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The Choquet–Deny theorem and distal properties
of totally disconnected locally compact groups of

polynomial growth

Wojciech Jaworski and C. Robinson Edward Raja

Abstract. We obtain sufficient and necessary conditions for the Choquet–
Deny theorem to hold in the class of compactly generated totally disconnected
locally compact groups of polynomial growth, and in a larger class of totally

disconnected generalized FC-groups. The following conditions turn out to be
equivalent when G is a metrizable compactly generated totally disconnected
locally compact group of polynomial growth:
(1) The Choquet–Deny theorem holds for G.
(2) The group of inner automorphisms of G acts distally on G.
(3) Every inner automorphism of G is distal.
(4) The contraction subgroup of every inner automorphism of G is trivial.
(5) G is a SIN group.
We also show that for every probability measure μ on a totally disconnected
compactly generated locally compact second countable group of polynomial
growth, the Poisson boundary is a homogeneous space of G, and that it is a
compact homogeneous space when the support of μ generates G.
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1. Introduction

Let μ be a regular Borel probability measure on a locally compact group G. A
bounded Borel function h : G → C is called μ-harmonic if it satisfies

(1.1) h(g) =
∫
G

h(gg′)μ(dg′), g ∈ G.

The classical Choquet–Deny theorem asserts that when G is abelian then every
bounded continuous μ-harmonic function is constant on the (left) cosets of the
smallest closed subgroup, Gμ, containing the support of μ.

The Choquet–Deny theorem remains true for many nonabelian locally compact
groups, e.g., 2-step nilpotent groups [10], nilpotent [SIN] groups [14], and compact
groups. But it does not hold for all groups. If the theorem holds for a probability
measure μ then Gμ must necessarily be an amenable subgroup [7, 30]. It follows
that groups for which the theorem is valid are necessarily amenable. However, the
theorem is not true for every amenable group [23].

The stronger condition, that G have polynomial growth, is sufficient for the the-
orem to hold when G is a finitely generated (discrete) group [23, 21]. When G is
finitely generated and solvable then the theorem holds if and only if G has poly-
nomial growth [21]. In general, the theorem fails for discrete groups of polynomial
growth that are not finitely generated, in particular, it is not true for locally finite
groups [23]. It appears that the largest class of discrete groups known today for
which the Choquet–Deny theorem is true is the class of FC-hypercentral groups
[15]. This class is a proper subclass of the class of discrete groups of polynomial
growth, while finitely generated FC-hypercentral groups are precisely the finitely
generated groups of polynomial growth. We do not know of any discrete groups for
which the Choquet–Deny theorem is true and which are not FC-hypercentral.

A probability measure μ on a locally compact group G is called spread out if
for some n the convolution power μn is nonsingular. With the restriction that μ
be spread out the Choquet–Deny theorem holds for all locally compact nilpotent
groups [2, 19] and for compactly generated locally compact groups of polynomial
growth [19]. When G is almost connected, then G has polynomial growth if and
only if the Choquet–Deny theorem holds for every spread out measure [19]. The
same is true when G is a Zariski-connected p-adic algebraic group [27, Theorem
4.2]. While it remains an open question whether the spread out assumption can be
disposed of when G is nilpotent,1 it is known that the Choquet–Deny theorem is
not true for arbitrary probability measures on compactly generated locally compact
groups of polynomial growth [16, Remark 3.15].

The main goal of the present article is to obtain necessary and sufficient con-
ditions for the validity of the Choquet–Deny theorem in the class of compactly
generated totally disconnected locally compact groups of polynomial growth, and
in a larger class of totally disconnected ‘generalized FC-groups’ [3, 24]. It turns
out that the key to finding such conditions is a study of distal properties of totally
disconnected groups. This motivates our investigations in the next section, which
can also be of quite independent interest. The Choquet–Deny theorem for general-
ized FC-groups is discussed in Section 3. In Section 4 we remark on the structure

1 The recently published proof [28] is wrong (the implications (i)⇒(ii) and (i)⇒(iii) in the key
Lemma 2.5 are false).
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of boundaries of random walks on compactly generated totally disconnected groups
of polynomial growth and certain related groups.

2. Distal properties of totally disconnected locally compact
groups

Let G be a Hausdorff topological group and Γ a subgroup of Aut(G), the group
of topological automorphisms of G. We will say that Γ is distal (or acts distally on
G) if for any x ∈ G − {e}, the identity element e is not in the closure of the orbit
Γx = {γ(x) ; γ ∈ Γ}. A single automorphism γ ∈ Aut(G) will be called distal if
the subgroup, 〈γ〉, it generates acts distally on G. An element g of G will be called
distal if the corresponding inner automorphism γ(·) = g · g−1 is distal. We will say
that G is distal if the group Inn(G) of inner automorphisms of G acts distally on G.

Trivially, if G is distal then every g ∈ G is distal. While the converse is not true in
general, Rosenblatt [29] proved that when G is an almost connected locally compact
group then G is distal if and only if every g ∈ G is distal; moreover G is distal if and
only if it has polynomial growth. According to [26] this remains true also for certain
classes of p-adic Lie groups. However, there are many locally compact groups of
polynomial growth that are not distal. For example, the semidirect product K×τ Z

where K is a nontrivial compact metric group and τ is an ergodic automorphism
of K, will never be distal.

Given γ ∈ Aut(G) the contraction subgroup of γ is the subgroup C(γ) = {x ∈ G ;
limn→∞ γn(x) = e}. When γ is the inner automorphism γ(·) = g · g−1, we will
write C(g) for C(γ). Obviously, if τ ∈ Aut(G) is distal then C(τ) = C(τ−1) = {e}.
When G is a Lie group, the three conditions: Γ is distal; every γ ∈ Γ is distal; and,
C(γ) = {e} for every γ ∈ Γ , are equivalent for every subgroup Γ of Aut(G) [1].

Recall that a subgroup Γ of Aut(G) is equicontinuous (at e) if and only if G
admits a neighbourhood base at e consisting of neighbourhoods that are invariant
under Γ . When G is locally compact and totally disconnected then Γ is equicontin-
uous if and only if compact open subgroups invariant under Γ form a neighbourhood
base at e. Equicontinuous automorphism groups are obviously distal. A SIN group
is a topological group G for which Inn(G) is equicontinuous. SIN groups are distal
but, in general, distal groups are not SIN groups (e.g., a nilpotent group need not
be SIN but every nilpotent group is distal [29]).

