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Thompson’s group F (n) is not minimally almost
convex

Claire Wladis

Abstract. We prove that Thompson’s group F (n) is not minimally almost
convex with respect to the standard finite generating set. A group G with
Cayley graph Γ is not minimally almost convex if for arbitrarily large values of
m there exist elements g, h ∈ Bm such that dΓ(g, h) = 2 and dBm (g, h) = 2m.
(Here Bm is the ball of radius m centered at the identity.) We use tree-pair
diagrams to represent elements of F (n) and then use Fordham’s metric to
calculate geodesic length of elements of F (n). Cleary and Taback have shown
that F (2) is not almost convex and Belk and Bux have shown that F (2) is not
minimally almost convex; we generalize these results to show that F (n) is not
minimally almost convex for all n ∈ {2, 3, 4, . . . }.
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1. Introduction

1.1. Thompson’s group F (n). Thompson’s group F (n) is a generalization of
the group F , which R. Thompson introduced in the early 1960’s (see [14]). At
that time Thompson invented three separate groups F ⊆ T ⊆ V , each of which
is often referred to in the literature as Thompson’s group; this paper deals only
with generalizations of the group F . Thompson showed that T and V were infinite,
simple, finitely presented groups, the first known examples of this kind.

F , which we will henceforward refer to as F (2), represents the group of piecewise-
linear orientation-preserving homeomorphisms of the closed unit interval with finite-
ly many breakpoints in Z[12 ] and slopes in the cyclic multiplicative group 〈2〉 in each
linear piece. In [12], Higman defined an infinite class of groups Gn,r which were
a generalization of V (also known as G), where n ∈ {2, 3, 4, . . .} and r ∈ Z[ 1

n ];
Gn,r is then the group of piecewise-linear orientation-preserving right-continuous
bijections of [0, r) onto itself with finitely many breakpoints in Z[ 1

n ], slopes in the
cyclic multiplicative group 〈n〉 in each linear piece, and which maps Z[ 1

n ] ∩ [0, r)
onto itself.

Brown then expanded this construction of Higman’s by creating similar infinite
families of groups Fn,r and Vn,r, generalizing the groups F and V respectively
(see [4]). In this paper we consider the groups Fn,1 for n ∈ {2, 3, 4, . . .}, and for
simplicity we use the notation F (n) instead of Fn,1. Thompson’s group F (n) is
therefore defined in the following way:

Definition 1.1 (Thompson’s group F (n)). Thompson’s group F (n), for n ≥ 2, is
the group of piecewise-linear orientation-preserving homeomorphisms of the closed
unit interval with finitely many breakpoints in Z[ 1

n ] and slopes in the cyclic multi-
plicative group 〈n〉 in each linear piece.

Brown proved that each of the groups F (n) for n ≥ 2 is finitely presented,
infinite-dimensional, torsion-free and of type FP∞; this was an extension of the
work done in [5], where Brown and Geoghegan showed that F is the first known
example of a group with these properties. The automorphism groups of these
groups have also been studied by Brin and Guzmán in [3]. Further information
about Thompson’s groups can be found in [7].

1.2. Almost convexity conditions. The concept of almost convexity was first
developed by Cannon in [6] to develop algorithms for drawing the Cayley graphs of
groups. If a group G is almost convex with respect to a given generating set, then
an algorithm exists which can be used to draw the portion of the Cayley graph of G
which can be depicted by the ball of radius m centered at the identity [6]. Minimal
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almost convexity is a weaker condition than almost convexity. In fact, an entire
range of almost convexity conditions exist, of which Cannon’s almost convexity
condition is the strongest, and the minimally almost convexity condition is the
weakest nontrivial condition; therefore we begin with a more general definition of
almost convexity conditions as a whole.

Throughout this paper, we let Bm denote the ball of radius m centered at the
identity in the Cayley graph Γ of a group G. We use dΓ(g, h) to denote the distance
between the elements g and h in the Cayley graph Γ, and dBm(g, h) to denote the
distance between the elements g and h in the ball Bm.

Definition 1.2 (almost convexity condition). A group G satisfies an almost con-
vexity condition with respect to the finite generating set X and a given function
f : N → R+ if there exists a constant N such that for all m > N and for all g and
h in Bm satisfying dΓ(g, h) = 2, dBm(g, h) ≤ f(m).

Almost convexity (Cannon) is the almost convexity condition in which f(m) is
a fixed constant. Minimal almost convexity is the almost convexity condition in
which f(m) = 2m−1. And since for any g and h in Bm there is always a path from g
to h in Bm through the identity which has length in Bm bounded by 2m (i.e., g−1h
or its inverse), we will always have dBm(g, h) ≤ 2m. So showing that a group is not
minimally almost convex with respect to a given finite generating set is equivalent
to stating that for arbitrarily large m there exist g, h ∈ Bm with dΓ(g, h) = 2 such
that any minimal length path in Bm between g and h in Bm will be of length 2m,
the same distance as the path h−1g or g−1h through the identity. The condition of
minimal almost convexity is the weakest possible nontrivial generalization of almost
convexity, and therefore any group which is not minimally almost convex satisfies
no nontrivial almost convexity condition.

Definition 1.3 (minimally almost convex). A group G is minimally almost convex
with respect to the finite generating set X if there exists a constant N such that for
all m > N and for all g and h in Bm satisfying dΓ(g, h) = 2, dBm(g, h) ≤ 2m − 1.

If a group is minimally almost convex (and therefore if it satisfies any nontrivial
almost convexity condition), then it is finitely presented and its word problem is
solvable (see [6] and [13]). Because of these consequences, this property has been
studied for several groups already. Cleary and Taback have shown that the lamp-
lighter groups are not minimally almost convex in [8]. Elder and Hermiller have
shown in [10] that the Baumslag–Solitar groups BS(1, 2) and BS(1, q), for q ≥ 7,
and that Stalling’s non-FP3 group are not minimally almost convex. Also, in con-
sidering a wide range of almost convexity conditions, it is obvious that stronger
almost convexity conditions always imply weaker ones, but it is not known for all
cases if this implication is biconditional. Some cases are known; for example, the
work of Elder and Hermiller in [10] established the result that Poenaru’s almost con-
vexity condition (i.e., that the function f(m) in the definition of almost convexity
conditions is sublinear) is strictly stronger than minimal almost convexity.

1.3. Outline of results. In this paper we will show that Thompson’s group F (n)
is not minimally almost convex for any n ∈ {2, 3, 4, . . .}. The result that Thomp-
son’s group F (2) is not almost convex has already been proven by Cleary and
Taback in [9], and the result that F (2) is not minimally almost convex has already
been proven by Belk and Bux in [2]. This paper essentially generalizes Belk and
Bux’s argument for F (n) when n > 2.
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To show that F (n) is not minimally almost convex, we find two elements, l
and r (which are generalizations of the two elements used by Belk and Bux in [2])
which are distance 2 apart in the Cayley graph Γ but distance 2m apart in Bm (for
arbitrarily large m). Using the metric on F (n) developed by Fordham in [11], we
then show that any minimal length path from l to r which remains in Bm must pass
through a specific vertex hr. We then define an abstract vertex hl which must be
on the path, and we use this to show that dΓ(hr, hl) ≥ m+1. Some straightforward
algebra calculations then lead us to the main result:

Main Theorem 1 (F (n) is not minimally almost convex). Let Γ be the Cayley
graph of F (n) with respect to the generating set {x0, x1, . . . , , xn−1}. For all even
m ≥ 4 there exist l, r ∈ F (n) such that:

(1) dΓ(l, r) = 2.
(2) |l|{x0, x1, . . . , , xn−1} = |r|{x0, x1, . . . , , xn−1} = m.
(3) For any path γ from l to r which remains in Bm,

|γ|{x0, x1, . . . , , xn−1} ≥ 2m.

