣2 dx

x3/2
= O(e−n1/3

),

where the last estimate holds under the assumption that δ is chosen small enough
to guarantee that O(xδ) ≤ x/2. Collecting all terms, this proves the convergence
of Kβ,n − K̂β,R in the trace norm. �

Lemma 3.21. If −3/2 < Reβ < 1/2, then the inverses of

I +Kβ,n and I + K̂β,R

exist for sufficiently large n and R, respectively, and are uniformly bounded. If
−1/2 < Reβ < 1, then the inverses of

I −Kβ,n and I − K̂β,R

exist for sufficiently large n and R, respectively, and are uniformly bounded.

Proof. We prove the statements only for the case of the operators K̂β,R. The proof
in the case of Kβ,n is analogous. Introduce the operator K̂ ′

β,R with the kernel

K̂ ′
β,R(x, y) = − sin(πβ)

π

e−2Rx

x+ y
.

Using Lemma 3.16, the difference K̂β,R − K̂ ′
β,R can be estimated in the trace norm

by a constant times the sum of the square roots of the integrals∫ 1

0

∣∣∣∣∣
(

1 − x

1 + x

)−β/2

− 1

∣∣∣∣∣
2

e−4Rx dx

x3/2
·
∫ 1

0

(
1 − y

1 + y

)−Re β
dy

y1/2
and

∫ 1

0

e−4Rx dx

x1/2
·
∫ 1

0

∣∣∣∣∣
(

1 − y

1 + y

)−β/2

− 1

∣∣∣∣∣
2
dy

y3/2
.

These terms converge to zero as R→ ∞ (under the assumption Reβ < 1). Thus it
is sufficient to prove that the inverses of I±K̂ ′

β,R are uniformly bounded. Now notice
that K̂ ′

β,R = A2
RK

0
β , where AR is the multiplication operator with the symbol e−Rx.

Since AR is uniformly bounded, the well-known relationship between the inverses
of I ± AB and I ± BA implies that the remaining problem is reduced to showing
that the inverses of I ± ARK

0
βAR are uniformly bounded. It remains to observe

that AR = A∗
R, ARA

∗
R ≤ I and that the operator with the kernel 1/(π(x+ y)) (i.e.,

K0
β without the sine-factor) is selfadjoint with its spectrum contained in [0, 1]. The

proof can now be completed as in Lemma 3.19. �
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Lemma 3.22. Let −1 < Reβ < 1. Then

Π[
√

ε,1]Kβ,ε,n = Π[ε,1]Kβ,nΠ[ε,1] + o1(1),(79)

Π[
√

ε,1]K̂β,ε,R = Π[ε,1]K̂β,RΠ[ε,1] + o1(1),(80)

YεΠ[ε,
√

ε]Kβ,ε,nY
∗
ε = Π[1,ε−1]HβΠ[1,ε−1] + o1(1),(81)

YεΠ[ε,
√

ε]K̂β,ε,RY
∗
ε = Π[1,ε−1]HβΠ[1,ε−1] + o1(1)(82)

as ε → 0, where o1(1) stands for a sequence of operators converging to zero in the
trace norm.

Proof. We are going to prove only the identities involving K̂β,ε,R. The assertions
involving Kβ,ε,n can be proved analogously.

As to identity (80), we have to show that the integral operator on L2[ε, 1] with
the kernel

χ[
√

ε,1]

(
(1 − x)(1 − y)
(1 + x)(1 + y)

)−β/2
[(

(x− ε)(y − ε)
(x+ ε)(y + ε)

)β/2

− 1

]
e−2xR

x+ y

converges in the trace norm to zero. We split this kernel into the sum of the kernels

χ[
√

ε,1]

(
(1 − x)(1 − y)
(1 + x)(1 + y)

)−β/2(
x− ε

x+ ε

)β/2
[(

y − ε

y + ε

)β/2

− 1

]
e−2xR

x+ y

and

χ[
√

ε,1]

(
(1 − x)(1 − y)
(1 + x)(1 + y)

)−β/2
[(

x− ε

x+ ε

)β/2

− 1

]
e−2xR

x+ y
.