Our goal in this section is to prove that for a class of compactly generated totally
disconnected locally compact groups, including groups of polynomial growth, the
four conditions: G is distal; every g ∈ G is distal; C(g) = {e} for every g ∈ G; and,
G is SIN , are equivalent. In the following section we will show that for this class of
groups the four conditions and the condition that G have polynomial growth, are
equivalent to the condition that the Choquet–Deny theorem hold for G.

Some of the recent results of Baumgartner and Willis on contractions subgroups
[4], based on Willis’ theory of tidy subgroups [32], play a key role in our argument.
These results are proven for metrizable groups, hence, in many of our results we
need to assume metrizability.2

Proposition 2.1. If G is a totally disconnected metrizable locally compact group
then for every τ ∈ Aut(G) the following conditions are equivalent :

2See note added in proof.
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(i) τ is distal.
(ii) C(τ) = C(τ−1) = {e}.
(iii) For every compact open subgroup U there exists k = 0, 1, . . . such that

τ
(⋂k

i=0 τ i(U)
)

=
⋂k

i=0 τ i(U).
(iv) 〈τ〉 is equicontinuous.

Proof. The only nonobvious implication in the chain (i)⇒(ii)⇒(iii)⇒(iv)⇒(i) is
(ii)⇒(iii). Let U be a compact open subgroup. Since C(τ) is closed, by [4,
Theorem 3.32] there exists k such that V =

⋂k
i=0 τ i(U) is tidy for τ . But as

C(τ) = C(τ−1) = {e}, [4, Proposition 3.24] implies that s(τ) = s(τ−1) = 1
where s : Aut(G) → N is the scale function. Since s(τ) = [τ(V ) : V ∩ τ(V )]
and s(τ−1) = [τ−1(V ) : V ∩ τ−1(V )], so τ(V ) = V . �

Lemma 2.2. Let Γ be a subgroup of Aut(G) where G is a totally disconnected
metrizable locally compact group. If τ1, τ2, . . . , τn ∈ Aut(G) are distal and for every
j = 1, 2, . . . , n, [τj , 〈Γ ∪ {τ1, . . . , τj−1}〉] ⊆ 〈Γ ∪ {τ1, . . . , τj−1}〉, then for every
compact open subgroup U invariant under Γ there exists a compact open subgroup
V ⊆ U invariant under 〈Γ ∪ {τ1, . . . , τn}〉.

Proof. It is clear that the lemma follows by induction once it is verified for n = 1.
So we suppose that n = 1.

By Proposition 2.1 there exists k such that V =
⋂k

i=0 τ i
1(U) satisfies τ1(V ) = V .

It is enough to show that γ(V ) = V for every γ ∈ Γ . But our assumption implies
that [τ i

1, Γ ] ⊆ Γ for every i = 0, 1, . . . . Hence, given γ ∈ Γ we obtain γ(V ) =⋂k
i=0(γτ i

1)(U) =
⋂k

i=0(τ
i
1γ[γ, τ i

1])(U) =
⋂k

i=0 τ i
1(U) = V . �

Lemma 2.3. Let Γ be a subgroup of Aut(G) where G is a totally disconnected
metrizable locally compact group. Suppose that every γ ∈ Γ is distal and that Γ has
a normal equicontinuous subgroup Γ1 with the quotient Γ/Γ1 containing a polycyclic
subgroup of finite index. Then Γ is equicontinuous.

Proof. Let Ω be a neighbourhood of e. Denote by P the polycyclic subgroup of
finite index in Γ/Γ1 and let P0 = P , P1 = [P, P ], P2 = [P1, P1], . . . , Pm = {Γ1} be
the derived series for P . Write π for the canonical homomorphism π : Γ → Γ/Γ1

and put P̂j = π−1(Pj) for j = 0, 1, ..., m.
Suppose that for some j = 1, 2, ..., m, V ⊆ Ω is a compact open subgroup

invariant under P̂j . We will show that there is then a compact open subgroup
W ⊆ V invariant under P̂j−1. Now, since P is polycyclic, Pj−1 is generated by
a finite set {p1, . . . , pn}. For every i = 1, 2, . . . , n find τi ∈ P̂j−1 with pi = π(τi).
Applying Lemma 2.2 to P̂j and τ1, . . . , τn we conclude that there is a compact open
subgroup W ⊆ V invariant under 〈P̂j ∪ {τ1, . . . , τn}〉 = P̂j−1.

Our assumption is that there is a compact open subgroup V ⊆ Ω such that
γ(V ) = V for every γ ∈ P̂m = Γ1. With the aid of the preceding paragraph it
then follows that there is a compact open subgroup W ⊆ Ω invariant under P̂0.
Next, since P = P0 has finite index in Γ/Γ1, P̂0 has finite index in Γ . Hence, the
intersection U =

⋂
γ∈Γ γ(W ) is a compact open subgroup invariant under Γ and

contained in Ω. �
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Corollary 2.4. Let G be a totally disconnected metrizable locally compact group.
If a subgroup Γ of Aut(G) contains a polycyclic subgroup of finite index then the
following conditions are equivalent :

(i) Γ is distal.
(ii) Every γ ∈ Γ is distal.
(iii) Γ is equicontinuous.

As the following examples show, ‘polycyclic’ in Corollary 2.4 cannot be replaced
by ‘solvable’. In fact, the three conditions can be different for countable abelian
groups of automorphisms. We do not know if ‘polycyclic’ can be replaced by ‘finitely
generated solvable’.

Example 2.5. Let ϕ : R → T denote the function ϕ(t) = e2πit and let H be any
infinite subgroup of ϕ(Q). Note that every h ∈ H has finite order. Let G be
the totally disconnected compact abelian group G = ZH

2 . H acts on G by left
translations: (hf)(x) = f(h−1x) (h ∈ H , f ∈ G, x ∈ H). Let Γ be the resulting
subgroup of Aut(G). Then every element of Γ is distal because it has finite order.
However, Γ is not distal. Indeed, let f ∈ G be the function f(x) = δ1x and let U
be any neighbourhood of e in G. Then for some finite subset F ⊆ H , U contains
the set {g ∈ G ; g(x) = 0 for every x ∈ F}. Hence, if h ∈ H − F then (hf)(x) = 0
for every x ∈ F , i.e., hf ∈ U .