The fundamental outline of our proof is identical to that of Belk and Bux; how-
ever, our methods for proving each of the steps is somewhat different. Whereas Belk
and Bux use forest diagrams to represent elements of F (2), and as there is no known
way to extend this method to F (n) for n = 2, 3, 4, . . . in any meaningful way, this
paper uses tree-pair diagrams to represent elements of F (n) and uses Fordham’s
metric on F (n), which is based on the use of tree-pair diagram representatives, to
calculate length. As a result, many of the individual steps in this paper may look
substantially different from the corresponding steps in the Belk and Bux proof for
F (2), even though the fundamental logic behind the two proofs is identical.

Acknowledgements. The author would like to thank Sean Cleary for his sup-
port and advice in the preparation of this article and the anonymous reviewer for
thoughtful and comprehensive suggestions during the revision process.

2. Representation of F (n) by tree-pair diagrams

Tree-pair diagrams consist of a pair of simple directed graphs, each of which is
a subset of the plane. Each of the graphs in the diagram is referred to as a tree. In
order to formally define these diagrams, we first begin with some basic definitions.

2.1. Basic definitions. An n-ary caret is a graph which has n+1 vertices joined
by n edges: one vertex has degree n (the parent) and the rest have degree 1 (the
children).

Another n-ary caret may then be attached to any of the n child vertices of the
original caret so that the child vertex of the original caret serves simultaneously as
the parent vertex of the new caret. A caret whose parent vertex is also the child
vertex of a second caret will be referred to as a child caret of the second caret, and
likewise, a caret whose child vertex is also the parent vertex of a second caret will
be referred to as the parent caret of the second caret. We use the word “child” alone
in this paper to refer sometimes to a child vertex and sometimes to a child caret;
when this convention is used, which meaning is intended should be clear from the
context.



Thompson’s group F (n) is not minimally almost convex 441

A graph formed by joining any number of n-ary carets by using the child vertex
of one caret as the parent vertex of another caret is referred to as an n-ary tree.
An n-ary tree is generally depicted so that for any given caret in the tree, the child
vertices are at the bottom and the parent vertex is at the top; when depicted in
this way, the topmost caret is referred to as the root caret (or just the root) and
its parent vertex is called the root node. When an n-ary caret is oriented in this
way, its rightmost or leftmost edge is called the right or left edge, respectively. For
any two vertices a and b on an n-ary tree, vertex a is the ancestor of vertex b if it
is on the directed path from the root node to vertex b. Similarly, vertex b is the
descendent of vertex a if vertex a is the ancestor of vertex b. If a vertex in the tree
has degree 1, it is referred to as a leaf; if it has degree n or n + 1, it is referred to
as a node.

Because the distinction between our usage of the words vertex, leaf, and node
will be essential in understanding the proofs that follow, we emphasize this in the
following definition:

Definition 2.1 (vertex, leaf, node). It is important to distinguish between vertices,
nodes and leaves. Both leaves and nodes are vertices. Leaves are those vertices of
degree 1 and nodes are those vertices of degree n or n + 1 in an n-ary tree-pair
diagram. We note that a node, in the context of this paper is not a synonym for
vertex, but rather a proper subset of the set of all vertices in a tree-pair diagram.

We also codify the following:

Notation 2.2. We write Z
∗ for the nonnegative integers and N for the positive

integers.

An element of F (n) can be represented by an n-ary tree pair diagram. A n-ary
tree pair diagram is a pair of n-ary trees containing the same number of leaves
(which is equivalent to containing the same number of carets). The first tree in
the pair is called the negative tree and the second tree in the pair is called the
positive tree. This pair of trees is denoted (T−, T+). (The motivation for this choice
of names will become clear when we see how the normal form for an element of
F (n) may be derived from the minimal tree-pair diagram representative of that
element.) The leaves of each tree are numbered in increasing order from left to
right (see subsequent subsection on leaf ordering for more detail), and the ith leaf
of the negative tree is paired with the ith leaf of the positive tree.

2.2. Equivalence of elements of F (n) and tree-pair diagrams. This rep-
resentation of elements of F (n) by n-ary tree-pair diagrams corresponds to the
definition of F (n) as the set of piecewise-linear orientation-preserving homeomor-
phisms of the closed unit interval in the following way: each leaf of each caret
represents one subinterval of the closed unit interval. A single root caret, for ex-
ample, has n leaves which represent n equal subintervals of the closed unit interval:
[0, 1

n ], [ 1
n , 2

n ], . . . , [n−1
n , 1]. Then for any given leaf which represents a subinterval

[a, b], if we attach a child caret to that leaf then the n leaves of this child caret
will represent the n equal subintervals [a, a + b−a

n ], [a + b−a
n , a + 2(b−a)

n ], . . . , [a +
(n−1)(b−a)

n , b]. Then by starting with a single root caret and proceeding by adding
child carets to its leaves and child carets to the leaves of its child carets, etc., we
can build a tree whose leaves represent any subdivision of the closed unit interval
whose subintervals all have endpoints in Z[ 1

n ] and length of the form 1
nr such that
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Figure 1. The homeomorphism of the closed unit interval and
the tree-pair diagram representing the element x0 in F (n); the ith

interval is mapped to the ith interval, and the ith leaf is mapped
to the ith leaf.

r ∈ Z
∗. From this we can see that any element of F (n) can be represented by an

n-ary tree-pair diagram, and we can see that for any n-ary tree-pair diagram, an
element of F (n) must exist which can be represented by it. For example, Figure 1
shows one example of how an element in F (n) can be represented by a tree-pair
diagram.

In fact, for any element of F (n), we can see that there must be an infinite number
of n-ary tree-pair diagram representatives. To see this, we begin by considering
Figure 2; we will see that the two tree-pair diagrams in this figure represent the
same element of F (n).

We can see that both diagrams send the domain subinterval [ a
n , a+1

n ] to the
range subinterval [ a

n2 , a+1
n2 ], for a ∈ {0, 1, 2, . . . , n − 2} and the domain subinterval

[n2−b−1
n2 , n2−b

n2 ] to the range subinterval [n−b−1
n , n−b

n ], for b ∈ {0, 1, 2, . . . , n − 2}.
The only difference we can see between the two diagrams is that the top tree-
pair diagram sends each domain interval [n3−n2+c

n3 , n3−n2+c+1
n3 ] to the range interval

[n2−n+c
n3 , n2−n+c+1

n3 ] for c ∈ {0, 1, 2, . . . , n−1} whereas the bottom tree-pair diagram
sends the domain interval [n−1

n , n2−n+1
n2 ] to the range interval [n−1

n2 , 1
n ]. However, if

we look closely at the two maps

f1 :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[n3−n2+c
n3 , n3−n2+c+1

n3 ] → [n2−n+c
n3 , n2−n+c+1

n3 ] c = 0
...

...

[n3−n2+c
n3 , n3−n2+c+1

n3 ] → [n2−n+c
n3 , n2−n+c+1

n3 ] c = n − 1,

f2 :
[
n2 − n

n2
,
n2 − n + 1

n2

]
→

[
n − 1
n2

,
1
n

]
,
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Figure 2. Two equivalent n-ary tree-pair diagrams.

we can see that they are in fact identical; we can “simplify” the top tree-pair
diagram by replacing it with the bottom tree-pair diagram, and we can say that
the two tree-pair diagrams in this figure are “equivalent.”

Formally, we say that two n-ary tree-pair diagrams are equivalent if they both
represent the same element of F (n); this then induces an equivalence class on the set
of n-ary tree-pair diagrams. So we say that an n-ary tree-pair diagram is minimal
(or reduced) if it has the smallest number of leaves of any n-ary tree-pair diagram
in its equivalence class. It is clear that any two equivalent n-ary tree-pair diagrams
with the same number of leaves will be identical, so we know that for any element
x of F (n), we have a unique representative: the minimal tree-pair diagram of the
given equivalence class of n-ary tree-pair diagrams which represent x.