The first of these kernels can be estimated by∫ 1

√
ε

(
1 − x

1 + x

)−Re β (
x− ε

x+ ε

)Re β
dx

x3/2
·
∫ 1

ε

(
1 − y

1 + y

)−Re β
∣∣∣∣∣
(
y − ε

y + ε

)β/2

− 1

∣∣∣∣∣
2
dy

y1/2
,

and the second one can be estimated by∫ 1

√
ε

(
1 − x

1 + x

)−Re β
∣∣∣∣∣
(
x− ε

x+ ε

)β/2

− 1

∣∣∣∣∣
2
dx

x3/2
·
∫ 1

ε

(
1 − y

1 + y

)−Re β
dy

y1/2
.

We split off from all these integrals integrals from 1/2 to 1 in order to get rid of the
singularity at 1. In the remaining integrals (from

√
ε to 1/2 and ε to 1/2, resp.)

we make a substitution x =
√
εz and y = εz, respectively. Collecting all terms

we obtain (O(1) + O(ε−1/4))(O(ε2) + O(ε1/2)) = O(ε1/4) for the first expression
and (O(ε) + O(ε3/4))O(1) = O(ε3/4) for the second expression. Hence both terms
converge to zero as ε→ 0.

As to (82), we have to prove that the integral operator on L2[1, ε−1] with the
kernel

χ[1,1/
√

ε](x)
(

(x− 1)(y − 1)
(x+ 1)(y + 1)

)β/2
[(

(1 − xε)(1 − yε)
(1 + xε)(1 + yε)

)−β/2

e−2Rxε − 1

]
1

x+ y
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tends to zero in the trace norm. We split this kernel into

χ[1,1/
√

ε](x)
(

(x− 1)(y − 1)
(x+ 1)(y + 1)

)β/2(1 − xε

1 + xε

)−β/2

e−2Rxε

[(
1 − yε

1 + yε

)−β/2

− 1

]
1

x+ y

and

χ[1,1/
√

ε](x)
(

(x− 1)(y − 1)
(x+ 1)(y + 1)

)β/2
[(

1 − xε

1 + xε

)−β/2

e−2Rxε − 1

]
1

x+ y
.

These kernels can be estimated by∫ 1/
√

ε

1

(
x− 1
x+ 1

)Re β (1 − xε

1 + xε

)−Re β
dx

x1/2

×
∫ 1/ε

1

(
y − 1
y + 1

)Re β
∣∣∣∣∣
(

1 − yε

1 + yε

)−β/2

− 1

∣∣∣∣∣
2
dy

y3/2

and∫ 1/
√

ε

1

(
x− 1
x+ 1

)Re β
∣∣∣∣∣
(

1 − xε

1 + xε

)−β/2

e−2Rxε − 1

∣∣∣∣∣
2
dx

x1/2
·
∫ 1/ε

1

(
y − 1
y + 1

)Re β
dy

y3/2
.

By a subtitution x �→ 1/x, y �→ 1/y, these integrals become precisely the above
integrals (with β replaced by −β) except that in one integral a term e−2Rε/x ap-
pears, which does affect not the argumentation. Hence also these terms converge
to zero as ε→ 0. �

In view of the following proposition, let us make the following observations. From
Lemma 3.19 and Lemma 3.20 it follows that

det(I ±K0
β)−1(I ±Kβ,n) and det(I ±K0

β)−1(I ± K̂β,R)

are well-defined operator determinants for −3/2 < Reβ < 1/2 (in the “+”-case)
and −1/2 < Reβ < 1 (in the “−”-case). Moreover, by Lemma 3.21 these operator
determinants are nonzero for sufficiently large n and R.

Furthermore it follows that the operator determinant

det(I ±H0
β)−1(I ±Hβ)

is well-defined for −1 < Reβ < 1/2 (in the “+”-case) and −1/2 < Reβ < 3/2 (in
the “−”-case), respectively. This operator determinant represents a not identically
vanishing analytic function in β (since it equals 1 for β = 0), and thus it is nonzero
except possibly on a discrete set.

Finally, from Lemma 3.19 and its proof we can conclude that the determinants
det(I ±Π[ε,1]K

0
βΠ[ε,1]) are nonzero for all β satisfying −3/2 < ±Reβ < 1/2 and all

ε > 0.
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Proposition 3.23. Let −1 < ±Reβ < 1/2. Then for each n ≥ 1 and R > 0 we
have

lim
ε→0

det(I ±Kβ,ε,n)
det(I ± Π[ε,1]K

0
βΠ[ε,1])

(83)

= det(I ±H0
β)−1(I ±Hβ) · det(I ±K0

β)−1(I ±Kβ,n),

lim
ε→0

det(I ± K̂β,ε,R)
det(I ± Π[ε,1]K

0
βΠ[ε,1])

(84)

= det(I ±H0
β)−1(I ±Hβ) · det(I ±K0

β)−1(I ± K̂β,R).