Thus for a countable abelian group of automorphisms (ii) does not imply (i) (nor
(iii)).

Example 2.6. Let for j ∈ Z, Gj = {x ∈ ZZ
2 ; xi = 0 for every i ≤ j} and let

G =
⋃

j∈Z
Gj . There is a locally compact totally disconnected group topology on

G in which the subgroups Gj , j ∈ Z, form a neighbourhood base at e (and are
compact open). Given j ∈ N define τj ∈ Aut(G) by τj(x) = y where yi = xi for
i ∈ Z − {±j}, yj = x−j , and y−j = xj . The subgroup Γ of Aut(G) generated by
τj , j ∈ N, is then abelian and distal: if x �= e and j is the smallest integer with
xj �= 0, then τ(x) /∈ G|j| for any τ ∈ Γ . However, Γ is not equicontinuous because
if it were, there would exist k ≥ 0 with τ(x) ∈ G0 for every x ∈ Gk and τ ∈ Γ .
However, if x = (δk+1 n)n∈Z then x ∈ Gk, but (τk+1(x))−k−1 = xk+1 = 1, so that
τk+1(x) /∈ G0.

Thus for a countable abelian group of automorphisms (i) does not imply (iii).

Theorem 2.7. Suppose that a totally disconnected metrizable locally compact group
G admits an open normal SIN subgroup N such that the quotient G/N contains a
polycyclic subgroup of finite index. Then the following conditions are equivalent :

(i) G is distal.
(ii) Every g ∈ G is distal.
(iii) G is SIN.

Proof. (ii)⇒(iii): Let Γ = Inn(G) and α : G → Γ be the canonical homomor-
phism. Put Γ1 = α(N). Γ1 is a normal subgroup of Γ and Γ/Γ1 is a homomorphic
image of G/N . Therefore Γ/Γ1 contains a polycyclic subgroup of finite index.
Since N is open and SIN, it follows that Γ1 is equicontinuous. Thus Lemma 2.3
applies. �

Following [3] and [24] we call a locally compact group a generalized FC-group if
G has a series G = G0 ⊇ G1 ⊇ . . . ⊇ Gn = {e} of closed normal subgroups such
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that for every i = 0, 1, . . . , n − 1, Gi/Gi+1 is a compactly generated group with
precompact conjugacy classes. Every compactly generated locally compact group
of polynomial growth is a generalized FC group [24, Theorem 2]. Every closed
subgroup of a generalized FC group is compactly generated [24, Proposition 2]. A
locally compact solvable group G is a generalized FC group if and only if each closed
subgroup of G is compactly generated [10, Théorème III.1]. Using Propositions 1
and 7(ii) in [24] it is straighforward to give the following characterization of totally
disconnected generalized FC groups:

Proposition 2.8. A totally disconnected locally compact group G is a generalized
FC group if and only if it admits a compact open normal subgroup N with the
quotient G/N containing a polycyclic subgroup of finite index.

Theorem 2.9. Conditions (i), (ii), and (iii) of Theorem 2.7 are equivalent when
G is a totally disconnected generalized FC-group.

Proof. When G is metrizable, this is a special case of Theorem 2.7. We need to
show that the implication (ii)⇒(iii) is also true when G is not metrizable.

Note that G is necessarily σ-compact (as it is compactly generated). Let U
be a neighbourhood of e contained in the subgroup N of Proposition 2.8. Find a
neighbourhood V of e with V 2 ⊆ U . By [11, Theorem 8.7] V contains a compact
normal subgroup K such that G/K is metrizable. Let π : G → G/K denote the
canonical homomorphism. Since N is compact, we can use the theorem stating
that a factor of a distal flow is distal [5, Corollary 6.10, p. 52] to conclude that the
restriction of every inner automorhism of G/K to N/K is distal. As N/K is open,
every g ∈ G/K is then distal. Hence, by Theorem 2.7, G/K is SIN. Thus π(V )
contains a compact open normal subgroup W . Then Ŵ = π−1(W ) ⊆ V K ⊆ U and
Ŵ is a compact open normal subgroup of G. �

Since nilpotent groups are distal, Theorem 2.9 implies that a totally disconnected
compactly generated locally compact nilpotent group is a SIN group, a result due
to Hofmann, Liukkonen, and Mislove [12].

We note that for totally disconnected groups of polynomial growth which are not
compactly generated, conditions (i), (ii), (iii) are different. In fact, the equivalence
fails already for metabelian groups of polynomial growth. Examples of totally
disconnected 2-step nilpotent groups which are not SIN groups can be found in [12]
and [31]. An example of a metabelian group of polynomial growth which satisfies
(ii) but not (i) (nor (iii)) is also readily available:

Example 2.10. Let H be as in Example 2.5 and let W be the complete wreath
product W = Z2 � H . Evidently, W is not distal but every w ∈ W has finite order,
so is distal.

In the remainder of this section we prove that conditions (i), (ii), (iii) of The-
orem 2.7 are equivalent for every metrizable compactly generated totally discon-
nected locally compact metabelian group.

Lemma 2.11. If a locally compact group G contains a normal finitely generated
subgroup N and a compact set K such that KN = G, then G is a SIN group.

Proof. Recall that the group of automorphisms of a finitely generated group is
countable. Since the centralizer CG(N) of N in G is the kernel of the homomorphism
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which maps g ∈ G to the restriction of the inner automorphism g · g−1 to N , it
follows that G/CG(N) is countable. As CG(N) is a closed subgroup and G is of
the second category, we conclude that CG(N) is open.

Let U be a neighbourhood of e. Put V = U ∩ CG(N) and let V ′ be a neigh-
bourhood of e with g−1V ′g ⊆ V for every g ∈ K. Then W =

⋂
g∈G gV g−1 =⋂

g∈K gV g−1 ⊇ V ′. Thus W is a neighbourhood of e, invariant under Inn(G) and
contained in U . �

Proposition 2.12. If a compactly generated totally disconnected locally compact
group G contains a closed cocompact normal SIN subgroup, then G is a SIN group.

Proof. Let N denote the closed cocompact normal SIN subgroup and let a compact
open subgroup U of G be given. A routine argument shows that Inn(G) acts
equicontinuously on N . Hence, U contains a compact subgroup V of N which is
open in N and normal in G.