2.3. Leaf ordering in a tree-pair diagram. We can number the leaves of each
of the trees in an n-ary tree-pair diagram by thinking of each leaf as a subinterval
of the closed unit interval; we number the leaves of the tree in increasing order from
left to right with respect to their position as subintervals of the closed unit interval,
and we begin our numbering with 0 (see Figure 1).

To see another example of a tree-pair diagram with all of its leaves numbered,
see Figure 3.

2.4. Finding a minimal tree-pair diagram. If we have a tree-pair diagram
which represents a given element of F (n), we can judge whether or not it is minimal.
We say that a caret on a tree is exposed if all of its children are leaves. In an
n-ary tree-pair diagram, if we have an exposed caret in the positive tree and an
exposed caret in the negative tree and all the leaf index numbers for both carets are
identical, then we can remove each of the exposed carets from their respective trees
without changing the element that the tree-pair diagram represents. This removal
of unnecessary carets is equivalent to the removal of occurrences of n unnecessary
equally sized subdivisions in the domain and range of the linear homeomorphism
which maps the subinterval represented by the parent node of the removed caret
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0

1

2

3

4

5

0

1

2

3

4

6

0 123

4,...,n-1 n,...,n+3

...,2(n-1)

2n-1,...,3(n-1)

3n-2,...,4(n-1)

4n-3,...,5n-6

5(n-1), ...

3,...,n-1 n,...,n+2

...,2(n-1)2n-1,...,2n+1

...,4(n-1)4n-3,...,4n-1

...,3(n-1)3n-2,...,3n

...6(n-1)

6n-5,...,7(n-1)0

12

...
5

...,5(n-1)5n-4,...,5n-2
...

6(n-1),...,7(n-1)

6

TT−

Figure 3. The minimal tree-pair diagram representative of the
element x1x

5
3x

−1
4 x−3

0 in F (n) with all carets and leaves numbered.

in the negative tree onto the subinterval represented by the parent node of the
removed caret in the positive tree.

By repeating this process as many times as is possible on a given tree-pair di-
agram representative of an element of F (n), we can reduce it to the minimal rep-
resentative. For example, we could remove the exposed caret pair with leaf index
numbers n− 1, . . . , 2(n− 1) in the top tree-pair diagram of Figure 2 and replace it
with the bottom tree-pair diagram in this figure using exactly this method.

We will often use the convention of writing x = (T−, T+); this means that
(T−, T+) is the minimal tree-pair diagram representative of the element x of F (n).

2.5. Multiplying tree-pair diagrams. In this paper all multiplication is on the
right, where the multiplication convention is that of function composition. Multi-
plying x by y on the right will be denoted xy, which actually denotes x ◦ y. To see
what this looks like for the tree-pair diagram representatives, let x and y be ele-
ments of F (n) which are represented by the minimal tree-pair diagrams (T−, T+)
and (S−, S+) respectively; then xy would be performed as multiplication on the
tree-pair diagrams by performing the steps outlined in the following paragraph.

We want to make S+ identical to T− so the range of y is identical to the domain
of x. This is possible if we notice that we can add a caret to a leaf of the tree S+ as
long as we add a caret to the leaf with the same index number in the tree S−. This
is allowed because it is just the reverse process of that of simplification of the tree-
pair diagrams, analogous to subdividing the same subinterval in a homeomorphism
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of the closed unit interval in exactly the same way in the domain and the range.
Likewise, we can add a caret to a leaf of the tree T− as long as we add a caret at the
leaf with the same index number in the tree T+. By repeatedly adding carets to S+

and T− (and therefore by extension to S− and T+), we can eventually turn them
into identical trees. If we let S′− denote the tree formed from S− by adding carets
to correspond to any carets added to S+ in the process of making it identical to T−,
and if we let T ′

+ denote the tree formed from T+ by adding carets to correspond to
any carets added to T− in the process of making it identical to S+, then the new
tree-pair diagram for xy will be (S′

−, T ′
+). We also may often denote the new tree

pair diagram for xy by ((Ty)−, (Ty)+). To emphasize this point, we include it here
as a separate remark:

Remark 2.3. When computing the product xy where x = (T−, T+), the notation
((Ty)−, (Ty)+) denotes the tree-pair diagram which results from the composition
of x and y, before it has been reduced by removing any exposed caret pairs. The
notation ((Ty)′−, (Ty)′+) then denotes the tree-pair diagram which results from the
composition of x and y, after it has been reduced by removing any exposed caret
pairs.

To see an example of tree-pair multiplication, see Figure 4.

2.5.1. Presentations of F (n). Thompson’s group F (n) has the following infinite
presentation (Brown [4]):

F (n) = {x0, x1, · · · | xjxi = xixj+n−1 for i < j}
where the generators can be depicted by the tree-pair diagrams given in Figure 5.

The group F (n) also has a finite presentation (Brown [4]) which will be needed
to calculate length:{

x0, x1, . . . , xn−1

∣∣∣∣ [x0x
−1
i , xj ] when i < j, [x2

0x
−1
i x−1

0 , xj ] when i ≥ j − 1,
[x3

0x
−1
n−1x

−2
0 , x1]. Here, i, j = 0, . . . , n − 1.

}

The generators for this finite presentation can be depicted by the first three tree-
pair diagrams given at the left in Figure 5. The infinite presentation can be obtained
from the finite presentation by induction. We refer to these two presentations as
the standard infinite and finite presentations respectively.

2.6. Normal form of elements of F (n). By looking at the relators for the
standard infinite presentation for F (n), it becomes clear that all elements of F (n)
can be put into the form

(1) xr1
i1

xr2
i2

. . . xrn

in
x−sm

jm
. . . x−s2

j2
x−s1

j1

where the generators are taken from the standard infinite presentation such that

i1 < i2 < · · · < in �= jm > · · · > j2 > j1

To ensure uniqueness of this normal form we need only add the condition that
if both xi and x−1

i appear in the above expression, then a generator xj (or its
inverse) where i < j < i + n, must also appear in the above expression (otherwise,
we can use one of the relators in the infinite presentation to cancel xi and x−1

i or
to substitute an equivalent expression in the infinite generators which still has the
form given in Equation (1)). This normal form was first proved in [5].
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Figure 4. Multiplication of tree-pair diagrams for the product
x0xn−1 in F (n) (before composition of the diagrams can be per-
formed, one caret must be added to the leaf numbered n−1 in the
tree-pair diagram for x0 to make the domain tree of x0 identical
to the range tree of xn−1). Here Id denotes the identity map.

Before we can explain how we can go from an n-ary tree-pair diagram representa-
tive to the normal form of the element of F (n) which it represents (and vice versa),
we need a few definitions. A left side is an edge which is the left edge of some caret
in the tree which is neither the root caret, nor of type R (see Subsection 3.1). The
leaf exponent of the ith leaf in a tree is the number of consecutive left sides on the
directed path from the ith leaf to the root node (any left edges that appear on this
path after the appearance of a nonleft edge will be excluded from this number). If
the directed path from the ith leaf to the root node does not begin with any left
sides, then the leaf exponent for the leaf numbered i is zero.

To find all generators with positive exponents in the normal form, we look at the
positive tree, and to find all generators with negative exponents in the normal form,
we look at the negative tree. The positive (negative) exponent of xi in the normal
form is the leaf exponent of the leaf numbered i in the positive (negative) tree of
the minimal tree-pair diagram representative. Using this fact, it is straightforward
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Figure 5. The generators {x0, x1, x2, . . . } for the standard infi-
nite presentation of F (n) (where i = 1, 2, . . . , n − 2 and m ∈ N).

to go from an element of F (n) in normal form to a tree-pair diagram representative
and vice versa. For example, the element x1x

5
3x

−1
4 x−3

0 in F (n) can be depicted by
the tree-pair diagram given in Figure 3.