Proof. First of all we can write

det(I ± K̂β,ε,R) = det(I ± Π[ε,1]K
0
βΠ[ε,1]) det(I ±Aε ±Bε),

where

Aε := (I ± Π[ε,1]K
0
βΠ[ε,1])−1Π[ε,

√
ε](K̂β,ε,R − Π[ε,1]K

0
βΠ[ε,1]),

Bε := (I ± Π[ε,1]K
0
βΠ[ε,1])−1Π[

√
ε,1](K̂β,ε,R − Π[ε,1]K

0
βΠ[ε,1]).

Equation (80) along with the fact that K̂β,R −K0
β is trace class implies that

Aε = A+ o1(1), A := (I ±K0
β)−1(K̂β,R −K0

β)

(see also Lemma 3.19). Similarly, Equation (82) implies

YεBεY
∗
ε = B + o1(1), B := (I ±H0

β)−1(Hβ −H0
β).

Moreover,
BεAε = Y ∗

ε BYεA+ o1(1) = o1(1)
since Y∗ → 0 weakly. Hence we can conclude that

lim
ε→0

det(I ± K̂β,ε,R)
det(I ± Π[ε,1]K

0
βΠ[ε,1])

= lim
ε→0

det(I ±Aε) det(I ±Bε)

= det(I ±A) det(I ±B),

which proves the assertion (84). The case of the determinant det(I ±Kβ,ε,n) can
be treated analogously. �

The previous proposition puts us in position to identify the limit on the right-
hand side of (70).

Proposition 3.24. Let −3/2 < Reβ < 1/2 (in the “+”-case) or −1/2 < Reβ < 1
(in the “−”-case), respectively. Then for all sufficiently large n and R,

det
[
PR(I ±H(ûβ))−1PR

]
det
[
Pn(I ±H(uβ))−1Pn

] = det(I ±Kβ,n)−1(I ± K̂β,R).(85)

Proof. For −1 < ±Reβ < 1/2 and β not belonging to a certain discrete set
(namely the set where det(I ±H0

β)−1(I ±Hβ) is zero), we can take the quotient of
(83) and (84) and obtain

lim
ε→0

det(I ± K̂β,ε,R)
det(I ±Kβ,ε,n)

= det(I ±Kβ,n)−1(I ± K̂β,R).(86)
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Recall that in a remark made after Proposition 3.18 we have observed that the
determinant det(I±Kβ,ε,n) is nonzero for ε > 0 sufficiently small. Applying Propo-
sition 3.18 we obtain identity (85) under the assumptions that −1 < ±Reβ < 1/2
and that β does not belong to a certain discrete subset. We can remove this extra
assumption since both sides of the equality are analytic in β. �

Theorem 3.25. Let −3/2 < Reβ < 1/2 (in the “+”-case) or −1/2 < Reβ < 1
(in the “−”-case), respectively. Then

det
[
PR(I ±H(ûβ))−1PR

] ∼ det
[
Pn(I ±H(uβ))−1Pn

]
(87)

as R,n→ ∞ and R = 2n+O(1).

Proof. This follows from the previous proposition in connection with Lemma 3.20
and Lemma 3.21. �

3.6. Proof of the main results and remarks. Now are able to prove the main
results.

Proof of Theorem 1.1. We notice first that the proof of the first statement in
Theorem 1.1(b) follows from Proposition 3.14(b).

From Theorem 2.1 and Proposition 3.10 it follows that

det
[
Pn(I +H(uβ))−1Pn

] ∼ nβ2/2+β/2(2π)−β/22−β2/2 G(1/2)
G(1/2 − β)

, n→ ∞,

(88)

for −3/2 < Reβ < 1/2 and

det
[
Pn(I −H(uβ))−1Pn

] ∼ nβ2/2−β/2(2π)−β/22−β2/2 G(3/2)
G(3/2 − β)

, n→ ∞,

(89)

for −1/2 < Reβ < 3/2. With n = [R/2] we can apply Theorem 3.25, and we obtain

det
[
PR(I +H(ûβ))−1PR

] ∼ Rβ2/2+β/2(2π)−β/22−β2−β/2 G(1/2)
G(1/2 − β)