Let π : G → G/V denote the canonical homomorphism. Since N is cocompact, it
is compactly generated [25]. Since V is open in N , π(N) is then finitely generated.
It is also normal and there is a compact K ⊆ G/V with Kπ(N) = G/V . Hence,
by Lemma 2.11 G/V is a (totally disconnected) SIN group. Thus π(U) contains
a compact open normal subgroup W . Then π−1(W ) is a compact open normal
subgroup contained in UV = U . �

It is well-known that Proposition 2.12 is false for locally compact groups in
general (e.g., the motion groups). The following example shows that it can also fail
for totally disconnected groups which are not compactly generated:

Example 2.13. Let Z∗N = {x ∈ ZN ; xi �= 0 for finitely many i} and give Z∗N the
discrete topology. Give the multiplicative group {−1, 1}N the product topology.
Let ϕ : {−1, 1}N → Aut(Z∗N) be given by ϕ

(
(ωi)∞i=1

)(
(xi)∞i=1

)
= (ωixi)∞i=1 and let

G be the semidirect product G = Z∗N ×ϕ {−1, 1}N.
Z∗N × {e} is trivially a closed cocompact normal SIN subgroup of G but G is

not a SIN group because for every nonidentity element g = (e, w) ∈ {e}× {−1, 1}N

there is a ∈ Z∗N with (a, e)(e, w)(a, e)−1 /∈ {e} × {−1, 1}N. Indeed, if wj = −1 and
a = (δji)∞i=1 then (a, e)(e, w)(a, e)−1 = (v, w) where vj = 2.

Lemma 2.14. Let G be a locally compact compactly generated totally disconnected
solvable group. Then there exists a closed normal cocompact subgroup N such that
[G, G] ⊆ N and N/[G, G] is topologically isomorphic to Zd for some d ≥ 0.

Proof. G/[G, G] is a compactly generated totally disconnected abelian group.
Hence, it is the direct product AB where A ∼= Zd and B is a totally disconnected
compact abelian group. Put N = π−1(A) where π : G → G/[G, G] is the canonical
homomorphism. �

Theorem 2.15. Conditions (i), (ii), and (iii) of Theorem 2.7 are equivalent when G
is a metrizable compactly generated totally disconnected locally compact metabelian
group.

Proof. Let N be as in Lemma 2.14. To prove the nontrivial implication (ii)⇒(iii)
observe that as [G, G] is abelian, Theorem 2.7 applies to N . Thus if (ii) holds then
N is a SIN group. But then G is a SIN group by Proposition 2.12. �
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3. The Choquet–Deny theorem

Let μ be a regular Borel probability measure on a locally compact group G.
Recall that Gμ denotes the smallest closed subgroup containing the support of μ.
μ is called adapted if Gμ = G. We will say that μ is a Choquet–Deny measure if
every bounded continuous μ-harmonic function is constant on the left cosets of Gμ.

We note that in the literature the Choquet–Deny theorem is often understood
as the statement that every adapted μ ∈ M1(G) is a Choquet–Deny measure (i.e.,
all bounded continuous μ-harmonic functions are constant). We emphasize that
in this paper the Choquet–Deny theorem is understood as the (formally) stronger
statement that every μ ∈ M1(G) is a Choquet–Deny measure. It is not known if
the two versions of the Choquet–Deny theorem are equivalent. However, we know
of examples of almost connected Lie groups with the property that every adapted
spread out probability measure is Choquet–Deny but some nonadapted spread out
measures are not. It can be shown (see Lemma 4.1) that the strong version of
the theorem is true about G if and only if the weak version holds for every closed
subgroup of G.

Throughout the sequel by the weak topology on the set M1(X ) of probability
measures on a locally compact space X we mean the σ(M1(X ), Cb(X ))-topology
where Cb(X ) is the algebra of bounded continuous functions on X .

Lemma 3.1. (a) If μ is a Choquet–Deny measure on G and N ⊆ G is a closed
normal subgroup, then the projection of μ onto G/N is a Choquet–Deny
measure on G/N .

(b) If every neighbourhood of e contains a compact normal subgroup N such
that the projection of μ onto G/N is a Choquet–Deny measure, then μ is a
Choquet–Deny measure.

Proof. We omit a straightforward proof of (a). To prove (b) let us choose, for
every neighbourhood Ω of e, a compact normal subgroup NΩ ⊆ Ω such that the
projection of μ onto G/NΩ is a Choquet–Deny measure. Denote by πΩ : G → G/NΩ

the canonical homomorphism and by ωΩ the normalized Haar measure of NΩ.
Directing the neighbourhoods of e by reversed inclusion we obtain a net (ωΩ) in
M1(G) which converges weakly to δe.

Let h be a bounded continuous μ-harmonic function. We need to show that
h(xy) = h(x) for every x ∈ G and y ∈ Gμ. Now, when Ω is a neighbourhood of e,
the function ωΩ ∗ h is a bounded continuous μ-harmonic function constant on the
cosets of NΩ. Hence, ωΩ ∗ h = hΩ ◦ πΩ for a bounded continuous function hΩ on
G/NΩ. It is clear that hΩ is πΩμ-harmonic where πΩμ denotes the projection of μ
onto G/NΩ. Moreover, πΩ(Gμ) = (G/NΩ)πΩμ. Therefore for x ∈ G and y ∈ Gμ,
(ωΩ ∗ h)(xy) = hΩ(πΩ(x)πΩ(y)) = hΩ(πΩ(x)) = (ωΩ ∗ h)(x). Since (ωΩ ∗ h)(·) =∫

G
h(g−1·)ωΩ(dg) and w-limΩ ωΩ = δe, we conclude that h(xy) = h(x). �

Lemma 3.2. Let (μα) be a net in M1(G). If for every neighbourhood U of e there
exists ε ∈ M1(G) such that ε(U) = 1 and the net (μα ∗ ε) converges weakly, then
the net (μα) converges weakly.

Proof. There exists a compactly supported ν ∈ M1(G) such that the net (μα ∗ ν)
is weakly convergent, and, hence, tight. This implies that the net (μα) itself is
tight. Then by Prohorov’s theorem, every subnet of (μα) has a weak cluster point.
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Therefore it suffices to show that the net (μα) has a unique cluster point. But
if μ′ and μ′′ are cluster points of the net, then, due to our assumption, for every
neighbourhood U of e there exists ε ∈ M1(G) such that ε(U) = 1 and μ′∗ε = μ′′∗ε.
As in the proof of Lemma 3.1 we obtain a net (εi) in M1(G) which converges weakly
to δe and satisfies μ′ ∗ εi = μ′′ ∗ εi for every i. Hence, μ′ = μ′′. �

Lemma 3.3. Let G be a totally disconnected locally compact group, τ ∈ Aut(G),
and F a finite subset of C(τ). If ν ∈ M1(G) and ν(F ) = 1 then the sequence
ν ∗ τν ∗ · · · ∗ τn−1ν converges weakly to a probability measure ρ such that ν ∗ τρ = ρ.