2.7. Action of generators on tree-pair diagrams and the critical leaf.
When we multiply an element w = (T−, T+) of F (n) on the right by another
element y, we can think of the multiplication in this way: the element y is acting
on the tree-pair diagram (T−, T+) in some way to turn it into the tree-pair diagram
((Ty)−, (Ty)+) which, if not already minimal, will be simplified to the tree-pair
diagram ((Ty)′−, (Ty)′+). If we let S− and S+ represent the tree obtained from
T− and T+ respectively by adding any carets to (T−, T+) which will be needed in
order to multiply it by y, then for y±1 ∈ {x0, x1, . . . , , xn−1}, we can think of the
action of y on S− as a kind of rotation. When y = x0, the action of y on S− is
a kind of clockwise rotation along the path from the leftmost child vertex of the
root to the root vertex to the rightmost child vertex of the root. When y = xi for
i ∈ {1, . . . , n − 2}, the action of y on S− is a kind of clockwise rotation along the
path from the ith child vertex of the root to the root vertex to the rightmost child
vertex of the root. When y = xn−1, the action of y on S− is a kind of clockwise
rotation along the path from the leftmost child vertex of the rightmost child caret
of the root to the rightmost child vertex of the root, to the rightmost child vertex
of the rightmost child caret of the root. The inverse of each of these generators
has the same action on S− except in the reverse direction, going counterclockwise.
This action of the generators on S− can be seen in Figure 6.

Throughout this paper, we will refer to the rotation action of the generator x0

described above as clockwise rotation through the root and the rotation action of its
inverse as counterclockwise rotation through the root.
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Figure 6. The action of a given generator (or its inverse) in the
standard finite generating set of F (n) on an arbitrary n-ary tree-
pair diagram. The black arrows and labels indicate the action of
the generator on the tree-pair diagram representative of an arbi-
trary word w, and the grey arrows and labels indicate the action
of that generator’s inverse on the tree-pair diagram representative
of an arbitrary word v. (Here i ∈ {1, . . . , n − 2}.)

We want to be able to identify a way to describe this action of x0 on S− because
this will be one of the central ideas of the proof of the main theorem in this paper,
so this motivates the following definition, which allows us to assign a special status
to a specific leaf in a tree; when x0 then acts on that tree through rotation, the
index number of this special leaf will change.

Definition 2.4 (right foot). Let ∧s be the first caret of type R (see Subsection 3.1)
(if one exists) in an n-ary tree.

(1) If the leftmost child vertex of ∧s is a node rather than a leaf, then we consider
the subtree with the leftmost child vertex of ∧s as the root node. Within
this new subtree, the critical leaf is the leaf with the highest index number
in the subtree.

(2) If ∧s has a leaf as its leftmost child vertex, then the critical leaf is the leftmost
leaf of ∧s.

(3) If the tree has no carets of type R, then the critical leaf is the rightmost leaf
of the root caret.

We let crit(T ) denote the leaf index of the critical leaf in the tree T .

To see an example of several trees with the critical leaf labeled, see Figure 7.
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Figure 7. Critical leaf indicated by arrow in several n-ary trees.

So in any given tree-pair diagram, we call the critical leaf in the negative and
positive tree the negative and positive critical leaf respectively. We let crit(T−) and
crit(T+) denote the leaf index of the negative and positive critical leaves respectively
in (T−, T+). We say that an element x = (T−, T+) of F (n) (or its minimal tree-pair
diagram representative (T−, T+)) is balanced if crit(T−) = crit(T+). Because we
will use this terminology at several key points in the proof of the major theorem of
this paper, we highlight this definition here.

Definition 2.5 (balanced, positive, negative). An element x = (T−, T+) of F (n)
is balanced when crit(T−) = crit(T+). Similarly, we say that x is positive when
crit(T−) < crit(T+), and that x is negative when crit(T−) > crit(T+). (The defi-
nitions of positive and negative here bear no relation to the definitions of positive
and negative given in Belk and Bux’s paper in [2].)

We note that for w = (T−, T+) of F (n), after any carets have been added to
(T−, T+) to get (S−, S+) so that multiplication by x0 can take place, the action
of x0 on S− will be to change crit(S−) by decreasing it by a multiple of n − 1.
The action of x0 on (S−, S+) however, will leave crit(S+) unchanged. (The act of
adding carets to (T−, T+) will only increase the critical leaf index in each tree by
n − 2 for each caret added.)

3. Fordham’s metric on F (n)

In [11], Fordham developed a method to calculate the length of any given ele-
ment of F (n) with respect to the standard finite generating set {x0, x1, . . . , , xn−1}.
Fordham’s method depends upon numbering the carets in each tree of a tree-pair
diagram and then classifying each of the caret pairs into one of several different
types: the motivating idea being that certain types of caret pairs can only be ob-
tained if a certain set of generators with a certain cardinality has been used to
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Figure 8. For each of the 6 parent caret types given above, the
caret type listed below each child vertex is the type of the child
caret, if one exists.

obtain the tree-pair diagram from the empty diagram which represents the identity
element. So before we introduce Fordham’s metric, we first show how the carets
in a tree-pair diagram can be numbered and classified into distinct categories or
types. The rules for caret numbering and classification are all paraphrased here
from [11].

3.1. Basic classification of caret types. We begin by classifying carets in any
n-ary tree into one of three major types. Later we will subdivide these categories
further into more specific subtypes. In the following, when we refer to the left
(right) edge of a tree, we mean the subgraph of the tree which consists of the path
from the root to the leftmost (rightmost) leaf.

The three main types of carets in an n-ary tree-pair diagram are:

(1) L. This is a left caret; a left caret is any caret that has one edge on the left
edge of the tree. The root caret is considered to be of this type.

(2) R. This is a right caret; a right caret is any caret (except the root caret)
that has one edge on the right edge of the tree.

(3) M. This is a middle caret; a middle caret is any caret that is neither a left
nor a right caret.

3.2. Further classification of carets of type M. Carets of type M can be
further classified depending upon their placement with respect to other caret types
in the tree. We will take all carets of type M and subdivide them into n−1 different
subtypes each of which we will call type Mi , for i = 1, . . . , n − 1. The value of i
depends upon the caret type of the middle caret’s parent caret. To see how i is
determined for different parent caret types, see Figure 8. For example, if the parent
caret is of type L, then all except the leftmost child vertices are numbered from left
to right so that any caret hanging off of the first of these vertices is type M1, the
type of any caret hanging off the second of these vertices is type M2, etc., and the
type of any caret hanging off the last of these vertices is type Mn−1 .
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Figure 9. The ordering of child nodes (if they exist) with respect
to the parent node in different caret types in tree-pair diagrams of
elements of F (n).

3.3. Ordering the carets in an n-ary tree-pair diagram. The nodes (recall
that a node is always a vertex of degree n or n + 1) of each tree are ordered in the
following way. If we were to draw a vertical line through the parent node of a caret,
the children drawn to the left of this line would be referred to as the left children
of the parent, and the children drawn to the right of this line would be referred to
as the right children of the parent. The caret type will determine which children
of a caret are drawn to the left of the parent node and which are drawn to the
right (see Figure 9). When numbering the nodes on the tree, we will number any
left child nodes first from left to right, then number the parent node, then number
any right child nodes from left to right. For example, if a caret is of type M1,
then any existing child nodes will be left children, and therefore numbered before
it, except any child caret which has as its parent the child vertex which is farthest
to the right; this child caret, if it exists, will be a right child and will therefore be
numbered after the parent node. Because all carets in an n-ary tree have at least
one node which is the parent or child of another caret within the tree, the ordering
of the nodes of a single caret induces an ordering of all the nodes in a tree.