, R→ ∞,

(90)

for −3/2 < Reβ < 1/2 and

det
[
PR(I −H(ûβ))−1PR

] ∼ Rβ2/2−β/2(2π)−β/22−β2+β/2 G(3/2)
G(3/2 − β)

, R→ ∞,

(91)

for −1/2 < Reβ < 1. The proof now follows from Proposition 3.14. �

Let us conclude with some final observations. The results of the previous sections
allow us to establish formulas for the determinants of det

[
Pn(I±H(uβ))−1Pn

]
and

det
[
PR(I ±H(ûβ))−1PR

]
in terms of certain operator determinants. We are able

to evaluate some (but not all) of these determinants explicitly.
The formulas that we obtain might give rise to an alternative (perhaps clearer)

proof of the main result in the sense that one avoids taking the quotient of the
determinants corresponding to the discrete and continuous part right from the
beginning. This would eliminate the annoying discussion of the nonvanishing of
several determinants.
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Before establishing the formulas for the determinants det
[
Pn(I ±H(uβ))−1Pn

]
and det

[
PR(I ±H(ûβ))−1PR

]
, we are going to evaluate the asymptotics of a trun-

cated Wiener–Hopf determinant with a specific, well-behaved symbol. The result
might be of interest in its own since precisely this symbol appears also elsewhere.

Lemma 3.26. Let φβ(ξ) = 1 − sin(πβ)sech (πξ), ξ ∈ R, and −3/2 < Reβ < 1/2.
Then

detWs(φβ) ∼ e−s(β/2+β2/2)G
2(3/2 + β/2)G2(1 + β/2)G2(1 − β/2)G2(1/2 − β/2)

G(1/2)G(3/2)G(3/2 + β)G(1/2 − β)
as s→ ∞.

Proof. Using the Akhiezer–Kac formula (see e.g., [14, Sect. 10.80]), we obtain

detWs(φβ) ∼ G[φβ ]sE[φβ ], s→ ∞,

where G[φβ ] is given by (61) and evaluates to exp(−β/2 − β2/2). The constant
E[φβ ] is given by

E[φβ ] = exp
(∫ ∞

0

x (F(log φβ)(x))(F(log φβ)(−x)) dx
)

= exp
(−i

2π

∫ ∞

−∞
(log φβ,+)′(x)(log φβ,−)(x) dx

)
,

where F is the Fourier transform (3). The functions φβ,± stand for the factors of
the Wiener–Hopf factorization φβ . It is possible to compute these factors explicitly,
and one obtains φβ,±(x) = ψβ(∓ix/2) with

ψβ(z) =
Γ(3/4 + z)Γ(1/4 + z)

Γ(3/4 + β/2 + z)Γ(1/4 − β/2 + z)
.

This function is analytic in the right-half plane and has the appropriate behavior
at infinity. Replacing φβ,± by ψβ and making a change of variables z = ix gives

E[φβ ] = exp
(

1
2πi

∫ −i∞

+i∞

ψ′
β(−z)

ψβ(−z) logψβ(z) dz
)
.

A complex function argument implies that this equals the exponential of the residues
of the expression under the integral in the right half plane. Notice that due to the
logarithmic derivative only simple poles are involved. Thus E[φβ ] equals the expo-
nential of the sum (n = 0, 1, . . . ) of

logψβ(n+ 3/4) + logψβ(n+ 1/4)− logψβ(n+ 3/4 + β/2)− logψβ(n+ 1/4− β/2).

A straightforward computation now gives

E[φβ ] =
∞∏

n=0

Γ(3/2 + n)Γ(1 + n)
Γ(3/2 + β/2 + n)Γ(1 − β/2 + n)

· Γ(1 + n)Γ(1/2 + n)
Γ(1 + β/2 + n)Γ(1/2 − β/2 + n)

× Γ(3/2 + β + n)Γ(1 + n)
Γ(3/2 + β/2 + n)Γ(1 + β/2 + n)

· Γ(1 + n)Γ(1/2 − β + n)
Γ(1 − β/2 + n)Γ(1/2 − β/2 + n)

.