Proof. It is clear that if ρ = w-limn→∞ ν ∗ τν ∗ · · · ∗ τn−1ν then ν ∗ τρ = ρ. To see
that the limit exists let U be a compact open subgroup. Then there is k ∈ N such
that for every n ≥ k, τn(F ) ⊆ U . Let ωU denote the normalized Haar measure of
U . Then for n ≥ k, τnν ∗ ωU = ωU . Hence, ν ∗ τν ∗ · · · ∗ τn−1ν ∗ ωU converges to
ν ∗ τν ∗ · · · ∗ τk−1ν ∗ ωU . By Lemma 3.2, ν ∗ τν ∗ · · · ∗ τn−1ν converges weakly. �

Lemma 3.4. If G is a locally compact group and z ∈ G then C(z) ∩ 〈z〉 = {e}.

Proof. Suppose that zk ∈ C(z) for some k > 0. Since C(z) ⊆ C(zk), we ob-
tain zk ∈ C(zk). But when U is a neighbourhood of e in C(zk), then C(zk) =⋃∞

n=1 z−knUzkn. This means that C(zk) is either a strange group [22, Definition
1.1], or is compact. Since no locally compact group is strange [22, Theorem 1.8],
C(zk) is compact. As zk ∈ C(zk), it follows that C(z) = {e}. �

Suppose that the locally compact group G acts on a locally compact space X so
that the mapping G × X � (g, x) → gx ∈ X is continuous. Given ρ ∈ M1(X ) and
g ∈ G we write gρ for the measure (gρ)(·) = ρ(g−1·). Given μ ∈ M1(G) we denote
by μ ∗ ρ the measure (μ ∗ ρ)(·) =

∫
G

(gρ)(·)μ(dg). Now, if ρ = μ ∗ ρ then for every
bounded continuous function f : X → C, the function h(g) =

∫
X f(gx) ρ(dx) =∫

X f(x) (gρ)(dx) is a bounded continuous μ-harmonic function. Therefore in order
to show that the Choquet–Deny theorem fails for μ it suffices to find g ∈ Gμ such
that gρ �= ρ. This observation is being used in the proof of the next lemma.

Lemma 3.5. Let G be a totally disconnected locally compact group and z an element
of G with C(z) �= {e}. Let g ∈ C(z) − {e}, and ν = pδg + (1 − p)δe where
p ∈ (0, 1)−{ 1

2}. Then the Choquet–Deny theorem is false for the measure μ = ν∗δz.

Proof. Let τ denote the the inner automorphism z · z−1. By Lemma 3.3 the limit
ρ = w-limn→∞ ν ∗ τν ∗ · · · ∗ τn−1ν exists and satisfies ν ∗ τρ = ρ. Moreover,
ρ(C(z)) = 1.

Note that 〈z〉 is necessarily infinite and discrete, so it is a closed subgroup of
G (isomorphic to Z). Let π : G → G/〈z〉 denote the canonical mapping and let
ρ̂ = πρ. Then μ ∗ ρ̂ = π(μ ∗ ρ) = π(ν ∗ δz ∗ ρ) = π(ν ∗ τρ ∗ δz) = πρ = ρ̂. Since
g ∈ Gμ, it suffices to show that gρ̂ �= ρ̂.

Now, there exists a compact subgroup U of C(z) such that g /∈ U but τ j(g) ∈ U
for every j ≥ 1. Let ωU be the normalized Haar measure of U . Then
ν∗τν∗· · ·∗τn−1ν∗ωU = ν∗ωU = p(gωU )+(1−p)ωU . Thus ρ∗ωU = p(gωU )+(1−p)ωU

and g(ρ ∗ ωU ) = p(g2ωU ) + (1 − p)(gωU ). Since ρ(C(z)) = 1 and by Lemma 3.4
C(z) ∩ 〈z〉 = {e}, we obtain ρ̂(π(U)) = ρ(U〈z〉) = ρ(U) = (ρ ∗ ωU )(U) = 1 − p and
(gρ̂)(π(U)) = (gρ)(U〈z〉) = (gρ)(U) = (g(ρ ∗ ωU ))(U) = p(g2ωU )(U) �= 1 − p. �



168 W. Jaworski and C.R.E. Raja

Theorem 3.6. Let G be a totally disconnected generalized FC-group or a metriz-
able locally compact compactly generated totally disconnected metabelian group.
Then the following conditions are equivalent :

(a) The Choquet–Deny theorem holds for G.
(b) The Choquet–Deny theorem holds for every μ ∈ M1(G) with supp μ of car-

dinality 2.
(c) G is distal and has polynomial growth.

Proof. (b)⇒(c): We first prove that G is distal. When G is metrizable, this is
clear by Lemma 3.5, Theorems 2.9 and 2.15, and Proposition 2.1. Suppose that G
is a not necessarily metrizable generalized FC-group. Note that it suffices to show
that every neighbourhood of e contains a compact normal subgroup N such that
G/N is distal. But as G is compactly generated, given a neighbourhood U of e
there exists a compact normal subgroup N ⊆ U such that G/N is metrizable [11,
Theorem 8.7]. Every probability measure on G/N with support of cardinality 2 is
the canonical image of a similar measure on G. Hence, by Lemma 3.1(a), Condition
(b) must hold on G/N and as G/N is a generalized FC-group, it is distal.

We now prove that G is of polynomial growth. Suppose that G is not of polyno-
mial growth. By Proposition 2.8 and Theorem 2.15, G has a compact open normal
subgroup N such that the quotient G/N contains a finitely generated solvable sub-
group S of finite index (polycyclic when G is an FC-group and metabelian when
G is metabelian). By [10, Théorème I.4] S is not of polynomial growth. Hence,
by [21, Theorem 3.13 and its proof], S supports a probability measure with a 2-
element support for which the Choquet–Deny theorem fails. This implies that the
Choquet–Deny theorem fails for a similar probability measure on G.