The numbering of the nodes induces a numbering of the carets if we let a caret’s
number be the same as the number given to its parent node. We will denote the
ith-caret by ∧i. For example, to see an element of F (n) with all its carets ordered
numerically, see Figure 3.

3.4. Final classification of caret types. Now that we have a method for or-
dering the carets in a tree, we can proceed to further subclassify the caret types L,
R, M1,. . . , Mn−1 in an n-ary tree into more specific caret subtypes. This further
subcategorization is necessary in order to proceed with Fordham’s method for cal-
culating word length. In order to construct these categories, we need to define the
following key terms: a caret ∧i is a successor of the caret ∧j if and only if i > j. A
caret ∧i is the immediate successor of the caret ∧j if and only if i = j + 1. A caret
∧i is a predecessor of the caret ∧j if and only if ∧j is a successor of ∧i. We note
here that the definitions of successor (predecessor) and child or descendent (parent
or ancestor) should not be confused; the successor, even the immediate successor,
of a caret may not be the child or the descendent of that caret, and vice versa. (For
example, in Figure 3, in T+ ∧5 is the child but not a successor of ∧6, and in T−,
∧2 is a successor of ∧0, even though it is not a descendent of ∧0.)

Here is the final list of caret types:
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(1) L∅. This is the first left caret (and therefore the first caret) in a tree, which
will therefore have index number 0. Every nonempty tree has one and only
one caret of this type.

(2) LL. This is any left caret except the single L∅ caret.
(3) R∅. This is any right caret with all successor carets of type R.
(4) RR. This is a right caret whose immediate successor is of type R, but which

has at least one successor which is not of type R.
(5) Rj . This is a right caret whose immediate successor is not a right caret and

whose leftmost child successor is of type Mj , (where clearly we must have
j < n − 1). If the leftmost child successor is of type R, we let j = n − 1.

(6) Mi
∅. This is a middle caret of type Mi that has no child successor carets.

(7) Mi
j . This is a middle caret of type Mi with leftmost child successor of type

Mj . (Note that j ≤ i.)

3.5. Fordham’s method for computing word length in F (n). We now de-
scribe Forham’s method [11] for computing the length of words in F (n) with respect
to the standard finite generating set. We recall that in a tree-pair diagram, all carets
in the positive and negative trees are numbered, and the caret numbered i in the
negative tree is paired with the caret numbered i in the positive tree. We will refer
to this as the ith caret pair in the tree-pair diagram and will denote it by ∧i. (We
note that the notation ∧i may be used to represent a single caret numbered i in
a single tree, or the pair of carets numbered i in a tree-pair diagram; when this
notation is used, which of these is meant should be clear from the context.)

Throughout this paper, we use the notation |x| to denote the length of the
element x in F (n) with respect to the standard finite generating set. Because this
notation is used so often, we set it apart in a separate remark:

Remark 3.1. For a given element x in F (n), the notation |x| always represents the
length of x with respect to the standard finite generating set {x0, x1, . . . , , xn−1}.

To determine |x| of an element x in F (n), we consider the minimal tree-pair
diagram representative of x. We make a list of each caret pair in the diagram
giving the type of each caret in the pair, and then we consult a table that assigns a
“weight” to each possible caret pairing that could be obtained in an n-ary tree-pair
diagram. The weight of a caret pair in a tree-pair diagram is the contribution of that
caret pairing to the length of the element of F (n) which the diagram represents.
The weight which is assigned to a caret pair comes from the cardinality of the set
of generators which is required to create such a caret pair. Table 1 displays these
weights.

We will use the notation w(∧i) or w(τ1, τ2) to denote the weight, given by Ford-
ham’s table, of the ith caret pair in the tree-pair diagram, where the types of each
caret in the pair are denoted by τ1 and τ2. Since the table is symmetric, we will
always have w(τ1, τ2) = w(τ2, τ1) for any caret types τ1 and τ2. We note that carets
of type L∅ are not listed on the table; since there is only one caret of this type
in any given tree, and since this will always be the type of the first caret in each
tree, the only pairing possible is (L∅,L∅), which will occur only once in any given
tree-pair diagram and have weight w(L∅,L∅) = 0.

To calculate the length of an element, we then need only sum the weights of the
caret pairs taken from its minimal tree-pair diagram representative.
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Table 1. Weight of types of caret pairs in the n-ary tree-pair
diagram (j1 ≤ i < j2, i1 < j ≤ i2).

( , ) L R∅ RR Rj Mi
∅ Mi

j

L 2 1 1 1 2 2
R∅ 1 0 2 2 1 3
RR 1 2 2 2 1 3
Rj1 1 2 2 2 3 3
Mi1

∅ 2 1 1 1 2 2
Mi1

j1
2 3 3 3 4 4

Rj2 1 2 2 2 1 3
Mi2

∅ 2 1 1 3 2 4
Mi2

j2
2 3 3 3 2 4

Theorem 3.2 (Fordham [11], Theorem 2.0.11). Given an element w in F (n) rep-
resented by the minimal tree-pair diagram (T−, T+), the length |w| of the element
w with respect to the generating set {x0, x1, . . . , , xn−1} is the sum of the weights of
each of the pairs of carets in the tree-pair diagram.

3.6. Effect of multiplication on caret type pairings. When we multiply an
element x = (T−, T+) of F (n) on the right by another element y, we can think of
the multiplication in this way: the element y is acting on the tree-pair diagram
(T−, T+) in some way to turn it into the tree-pair diagram ((Ty)−, (Ty)+) which,
if not already minimal, will be simplified to the tree-pair diagram ((Ty)′−, (Ty)′+).

Remark 3.3. When multiplying an arbitrary element x = (T−, T+) by an arbitrary
element y on the right, if no carets need be added to (T−, T+) to compute the
product xy, then the type of caret ∧i is the same in both T+ and (Ty)+ for all
caret index numbers i. In fact, the only case in which the type of caret ∧i will be
different in (Ty)′+ than in T+ for some caret index number i, is the case in which
((Ty)−, (Ty)+) is not minimal, i.e., ((Ty)−, (Ty)+) �= ((Ty)′−, (Ty)′+).

In the case in which ((Ty)−, (Ty)+) �= ((Ty)′−, (Ty)′+), each caret pair which
must be removed from ((Ty)−, (Ty)+) in order to obtain ((Ty)′−, (Ty)′+) will cause
only one of the following changes to the list of caret types in T+ to obtain the list
of caret types for (Ty)′+. One of the items on the list will be removed, and exactly
one of the following will occur:

(1) All other caret types will remain the same.
(2) One caret of the form Mi

j will become type type Mi
∅ or type Mi

k for some
k > j.

(3) One caret of the form Rj will become type RR, or type R∅, or type Rk for
some k > j, and zero or more carets of type RR will become type R∅.

This fact will be used repeatedly in proofs of several of the theorems presented
later in this paper.

For cases when exact calculation of the weights of caret pairs in a tree-pair
diagram is not possible or not desirable, the following theorems may be helpful in
evaluating the effect multiplication by a generator will have on the length of an
element. We begin by making a definition.
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Definition 3.4. Let x be a generator of F (n) and let w = (T−, T+) ∈ F (n) be a
reduced q-caret tree-pair diagram.

(1) We say that wx satisfies the subtree condition if we can compute the product
wx without adding any carets to (T−, T+).

(2) We say that wx satisfies the minimality condition if ((Tx)−, (Tx)+) is min-
imal.

Theorem 3.5 (Fordham [11], Theorem 2.1.1). Let x be a generator of F (n) and
let w = (T−, T+) ∈ F (n) be a reduced q-caret tree-pair diagram. If wx satisfies both
the subtree condition and the minimality condition, then there is exactly one caret
∧i (where i < q) that changes type; that is, if we let τT−(∧i) denote the caret type
of ∧i in T− in the tree-pair diagram (T−, T+), then ∃ i < q such that

τT−(∧i) �= τ(Tx)−(∧i) and τT−(∧j) = τ(Tx)−(∧j)∀ j �= i.