Using the recursion relation for the Barnes G-function we obtain that

E[φβ ] =
G2(3/2 + β/2)G2(1 + β/2)G2(1 − β/2)G2(1/2 − β/2)

G(1/2)G(3/2)G(3/2 + β)G(1/2 − β)
·R
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where

R = lim
n→∞

G(1/2 + n)G(3/2 + n)G(3/2 + β + n)G(1/2 − β + n)G4(1 + n)
G2(3/2 + β/2 + n)G2(1 + β/2 + n)G2(1 − β/2 + n)G2(1/2 − β/2 + n)

.

Using (21) we conclude that R = 1, which settles the assertion. �

Theorem 3.27. Let −1 < ±Reβ < 1/2. Then for all n ≥ 1 and R > 0 we have

detPn(I ±H(uβ))−1Pn(92)

= C±β · det(I ±H0
β)−1(I ±Hβ) · det(I ±K0

β)−1(I ±Kβ,n),

detPR(I ±H(uβ))−1PR(93)

= C±β · det(I ±H0
β)−1(I ±Hβ) · det(I ±K0

β)−1(I ± K̂β,R),

where

Cβ = 2β2 G(1/2)G(3/2)G(3/2 + β)G(1/2 − β)
G2(3/2 + β/2)G2(1 + β/2)G2(1 − β/2)G2(1/2 − β/2)

.

Proof. We obtain these fromulas from the identities (71) and (72), from Proposi-
tions 3.8 and 3.11 and from Proposition 3.23 with the constants

C±β = lim
ε→0

det(I ±H(ûβ,ε))
det(I ± Π[ε,1]K

0
βΠ[ε,1])

.

Notice in this connection that det(I ± H(ûβ,ε)) = det(I ± H(uβ,r)) for ε = 1−r
1+r .

It remains to evaluate these constants C±β . This will be done in two steps by
establishing an asymptotic formula for det(I ± H(uβ,r)) as r → 1 and for the
determinant det(I ± Π[ε,1]K

0
βΠ[ε,1]) as ε→ 0.

For the evaluation of det(I ± H(uβ,r)) we rely on the results of [3] (see The-
orem 2.5 and formulas (1.12) and (2.15) therein). These results say that for a
sufficiently smooth nonvanishing function b on T with winding number zero the
identity

det(I + T−1(b)H(b)) =
(
b+(1)
b+(−1)

)1/2

exp

(
−1

2

∞∑
k=1

k[log b]2k

)
holds, where b+ is the plus-factor of the Wiener–Hopf factorization of b. We apply
this formula with b(t) = b+(t) = (1−rt)β and b(t) = b+(t) = (1+rt)β , respectively.
We notice that

det(I + T−1(b)H(b)) = det(I +H(b+)T (b−1
+ )) = det(I +H(b+b̃−1

+ )),

which is equal to det(I ± H(uβ,r)). Notice that we rely on formula (51) in the
“−”-case. The evaluation of the right-hand side gives

det(I ±H(uβ,r)) =
(

1 − r

1 + r

)±β/2

(1 − r2)β2/2 ∼ ε±β/2+β2/2 2β2
, ε→ 0.

The determinant det(I ± Π[ε,1]K
0
βΠ[ε,1]) can be expressed as the determinant

of a finite trunctation of a Wiener–Hopf operator. Proceeding as in the proof of
Lemma 3.19, the operator K0

β is unitarily equivalent to a Wiener–Hopf operator
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W (aβ) with the symbol aβ(ξ) = − sin(πβ)sech (πξ), ξ ∈ R, while the projections
Π[ε,1] transform into Π[0,− log ε]. Thus

det(I ± Π[ε,1]K
0
βΠ[ε,1]) = detW− log ε(1 ± aβ).

Applying Lemma 3.26 with s = − log ε and φ±β = 1 ± aβ we obtain that the
determinant det(I±Π[ε,1]K

0
βΠ[ε,1]) is asymptotically equal to ε±β/2+β2/2 times the

product of the Barnes functions (with β replaced by −β in the “−”-case) appearing
in Lemma 3.26.

Combining both asymptotics yields the desired expression of C±β . �
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[12] A. Böttcher, Two elementary derivations of the pure Fisher–Hartwig determinant, preprint

arXiv math.FA/0312198, to appear in Integral Equations Operator Theory.
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[14] A. Böttcher and B. Silbermann, Analysis of Toeplitz operators, Springer, Berlin 1990,

MR 1071374 (92e:47001), Zbl 0732.47029.
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