(c)⇒(a): When N is a compact open normal subgroup, G/N is a finitely gen-
erated group of polynomial growth, hence, the Choquet–Deny theorem holds for
G/N . Since by Theorems 2.9 and 2.15, G has arbitrarily small compact open
normal subgroups, Lemma 3.1(b) yields the desired conclusion. �

4. On boundaries of random walks

It is well-known that the bounded μ-harmonic functions can be represented, by
means of a “Poisson formula”, as bounded Borel functions on a certain “boundary
space”. Let us consider the bounded μ-harmonic functions (on a general locally
compact group G) as elements of L∞(G), and let Hμ denote the resulting subspace
of L∞(G). Hμ is invariant under the usual left action of G on L∞(G) and for
every absolutely continuous ν ∈ M1(G) and every h ∈ Hμ, ν ∗ h is a bounded (left
uniformly) continuous μ-harmonic function. When G is locally compact second
countable (lcsc), there exists a standard Borel G-space X with a σ-finite quasiin-
variant measure α and an equivariant isometry Φ of L∞(X , α) onto Hμ [18, §3]. Φ
is given by the Poisson formula

(4.1) (Φf)(g) =
∫
X

f(gx) ρ(dx)

where ρ is a probability measure on X satisfying μ∗ρ = ρ. The G-space X , called the
μ-boundary, or Poisson boundary, is not unique. However, for any two μ-boundaries
(X ′, α′) and (X ′′, α′′), there exists an equivariant isomorphism between L∞(X ′, α′)



The Choquet–Deny theorem 169

and L∞(X ′′, α′′) (which implies that (X ′, α′) and (X ′′, α′′) are isomorphic up to
sets of zero measure). The μ-boundary can be always realized as a topological,
compact metric G-space [18, §3].

When the Choquet–Deny theorem holds for μ, the natural realization of the μ-
boundary is the homogeneous space G/Gμ where the “Poisson kernel” ρ (cf. Eq.
(4.1)) is the point measure δGμ . When G is a discrete (countable) group then the
μ-boundary is a homogeneous space if and only if the Choquet–Deny theorem is
true for μ [21, Lemma 1.1 and the remark preceding Proposition 2.6]. The situation
is different for continuous groups. When G is an almost connected lcsc group then
for every spread out probability measure on G the μ-boundary is a homogeneous
space [17, Corollary 4.7]. It is well-known that the μ-boundary of every spread
out measure on a connected semisimple Lie group with finite centre is a compact
homogeneous space [6, 2]. However, if the μ-boundary of a spread out measure on
an amenable lcsc group is a compact homogeneous space, then the Choquet–Deny
theorem holds for μ (and the μ-boundary is finite), see [21, Proposition 2.6] and
[19, Lemma 2.3], or [2, Propositions IV.8 and IV.7].

Theorem 4.2 which we prove below applies, in particular, to every totally dis-
connected compactly generated lcsc group of polynomial growth. The result is that
for such groups the μ-boundary can be always realized as a homogeneous space,
and, as a compact homogeneous space when μ is adapted; when μ is adapted and
spread out the μ-boundary is a singleton.

Lemma 4.1. A probability measure μ on a locally compact group G is a Choquet–
Deny measure if and only if the restriction of μ to Gμ is a Choquet–Deny measure
(on Gμ).

Proof. Let μ′ denote the restriction of μ to Gμ. The restriction of a μ-harmonic
function to Gμ is μ′-harmonic; moreover, if h is μ-harmonic then for every g ∈ G the
left translate (gh)(·) = h(g−1·) is also μ-harmonic. Hence, if μ′ is Choquet–Deny
then so is μ. The converse is equally obvious when Gμ is open, because then every
bounded continuous μ′-harmonic function trivially extends to a bounded continuous
μ-harmonic function. However, in general, a technical argument is called for.

Let us first consider the case that G is second countable. Let h′ be a bounded
continuous μ′-harmonic function. As G is second countable, the canonical pro-
jection π : G → G/Gμ admits a Borel cross-section κ. Since for every g ∈ G,
κ(π(g))−1g ∈ Gμ, we can define a function h : G → C by h(g) = h′(κ(π(g))−1g

)
.

h is a bounded (in general, discontinuous) μ-harmonic function.
Let (εn) be a sequence of absolutely continuous probability measures on G con-

verging weakly to δe. Then the sequence (εn ∗ h) converges in the weak* topology
of L∞(G) to h. Since εn ∗ h is a bounded continuous μ-harmonic function and μ
is a Choquet–Deny measure, it follows that there exists a bounded Borel function
ĥ : G/Gμ → C such that h = ĥ ◦ π λ-a.e., where λ is the Haar measure of G.

Now, the mapping ϕ : (G/Gμ) × Gμ → G given by ϕ(x, g) = κ(x)g is a Borel
isomorphism. Moreover, if ν is a σ-finite quasiinvariant measure on G/Gμ and λ′

the Haar measure of Gμ, then the measure ϕ(ν × λ′) = (ν × λ′) ◦ ϕ−1 is equivalent
to the Haar measure λ of G. Consequently,
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0 =
∫

(G/Gμ)×Gμ

|h′ ◦ ϕ − ĥ ◦ π ◦ ϕ| d(ν × λ′)

=
∫

G/Gμ

[ ∫
Gμ

|(h ◦ ϕ)(x, g) − (ĥ ◦ π ◦ ϕ)(x, g)| λ′(dg)

]
ν(dx)

=
∫

G/Gμ

[ ∫
Gμ

|h′(g) − ĥ(x)| λ′(dg)

]
ν(dx).

