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On the grades of order ideals

Alexandre Tchernev

Abstract. Let R be a commutative Noetherian local ring, let M be a finitely
generated R-module of finite projective dimension, and let u ∈ M be a minimal
generator of M . We investigate in a characteristic free setting the grade of the
order ideal OM (u) = {f(u) | f ∈ HomR(M, R)}. The main result is that
when M is a k-th syzygy module and pdR M ≤ 1 then gradeR OM (u) ≥ k; in
particular if M is an ideal of projective dimension at most 1 then every minimal
generator of M is a regular element of R. As an application we show that the
minimal generators of M are regular elements of R also in the case when M is
a Gorenstein ideal of grade 3, in the case when M is a three generated ideal,
and in the case when M is an almost complete intersection ideal of grade 3
and R is Cohen–Macaulay.
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Introduction

Throughout this paper R is a commutative Noetherian local ring with maximal
ideal m, and M is a finitely generated R-module of finite projective dimension. A
homomorphism of local rings φ : R −→ S is a deformation if it is surjective and
Ker(φ) = (x1, . . . , xs) for some regular sequence (x1, . . . , xs) on R.

Recall that for an element u ∈ M its order ideal OM (u) is the ideal

OM (u) = {f(u) | f ∈ HomR(M, R)}.
We are interested in the grade of OM (u) when M is a k-th syzygy module, and
u is a minimal generator of M . The best known results in this direction are due
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to Evans and Griffith [6], and Hochster and Huneke [12]. We summarize them as
follows.

Theorem 1. ([6], [12]). The following conditions are equivalent:
(1) For every deformation φ : R −→ S, every k ≥ 0, every k-th syzygy S-module

N of finite projective dimension over S, and every minimal generator v of
N one has gradeS ON (v) ≥ k.

(2) For every deformation φ : R −→ S, every first syzygy S-module N of finite
projective dimension over S, and every minimal generator n of N one has
gradeS ON (v) ≥ 1.

(3) For every deformation φ : R −→ S, every ideal I in S with pdS S/I < ∞
and every minimal generator y of I one has that y is regular in S.

(4) The syzygy theorem [5, Theorem 3.15] holds for every ring S such that there
is a deformation φ : R −→ S.

Furthermore, if R/p has a balanced big Cohen–Macaulay module for every prime p
of R, then the conditions hold. In particular, they hold if R contains a field (by [9]
and [7]), or if dim R ≤ 3 (by [8], [11], and [7]).

The difficulty of proving that the four conditions of Theorem 1 hold without the
assumption that R contains a field is further illuminated by the result of Simon
and Strooker [15] who show that Condition (1) is true for all Gorenstein rings R if
and only if Hochster’s Canonical Element Conjecture [10] is true for all rings R.

Our goal in this short note is to examine in a characteristic free setting special
cases of the conditions. In Section 1 we show that the conclusion of Condition (1)
holds in characteristic free setting when we consider syzygies of projective dimension
at most one. In particular, this yields a nice “supplement” to the Hilbert–Burch
theorem.

In Section 2 we examine an alternative proof of the results from Section 1 that
was pointed out by the referee and use a key observation in this alternative argu-
ment to show that the conclusion of Condition (1) holds when we consider k-th
syzygies of perfect Gorenstein ideals of grade k + 2. In particular, the conclusion
of Condition (3) holds for Gorenstein ideals of grade 3, which yields a supplement
to the Buchsbaum–Eisenbud structure theorem [4] for these ideals.

In Section 3 we show that the conclusion of Condition (3) holds for three-
generated ideals of finite projective dimension. This result is interesting in view of
Bruns’ theorem [1] that for k ≥ 3 every k-th syzygy of finite projective dimension
is also the k-th syzygy of R/I for some three-generated ideal I of finite projective
dimension.

Finally, in Section 4 we show that the conclusion of Condition (3) holds for
almost complete intersection ideals of grade 3 and of finite projective dimension
over Cohen–Macaulay rings.

I would like to thank the referee for pointing out the existence of an alternative
proof to Theorem 2; that remark inspired the content of Section 2.

1. Syzygies of projective dimension at most 1

Our main result is the following theorem.

Theorem 2. Let M be a k-th syzygy R-module with pdR M ≤ 1. Let u be a
minimal generator of M . Then gradeR OM (u) ≥ k.
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Proof. By a standard reduction argument, see, e.g., [6, Lemma 2.5], it suffices to
consider the case when k = 1 and pdR M = 1. Let

0 −→ F
φ−→ G

π−→ M −→ 0

be a minimal free resolution of M . We can choose a basis g1, . . . , gn of G such
that π(gn) = u. Let I = OM (u) and let J = (0 : I). Since M is a first syzygy,
we may assume without loss of generality that M ⊂ mH for some free R-module
H, and therefore I is generated by the entries in the last column of a matrix for
π, considered as a minimal map of free R-modules π : G −→ H. Then we have
Jgn ⊂ φ(F ) ∩ JG. However, L = φ(F ) is a free R-module. Thus N = Jgn is a
submodule of the free R-module L such that IN = 0, therefore N ⊂ JL. It follows
that Jgn is inside JR, where R is the ideal generated by the elements in the last
row of a matrix for φ. Since the map φ is minimal it follows that J ⊆ mJ , therefore
J = 0. It follows that gradeR I ≥ 1. �

As an imediate consequence we obtain the following nice “supplement” to the
Hilbert–Burch theorem:

Corollary 3. Let I be an ideal in a Noetherian local ring R such that pdR R/I ≤ 2.
Then every minimal generator of I is a regular element of R. �

2. Syzygies of Gorenstein ideals

The main result here is:

Theorem 4. Let I be a perfect Gorenstein ideal of grade k + 2, and let M be the
k-th syzygy of R/I. Then gradeR OM (u) ≥ k for every minimal generator u of M .