We note that the caret ∧i which changes type when the conditions of Defini-
tion 3.4 are met will always be in the negative tree (see Remark 3.3).

We note that when the subtree condition is satisfied, (Tx)+ will be a subtree of
T+, with equality only when the minimality condition is met. When the conditions
in Defintion 3.4 fail, we have two alternate theorems:

Theorem 3.6 (Fordham [11], Theorem 2.1.3). If x is a generator of F (n) and
w = (T−, T+) ∈ F (n), and the product wx does not fulfill the subtree condition of
Definition 3.4, then |wx| > |w|.
Theorem 3.7 (Fordham [11], Theorem 2.1.4). If x is a generator of F (n) and
w = (T−, T+) ∈ F (n), and the product wx does not fulfill the minimality condition
of Definition 3.4, then |wx| = |w| − 1.

4. Proof of the main theorem

For the duration of this paper, we let Γ denote the Cayley graph of F (n) with
respect to the standard finite generating set, we let Bm denote the ball of radius
m centered at the identity in the Cayley graph, and we use dΓ(g, h) and dBm(g, h)
to denote the distance between the elements g and h in the Cayley graph and
the ball Bm respectively. We use the convention that the edges of the Cayley
graph denote multiplication by a generator (or its inverse) of the standard finite
generating set on the right of the element represented by a given vertex. A path in
Γ is therefore a directed path which goes from one vertex to another along edges
which represent multiplication on the right by a generator (or its inverse). For all
tree-pair diagrams given in the proof of the main result of this paper, circles are
used to denote (possibly empty) subtrees, and exposed child vertices without circles
are used to denote leaves. We restate the main theorem of our paper here for ease
of reading.

We seek to prove the following:

Main Theorem 1 (F (n) is not minimally almost convex). Let Γ be the Cayley
graph of F (n) with respect to the standard finite generating set. For all even m ≥ 4
there exist l, r ∈ F (n) such that:

(1) dΓ(l, r) = 2.
(2) |l| = |r| = m.
(3) For any path γ from l to r which remains in Bm, |γ| ≥ 2m.
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Figure 10. r (top) and l (bottom) in F (n).

4.1. Choosing r and l. We begin by choosing two specific elements r and l,
which are those elements used by Belk and Bux in [2] in their proof that F (2)
is not minimally almost convex, but which we have generalized to the case n ∈
{2, 3, 4, . . .}:

r = xq
n−1x

−(q+1)
0 x−1

n−1

and
l = rx2

0

and we let m = 2q +2 where q ≥ 1. The minimal tree-pair diagram representatives
of r and l can be seen in Figure 10.

4.1.1. Intuitive motivation behind the proof of the main theorem. The
intuitive motivation behind our proof of the main theorem is identical to that used
by Belk and Bux to prove that F (2) is not minimally almost convex in [2]. However,
their usage of forest diagrams as representatives of elements of F (2) makes the
actions of the generators much more transparent: the action of one generator is
always to delete or add caret pairs, and the action of the other generator is always
to move the arrow in the diagram. (For more details on how forest diagrams can be
used to represent elements of F (2), see [1].) However, there is no known way to use
forest diagrams as representatives of F (n) that gives us such a simple view of the
actions of the generators. So in order to observe how generators act on elements in
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Figure 11. A (possibly nonminimal) generic representation of a
negative tree in an arbitrary n-ary tree-pair diagram (where p =
n − 1).

F (n), we have to look at how the action of generators on tree-pair diagrams can be
viewed as rotations within the tree, and we need to be adept at looking at how this
can affect the types of carets in the tree-pair diagram and how Fordham’s metric
can then be applied to see how rotation in one of the trees of the minimal tree-pair
diagram can affect the length of an element.

To see that this is the case, we begin by making some observations about how
generators (in the standard finite generating set) act on arbitrary tree-pair dia-
grams. Figure 11 can be used to represent a negative tree in an arbitrary n-ary
tree-pair diagram (this diagram may not be minimal).

Once a negative tree has been written in the form given in Figure 11, the action
of any given generator will change only one of the types of the carets in that tree.
(To understand what follows, it may be helpful to refer again to Figure 6.) Each
generator will produce the following type change:

(1) x0 takes the type of ∧B from LL to R∗.
(2) x−1

0 takes the type of ∧E from R∗ to LL.
(3) xi for i = 1, . . . , n − 2 takes the type of ∧Ci from Mi∗ to R∗.
(4) x−1

i for i = 1, . . . , n − 2 takes the type of ∧E from R∗ to Mi∗.
(5) xn−1 takes the type of ∧D from Mn−1

∗ to R∗.
(6) x−1

n−1 takes the type of ∧E from R∗ to Mn−1
∗ .

Similarly, each generator can only expose the carets in certain positions in the
negative tree. If a negative tree has the form given in Figure 11, then the only
caret(s) which may be exposed by the action of the given generator are:

(1) x0 may expose ∧B (and if ∧B cancels, then ∧A may cancel as well).
(2) x−1

0 may expose ∧B (and if ∧B cancels, then ∧E may cancel as well).
(3) xi for i = 1, . . . , n − 2 may expose ∧Ci (and if ∧Ci cancels, then ∧B may

cancel as well).
(4) x−1

i for i = 1, . . . , n − 2 may expose ∧E (and if ∧E cancels, then ∧B may
cancel as well).

(5) xn−1 may expose ∧E (and if ∧E cancels, then ∧D, followed by ∧B may cancel
as well).

(6) x−1
n−1 may expose ∧E (and if ∧E cancels, then ∧F , followed by ∧B may cancel

as well).
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The intuitive idea behind the proof of the main theorem of this paper requires
that we think of movement along the arbitrary fixed path γ in Bm from l to r as
a series of actions on the tree-pair diagram which begins as (S−, S+) (the minimal
tree-pair diagram representative for l). We think of each edge on the path as an
action by that generator (or its inverse) on the tree-pair diagram. What follows
is an informal presentation of those ideas which motivate the proof of the main
theorem and the given choice of r and l. In this section we have forgone a certain
degree of formality in an attempt to describe some basic intuitive ideas in a simple,
straightforward way, but this informal approach will be abandoned once we return
to the formal proof of the main theorem.

The main idea is this: to go from l to r while remaining in Bm, we must first
cancel the caret pair ∧1 in (S−, S+), then cancel the caret pair ∧q+2 (where q + 2
refers to its original index number in (S−, S+), not its current index number at
the time of cancelation), then add back the caret pair ∧1 (again, the index here
refers to its original index number in (S−, S+)), then add back the caret pair ∧q+2,
in that order, and this series of steps will always require a path of length 2m or
greater.

To see why this might be the case, we go into a little more detail here, although
the structure of our formal proof will look somewhat different.

First we notice how the weights of each of the carets in (S−, S+) determines the
length of l (see Proof of part (2) of Main Theorem 1 for details):

(1) The first and last caret pairs contribute nothing to the length, which is the
least possible contribution that can be made in any tree by the first and last
caret pairs.

(2) The caret pairs with index numbers q, q + 2 each contribute 1 to the total
length of the element, which is the least possible contribution by these carets,
as all caret pairs that are not the first or last pair in a tree-pair diagram
must contribute a weight of at least 1 to the total length.

(3) The caret pairs with index numbers 1, 2, 3, . . . , q−1, q+1 contribute a weight
of 2 each to the length of the element.