Thus for ν-a.e. x ∈ G/Gμ,
∫

Gμ
|h′(g)− ĥ(x)|λ′(dg) = 0. Hence, as h′ is continuous,

it is constant.
Consider now the general case that G is not necessarily second countable. Ob-

serve that due to the regularity of μ and local compactness of G, Gμ is σ-compact
and, hence, there is also an open σ-compact subgroup G1 with μ(G1) = 1. Since
G1 is open it is clear that the restriction of μ to G1 is a Choquet–Deny measure.
Hence, we may assume that G itself is σ-compact. By Lemma 3.1(b) it suffices to
show that every neighbourhood U of e in Gμ contains a compact normal subgroup
N such that the projection of μ′ onto Gμ/N is Choquet–Deny. But by [11, Theorem
8.7] there exists a compact normal subgroup K of G such that K ∩ Gμ ⊆ U and
G/K is second countable. Let πK : G → G/K denote the canonical homomorphism.
Since (G/K)πKμ = πK(Gμ), combining Lemma 3.1(a) with what we just proved for
second countable groups, we conclude that the restriction of πKμ to πK(Gμ) is a
Choquet–Deny measure. As πK(Gμ) is canonically isomorphic to Gμ/(K ∩ Gμ), it
follows that the projection of μ′ onto Gμ/(K∩Gμ) is a Choquet–Deny measure. �

Theorem 4.2. Let μ ∈ M1(G) where G is a lcsc group. If G contains a compact
normal subgroup K such that the projection of μ onto G/K is a Choquet–Deny
measure, then the μ-boundary can be realized as a homogeneous space; when μ is
adapted, the μ-boundary can be realized as a compact homogeneous space on which
K acts transitively.

Proof. Denote by π : G → G/K the canonical homomorphism.
Suppose that μ is adapted and let (X , α) be the μ-boundary realized as a stan-

dard Borel G-space. Let f ∈ L∞(X , α) be invariant under the action of K. Then
the corresponding μ-harmonic function h = Φf ∈ Hμ (cf. Eq. (4.1)) is also invariant
under the (left) action of K. Hence, h = ĥ ◦ π where ĥ ∈ Hπμ. Since πμ is adapted
and the Choquet–Deny theorem holds on G/K, it follows that h is constant. Thus
so is f . As X is a standard Borel G-space this implies that K acts ergodically on
X , and, hence, α is carried on an orbit of K [33, Corollary 2.1.21 and Proposition
2.1.10]. Consequently, the μ-boundary can be realized as a compact homogeneous
space of G on which K acts transitively.

When μ is not necessarily adapted, let μ′ denote the restriction of μ to Gμ

and let (X ′, α′) be a realization of the μ′-boundary as a standard Borel Gμ-space.
By Lemma 4.1 the restriction of πμ to π(Gμ) = (G/K)πμ is a Choquet–Deny
measure. Since Gμ/(Gμ ∩ K) ∼= π(Gμ), it follows that the projection of μ′ onto
Gμ/(Gμ ∩ K) is a Choquet–Deny measure. As μ′ is adapted, we may assume that
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X ′ is a homogeneous space of Gμ (on which Gμ ∩ K acts transitively). Now, by
[20, Proposition 3.5 and Remark 3.9] the μ-boundary can be realized as the skew
product X = G/Gμ ×γ X ′ (the G-space induced from the Gμ-space X ′ [33, p. 75]),
where γ : G × G/Gμ → Gμ is the cocycle associated with a Borel cross section of
the canonical projection of G on G/Gμ. It follows that G acts transitively on X .
This means that the μ-boundary can be realized as a homogeneous space of G. �
Corollary 4.3. Let G be a totally disconnected compactly generated lcsc group of
polynomial growth. Then for every μ ∈ M1(G) the μ-boundary can be realized as
a homogeneous space of G; when μ is adapted, the μ-boundary can be realized as a
compact homogeneous space.

The next corollary can be regarded as a generalization of the implication (c)⇒(a)
of Theorem 3.6. Contrary to the proof of Theorem 3.6, the proof of Corollary 4.4
does not rely on equicontinuity of Inn(G).

Corollary 4.4. Let G be a locally compact group containing a compact normal
subgroup K such that the Choquet–Deny theorem holds for G/K and Inn(G) acts
distally on K. Then the Choquet–Deny theorem holds for G.

Proof. It is not difficult to see that if a locally compact group G contains a com-
pact normal subgroup K such that the Choquet–Deny theorem holds for G/K and
Inn(G) acts distally on K, then the same is true for every closed subgroup and
every quotient of G. Let μ ∈ M1(G). To show that μ is a Choquet–Deny mea-
sure it suffices to show that the restriction, μ′, of μ to Gμ is Choquet–Deny. By
Lemma 3.1(b), to show the latter it is enough to show that every neighbourhood
of e in Gμ contains a compact normal subgroup N such that the projection of μ′

onto Gμ/N is Choquet–Deny. But as Gμ is σ-compact, every neighbourhood of e
in Gμ contains a compact normal subgroup with second countable quotient. Hence,
it is enough to prove that if a lcsc group G contains a compact normal subgroup K
such that the Choquet–Deny theorem holds for G/K and Inn(G) acts distally on
K, then every adapted probability measure on G is a Choquet–Deny measure.

For such G and μ, by Theorem 4.2, the μ-boundary has the form G/H where
K acts transitively on G/H , i.e., G = KH . Let ρ denote the Poisson kernel. Note
that due to the identity ρ = μ ∗ ρ and adaptedness of μ, it suffices to show that ρ
is a point measure (this will imply that G/H is a singleton).

Now, by [14, Proposition 2.8] there exists a sequence (hn) in G such that the
sequence (hnρ) converges weakly to a point measure δx0 . Since G = KH and K is
compact, we may assume that hn ∈ H for all n. Next, by [22, Lemma 2.8] we may
assume that there is a Borel set B ⊆ G/H such that ρ(B) = 1 and limn→∞ hnx = x0

for every x ∈ B. It is enough to show that B is a singleton.
Consider the compact homogeneous space K/(K ∩ H). The formulas h•k =

hkh−1 and h•k(K ∩ H) = hkh−1(K ∩ H), k ∈ K, define actions of H on K and
K/(K ∩ H), respectively. Clearly, the • -action is a factor of the • -action. As • is
distal, so is • [5, Corollary 6.10, p. 52].

Let x1, x2 ∈ B. Write x1 = k1H and x2 = k2H with k1, k2 ∈ K. Then
limn→∞ hnxj = limn→∞ hnkjh

−1
n H = x0 for j = 1, 2. Since the compact homo-

geneous spaces G/H and K/(K ∩ H) are isomorphic as K-spaces, we then obtain
limn→∞ hn•k1(K ∩ H) = limn→∞ hn•k2(K ∩ H). Since • is distal, k1(K ∩ H) =
k2(K ∩ H) and, hence, x1 = x2. Therefore B is a singleton. �
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Example 4.5. Recall that G is called an IN group if it contains a compact neigh-
bourhood of e, invariant under Inn(G). By [8, Theorem 2.5] every locally compact
IN group G contains a compact normal subgroup N such that G/N is a SIN group.
When G is almost connected, it follows from Iwasawa’s theorem on automorphisms
of compact groups [13, Theorem 1] that the natural image of Inn(G) in Aut(N)
is compact (in the usual topology). Hence, the Ascoli theorem for automorphism
groups [9, Theorem 4.1] yields that Inn(G) acts equicontinuously on N . But by
[14, Corollary 6.5] and [8, Theorem 2.9] the Choquet–Deny theorem holds for every
almost connected locally compact SIN group (see also [14, Corollary 6.6]). Thus
Corollary 4.4 yields that the Choquet–Deny theorem is true for every locally com-
pact almost connected IN group.