In order to prove this theorem we examine a slightly more complicated alternative
proof of Theorem 2 that was pointed out by the referee, and that is based on
a refined version (see, e.g., [5, Lemma 2.9]) of the Eagon–Northcott bound on
the height of determinantal ideals. A main point in that proof is the following
observation:

Observation 5. Let u be a minimal generator of an R-module M , let

F
φ−→ G

π−→ M −→ 0

be a minimal free presentation of M with r = rankφ, and choose a basis g1, . . . , gn
of G such that π(gn) = u. Choose also a basis for F and let X be the n×m matrix
for φ in these bases. Let X ′ be the (n − 1) × m matrix obtained by removing the
last row of X. As shown in [5, Proof of Theorem 2.8], the ideal of maximal minors
I ′ = Ir(X ′) is contained inside the order ideal OM (u). Thus we obtain the key
inequalities

gradeR OM (u) ≥ gradeR I ′ ≥ gradeR Ir(φ) − heightR/I′
(
Ir(φ)/I ′

)
(6)

≥ gradeR Ir(φ) − (m − r + 1)

where the last inequality follows by [5, Lemma 2.9].
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Proof of Theorem 4. It is immediate from the assumptions of the theorem and
from the acyclicity criterion of Buchsbaum and Eisenbud [2] that M has a minimal
free resolution of the form

0 −→ R
ψ−→ F

φ−→ G −→ 0

such that grade Ir(φ) ≥ k + 2. The desired conclusion is now immediate from the
inequalities (6). �

The following special case of Theorem 4 is worth explicit mention, as it supple-
ments the Buchsbaum–Eisenbud structure theorem [4].

Corollary 7. Let I be a perfect Gorenstein ideal of grade 3. Then every minimal
generator of I is a regular element of R. �

3. Three-generated ideals of finite projective dimension

As an application of Theorem 2 we consider ideals of finite projective dimension
that are generated by three elements. This class of ideals is of interest because of
Bruns’ result [1] that when k ≥ 3 every k-th syzygy of finite projective dimension is
also the k-th syzygy of R/I for some ideal I from the class. We have the following
result:

Theorem 8. Let I be an ideal of finite projective dimension over a local ring R.
If I is minimally generated by three elements then every minimal generator of I is
a regular element of R.

Proof. As a standard consequence of the structure theorems of Buchsbaum and
Eisenbud, see [3, Corollary 5.2], we can always assume that grade I ≥ 2. If also
grade I ≥ 3, then I is a complete intersection and the theorem is true. Thus we
assume that grade I = 2, and that y is a minimal generator of I such that the ideal
A = (0 : yR) is nonzero in R. We complete y to a minimal system of generators
(y, x1, x2) of I such that (x1, x2) is a regular sequence. Let J = ((x1, x2) : I), and
let B = (0 : A). If p is a prime ideal of R such that B + J ⊂ p then y is still
a zerodivisor in Rp and is still a minimal generator of Ip which is an ideal in Rp

of grade at least 2 and of finite projective dimension; and therefore is minimally
generated by three elements. Thus we may always assume that the maximal ideal
of R is a minimal prime of B + J . Furthermore, if the projective dimension of R/I
is two or less, the result follows from Theorem 2. Thus we may also assume that
d = pdR R/I ≥ 3. But then pdR R/J = d − 1, hence m is not an associated prime
ideal for R/J . Therefore, due to the results of Peskine and Szpiro [13], Hochster [9],
and Roberts [14], there exists an associated prime p 	= m of R/J which contains
B. This however contradicts our assumptions on m being the minimal prime of the
ideal B + J . �

4. Almost complete intersections

Essentially the same proof as in Theorem 8 also yields:

Theorem 9. Let R be a Cohen–Macaulay local ring, and let I be an almost com-
plete intersection ideal of R of grade 3 (thus I is minimally generated by 4 elements)
and of finite projective dimension. Then every minimal generator of I is a regular
element of R.
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Proof. Let y be a minimal generator of I which is a zero divisor in R, and complete
y to a minimal system of generators (y, x1, x2, x3) of I such that (x1, x2, x3) is a
regular sequence in R. Let the ideals A, B, and J be defined as in the proof of
Theorem 8, and the argument given there shows that we may assume that m is the
minimal prime of B + J . If pdR R/I = 3 it follows that I is a perfect ideal, hence
so is J , therefore the ring R/J is Cohen–Macaulay and so the associated primes
of R/J are the minimal primes of J . Thus (as in the proof of Theorem 8) there
exists a minimal prime of J that contains B, hence m must be that minimal prime
of J , and therefore dimR = 3. But then our result is true by Theorem 1. Thus
we may assume that d = pdR R/I ≥ 4. But then pdR R/J = d − 1, and we can
reach contradiction with the minimality of m over B + J as in end of the proof of
Theorem 8. �

Remark 10. It is clear from the proof above that the theorem will be true without
the Cohen–Macaulay assumption on R if one can prove it for a perfect almost
complete intersection of grade 3. Similarly, the theorem will be true for any almost
complete intersection of finite projective dimension if one can prove it for the perfect
ones.
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