In order to get from l to r, we need to move the caret ∧q in S− counterclockwise
through the root. But this will change the type of that caret from RR to LL,
changing the type pair from (RR,Mn−1

∅ ) to (LL, Mn−1
∅ ), increasing the weight of

this caret pair from 1 to 2. But this change in type will increase the length of the
element to m+1 and therefore the resulting element will be outside Bm. So before
we can move ∧q counterclockwise, we must cancel some caret pair in the tree-pair
diagram which contributes at least a weight of 1 to the total length (i.e., not the
first or last caret pair in the diagram) or we must change the type of one of the
carets in one of the caret pairs with index 1, 2, 3, . . . , q − 1, or q + 1 in such a way
that the weight contribution of that caret pair is reduced.

The types of the carets in the positive tree of a tree-pair diagram can be changed
only by adding carets as descendants (see Remark 3.3), which will always increase
the length of the element (see Theorem 3.6) and therefore force the resulting element
to be outside Bm, so if type change is necessary, we must change the type of some
caret in the negative tree. We cannot cancel or change the type of ∧q+2 (or ∧q+3)
in the negative tree without moving it counterclockwise, which will prevent ∧q in
the negative tree from being able to be of type R, and if ∧q is any type other than
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RR or R∅, the weight contributed by the pair ∧q will increase, again resulting in
an element that is outside Bm.

So we must cancel or change the type of ∧i for some i ∈ {1, . . . , q − 1} in the
negative tree. If we try to cancel one of these, we must cancel ∧1 first, because this
caret is a descendent of all the other ∧i carets in the positive tree, and we cannot
change the relative position of carets in a positive tree. If we want to change the
type of one of these carets in the negative tree in order to reduce the weight of that
caret pair, we must change the type to RR or R∅, since these are the only two type
changes which will reduce the weight from 2 to 1. But if we change one of these
caret types to RR or R∅, in order to take ∧q from its current position to the root,
we will have to move the caret back to a position where it cannot be of type R. So
changing the type of one of these carets will not be fruitful, and therefore our only
remaining option is to cancel the caret pair ∧1.

Once we have eliminated ∧1 from the tree-pair diagram, we have reduced the
length of the element enough that we can rotate ∧q counterclockwise through the
root without leaving Bm, but now our tree-pair diagram does not represent r be-
cause we are missing ∧1, which we had to eliminate in order to perform this rotation
in Bm. But we can’t immediately go back and add ∧1 back again, because that
will take us back to where we were before eliminating ∧1, so to ensure the resulting
element is in Bm when we add ∧1 back, we have to cancel or change the type of
another nontrivially weighted caret (i.e., one of the carets that had index 2, . . . , q−1
or q + 1 in the original tree-pair diagram (S−, S+)).

Since ∧i (for i = 2, . . . , q − 1 with respect to the index in (S−, S+)), if canceled,
will have to be added back before ∧1 can be added back, canceling one of these
carets is not an option. And changing the types of any of these carets presents
exactly the same problems that prevented us from changing the type of ∧1 rather
than eliminating it. So our only remaining option is to cancel or change the type of
∧q+2 (where q + 2 refers to its index in the original tree (S−, S+)) in the negative
tree. Since no type change will reduce the weight of this caret, we must cancel it.

After canceling ∧q+2, to obtain a tree-pair diagram for r from the resulting tree-
pair diagram, we will have to add back ∧1 first (since adding back ∧q+2 will just
take us back to where we were before we eliminated it) and then we will need to
add back ∧q+2.

So in total we will have to remove two caret pairs from the tree and add two
caret pairs to the tree. Each of these removals/additions will contribute a weight
of 1 to the length of the path from l to r. To cancel ∧1, this caret will have to
be the child hanging off the rightmost child vertex of the root in the negative tree,
which will require q − 1 clockwise rotations through the root. Then once ∧1 has
been canceled, to cancel ∧q+2, ∧q+2 will have to be the root of the negative tree,
which will require q counterclockwise rotations through the root. Then to add back
∧1, which can only be done when ∧2 is hanging off the rightmost child vertex of
the root in the negative tree, requires q clockwise rotations through the root. And
after ∧1 has been added back, to add ∧q+2 back, we must have ∧q+1 as the root of
the negative tree, which will require q + 1 counterclockwise rotations through the
root. Each rotation will add length one to the path, so in total this will give us a
path length of 4q + 4 = 2m.
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For example, one geodesic path within Bm from l to r (which does not pass
through the identity vertex in Γ) is:

xq−1
0 x−1

n−1x
−q
0 xn−1x

q
0xn−1x

−(q+1)
0 x−1

n−1

Since the sums of the absolute values of the exponents is 4q+4, this path has length
2m.

4.1.2. Return to formal proof of the main theorem. Our formal approach
to the proof of the main theorem of this paper, while motivated by the intuitive
informal motivation described above, will appear somewhat different at first glance.
We begin by defining hr and hl respectively as the last and first balanced vertices
on an arbitrary fixed path γ in Bm from l to r. We recall from our explanation
of the intuitive motivation behind the proof that removing ∧1, then ∧q+2, then
adding back ∧1 followed by ∧q+2 requires us to go from a series of positive vertices
to a series of negative vertices to a series of positive vertices to a series of negative
vertices as we move along γ. So our definitions of hr and hl are a way of marking
specific vertices on γ where we encounter the first nonpositive vertex as we move
from l and the last nonnegative vertex as we approach r. In fact, we will compute
hr explicitly (which will show that the last step on γ must be to add back ∧q+2).
We then need not compute hl explicitly; rather, we simply show that its minimal
tree-pair diagram representative must have a specific form, and that this form will
allow us to estimate dΓ(hr, hl) closely enough to show that it is at least m + 1.
Then by the triangle inequality and some basic algebra, the fact that |γ| ≥ 2m will
immediately follow.

We begin by proving parts (1) and (2) of Main Theorem 1.

Proof of part (1) of Main Theorem 1. . Since l = rx2
0,

r−1l = r−1rx2
0, so

dΓ(l, r) = |r−1l| = 2. �

Proof of part (2) of Main Theorem 1. . We compute the lengths of r and l:
For r:

∧0 = (L∅,L∅) so w(∧0) = 0

∧i = (LL,Mn−1
∅ ) so w(∧i) = 2 for i = 1, . . . , q

∧q+1 = (LL,R∅) so w(∧q+1) = 1

∧q+2 = (Mn−1
∅ ,R∅) so w(∧q+2) = 1

∧q+3 = (R∅,R∅) so w(∧q+3) = 0.

Summing the weights for each of these yields the length of r:
|r| = 2q + 2 = m
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For l:

∧0 = (L∅,L∅) so w(∧0) = 0

∧i = (LL,Mn−1
∅ ) so w(∧i) = 2 for i = 1, . . . , q − 1

∧q = (RR,Mn−1
∅ ) so w(∧q) = 1

∧q+1 = (Rn−1 ,R∅) so w(∧q+1) = 2

∧q+2 = (Mn−1
∅ ,R∅) so w(∧q+2) = 1

∧q+3 = (R∅,R∅) so w(∧q+3) = 0.

Summing the weights for each of these yields the length of l:

|l| = 2q + 2 = m �
The rest of this paper will now be devoted to a proof of part (3) of Main Theo-

rem 1.
We begin with the following lemma, which is originally from Belk and Bux

(Lemma 4.1 in [2]) for the case n = 2, but which we have generalized to all n ∈
{2, 3, 4, . . . , }:
Lemma 4.1. In F (n), if there are two vertices hr and hl on an arbitrary fixed path
γ in Bm between l and r such that dΓ(hl, hr) ≥ m + 1 , then |γ| ≥ 2m.