Example 4.6. Let τ be the automorphism of the torus T3, defined by τ(x, y, z) =
(x, xy, xyz). Then τ is distal but not equicontinuous. By Corollary 4.4 the Choquet–
Deny theorem is true for the 3-step nilpotent group T3 ×τ Z.

Example 4.7. Let τ be the shift τ((xi)i∈Z) = (xi+1)i∈Z on the compact abelian
group ZZ

2 , and let G = ZZ
2×τZ. Since C(τ) = {x ∈ ZZ

2 ; there exists k ∈ Z with xi =
0 for every i ≥ k}, Inn(G) does not act distally on ZZ

2 × {0}. By Theorem 3.6 the
Choquet–Deny theorem is not true for G.

Let μ ∈ M1(G) be adapted. According to Theorem 4.2 the μ-boundary has the
form G/H where G = (ZZ

2 ×{0})H . It is not difficult to see that a closed subgroup
H ⊆ G satisfies G = (ZZ

2 × {0})H if and only if there is a closed τ -invariant
subgroup T ⊆ ZZ

2 and g ∈ G such that gHg−1 = T × Z. We may therefore assume
that H = T × Z where T is a closed τ -invariant subgroup. Now, the formula
(x, y)(zT ) = xτy(z)T , x, z ∈ ZZ

2 , y ∈ Z, defines an action of G on ZZ
2/T under

which ZZ
2/T becomes a homogeneous space of G, isomorphic to G/H . Thus for an

adapted μ ∈ M1(G), the μ-boundary can be realized as one of the G-spaces ZZ
2/T ,

where T is a closed τ -invariant subgroup of ZZ
2 .

Let for k = 1, 2, . . . , Sk = {x ∈ ZZ
2 τk(x) = x}. Then Sk is a closed τ -invariant

subgroup of ZZ
2 and it can be shown that T is a closed τ -invariant subgroup of ZZ

2

if and only if T = ZZ
2 or T is a τ -invariant subgroup of Sk for some k. In particular,

proper τ -invariant subgroups are finite. Let T denote the class of closed τ -invariant
subgroups of ZZ

2 . The G-spaces ZZ
2/T , T ∈ T are mutually nonisomorphic and each

of them is an equivariant image of ZZ
2 = ZZ

2/{e}.
One can construct a family μT , T ∈ T , of discrete probability measures on G

such that ZZ
2/T is the μT -boundary for every T ∈ T . We refrain from going into

the details here as this would require a longer digression into the theory of the
μ-boundaries. A more difficult question concerns determining, when μ ∈ M1(G) is
given, which of the spaces ZZ

2/T is the μ-boundary. In particular, one would like
to know for which μ ∈ M1(G) the μ-boundary is a singleton. In addition to the
case of spread out measures, this is so for every adapted probability measure which
induces a recurrent random walk on Z ∼= G/(ZZ

2 × {0}). We do not know of any
relevant conditions that are both sufficient and necessary.

Acknowledgement. The second author thanks the School of Mathematics and
Statistics at Carleton University for its hospitality.

Note added in proof. Since this paper was completed the first named author
proved that the results of Baumgartner and Willis [4] remain true for nonmetrizable
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groups. As a consequence, Proposition 2.1, Lemmas 2.2 and 2.3, Corollary 2.4, and
Theorems 2.7, 2.15, and 3.6 of the present work remain true without the assumption
that G be metrizable.

References

[1] Abels, Herbert. Distal automorphism groups of Lie groups. J. Reine Angew. Math. 329
(1981), 82–87. MR0636446 (83i:22013), Zbl 0463.22006.

[2] Azencott, Robert. Espaces de Poisson des groupes localement compacts. Lecture Notes in
Mathematics, Vol. 148. Springer, Berlin, 1970. MR0501376 (58 #18748), Zbl 0208.15302.

[3] Bagley, R. W.; Wu, T. S. Maximal compact normal subgroups and pro-Lie groups. Proc.
Amer. Math. Soc. 93 (1985), 373–376. MR0770558 (86c:22005), Zbl 0576.22008.

[4] Baumgartner, Udo; Willis, George A. Contraction groups and scales of automorphisms of
totally disconnected locally compact groups. Israel J. Math. 142 (2004), 221–248. MR2085717
(2005f:22009), Zbl 1056.22001.

[5] Berglund, John F.; Junghenn, Hugo D.; Milnes, Paul. Analysis on semigroups. Function
spaces, compactifications, representations. Canadian Mathematical Society Series of Mono-
graphs and Advanced Texts. A Wiley-Interscience Publication. John Wiley & Sons, New
York, 1989. MR0999922 (91b:43001), Zbl 0727.22001.

[6] Furstenberg, Harry. A Poisson formula for semisimple Lie groups. Ann. of Math. (2) 77
(1963), 335–386. MR0146298 (26 #3820), Zbl 0192.12704.

[7] Furstenberg, Harry. Boundary theory and stochastic processes on homogeneous spaces.
Harmonic analysis on homogeneous spaces (Proc. Sympos. Pure Math., Vol. XXVI, Williams
Coll., Williamstown, Mass., 1972), 193–229. Amer. Math. Soc., Providence, R.I., 1973.
MR0352328 (50 #4815), Zbl 0289.22011.

[8] Grosser, Siegfried; Moskowitz, Martin. Compactness conditions in topological groups.
J. Reine Angew. Math. 246 (1971), 1–40. MR0284541 (44 #1766), Zbl 0219.22011.

[9] Grosser, Siegfried; Moskowitz, Martin. On central topological groups. Trans. Amer.
Math. Soc. 27 (1967), 317–340. MR0209394 (35 #292), Zbl 0145.03305.
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