Proof. By definition,

|γ| ≥ dΓ(l, hl) + dΓ(hl, hr) + dΓ(hr, r)

And by the triangle inequality,

dΓ(hl, hr) ≤ dΓ(hl, l) + dΓ(l, r) + dΓ(r, hr)

By definition dΓ(l, r) = 2. Substituting this into the second inequality and solving
each inequality for dΓ(l, hl) + dΓ(r, hr) yields the following two equations:

|γ| − dΓ(hl, hr) ≥ dΓ(l, hl) + dΓ(r, hr) and dΓ(hl, hr) − 2 ≤ dΓ(l, hl) + dΓ(r, hr)

Putting these together with dΓ(hl, hr) ≥ m + 1 yields:

|γ| ≥ 2dΓ(hl, hr) − 2 ≥ 2m �
So according to Lemma 4.1, if we can prove that an arbitrary fixed path γ

between l and r which remains in the ball Bm contains two vertices hr and hl which
are distance m + 1 apart, then the main theorem of this paper will immediately
follow. We now proceed to define these vertices.

4.2. Finding the vertex hr. We begin by letting γ denote a fixed arbitrary
directed path in Γ from l to r which does not leave Bm. We define hr to be the
last balanced vertex along γ. (This definition is a generalized version of the same
definition which Belk and Bux chose for hr in [2], although our terminology, chosen
because it is clearer when using tree-pair diagram representatives, is somewhat
different.) We show that such a vertex does exist on γ, and that, in fact, hr can be
computed explicitly. To do this, we begin by showing through explicit computation
that any path from l to r which remains in Bm must pass through the vertex
rxn−1x0: we first show that all paths beginning at r must pass through rxn−1 or
leave Bm, then we show that all paths which pass through rxn−1x

−1
0 , rxn−1x

±1
i for

i ∈ {1, . . . , n−2}, or rx2
n−1 must leave Bm, and at last we show that hr = rxn−1x0.
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Table 2. Let g± ∈ {x0, x1, . . . , , xn−1} such that rg satisfies the
two conditions in Definition 3.4, and hence Theorem 3.5 applies.
Then right multiplication by g induces the following type changes
to carets in T−. Here ∧j is the caret that changes type in T−, τr(∧j)
denotes the type pair of ∧j in the minimal tree-pair diagram rep-
resentative for r, and wr(∧j) denotes the weight of that caret pair
given its type pair in the minimal tree-pair diagram representative
for r. Here i ∈ {1, . . . , n − 2}.

g ∧j τr(∧j) τrg(∧j) wr(∧j) wrg(∧j) |rg|
x0 ∧q+1 (LL,R∅) (Rn−1 ,R∅) 1 2 m + 1
x−1

0 ∧q+3 (R∅,R∅) (LL,R∅) 0 1 m + 1
x−1

i ∧q+3 (R∅,R∅) (Mi
∅,R∅) 0 1 m + 1

xn−1 ∧q+2 (Mi
∅,R∅) (R∅,R∅) 1 0 m − 1

Lemma 4.2. Any path in Γ which begins at r must either pass through the vertex
rxn−1 or leave Bm.

Proof. We have |r| = m. We begin by computing the length of rg where g±1 ∈
{x0, x1, . . . , , xn−1}.

When g = xi for i ∈ {1, . . . , n − 2} or x−1
n−1, rg does not satisfy the subtree

condition of Definition 3.4, so |rg| > m in these cases by Theorem 3.6. So we need
only check the remaining cases of g. In these cases, both conditions of Definition 3.4
are satisfied. When these conditions are satisfied, only one caret changes type in
the negative tree (Theorem 3.5); Table 2 outlines how this type change affects the
length of the resulting element in the remaining cases for g.

Because rx0, rx−1
0 , rxi and rx−1

i ∀i ∈ {1, . . . , n − 2}, and rx−1
n−1 all have length

greater than m, we know that any path from l to r which passes through one of
these vertices must leave Bm. Therefore, any path from l to r which does not leave
Bm must pass through the vertex rxn−1. �
Lemma 4.3. All vertices in Γ of the form rxn−1g where g±1 ∈ {x0, x1, . . . , , xn−1}
are in Bm.

Proof. Since |rxn−1| = m − 1, it is obvious that |rxn−1g| ≤ m for all g such that
g±1 ∈ {x0, x1, . . . , , xn−1}, so the explicit calculations which follow are unnecessary
for the proof of this lemma. However, since explicit calculation of the length of
rxn−1g for all g±1 ∈ {x0, x1, . . . , , xn−1} will be necessary to complete the proof
of Lemma 4.4 which is to follow, we include those calculations here. We proceed
by considering |rxn−1g| where g±1 ∈ {x0, x1, . . . , , xn−1}. We can see the minimal
tree-pair diagram representative of rxn−1 in Figure 12, and we recall that |rxn−1| =
m − 1.

(1) rxn−1x0: Multiplying rxn−1 by x0 satisfies both conditions of Definition 3.4
and changes ∧q+1 in T− from type LL to type R∅. This changes the caret
pairing from (LL,R∅), which has weight 1, to (R∅,R∅), which has weight 0,
thereby decreasing the length by one. So |rxn−1x0| = m − 2.

(2) All other cases: When g = x−1
n−1, rxn−1g = r, so we need not consider

this case. When g = x−1
0 , xi or x−1

i for i ∈ {1, . . . , n − 2}, or xn−1, it
does not satisfy the subtree condition of Definition 3.4, so by Theorem 3.6,
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Figure 12. Minimal tree-pair diagram representative for rxn−1 in F (n).

|rxn−1g| > m − 1. However, since we are multiplying by a generator, the
length can only increase by at most 1, so we will have |rxn−1g| = m in these
cases.

Since all elements of the form rxn−1g where g±1 ∈ {x0, x1, . . . , , xn−1} are of
length less than or equal to m, they all remain inside Bm. �

The following lemma is a generalization of a similar lemma (Lemma 4.3 in [2])
used by Belk and Bux in their proof that F (2) is not minimally almost convex:

Lemma 4.4. Any path in Γ which begins at r must either pass through the vertex
rxn−1x0 or leave Bm.

Proof. Because all elements of the form rxn−1g (where g is one of the standard
finite generators or its inverse) are inside the ball Bm, in order to show that all
paths beginning at r which remain in Bm must pass through the vertex rxn−1x0,
we must proceed by considering the length of all elements of the form rxn−1g1g2

where g±1
1 , g±1

2 ∈ {x0, x1, . . . , , xn−1}.
(1) rxn−1x

−1
0 g: We look at the minimal tree-pair diagram of rxn−1x

−1
0 , which

we can see in Figure 13 and we consider the length of rxn−1x
−1
0 g where

g±1 ∈ {x0, x1, . . . , , xn−1}. rxn−1x
−1
0 g where g±1 ∈ {x0, x1, . . . , , xn−1} does

not satisfy the subtree condition of Definition 3.4 unless g = x0, in which
case rxn−1x

−1
0 g will reduce to rxn−1. So we know from Theorem 3.6 that

|rxn−1x
−1
0 g| > m whenever rxn−1x

−1
0 g �= rxn−1. Therefore any path from l

to r which remains in Bm cannot pass through rxn−1x
−1
0 .

(2) rxn−1xig ∀i ∈ {1, . . . , n−2}: Now we look at the minimal tree-pair diagram
for rxn−1xi ∀i ∈ {1, . . . , n− 2}, which we can see in Figure 14 and consider
the length of rxn−1xig where g±1 ∈ {x0, x1, . . . , , xn−1}. rxn−1xig does not
satisfy the subtree condition of Theorem 3.4 in the cases when g = xj∀j ∈
{1, . . . , n− 1}, or x−1

n−1, so we know from Theorem 3.6 that |rxn−1xig| > m

whenever g = xj∀j ∈ {1, . . . , n − 1}, or x−1
n−1.
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Figure 13. Minimal tree-pair representative for rxn−1x
−1
0 in F (n).

Figure 14. Minimal tree-pair diagram representative for rxn−1xi

∀i ∈ {1, . . . , n − 2} in F (n).

Now all that remains is to check the length of rxn−1xig ∀i ∈ {1, . . . , n−2}
when g = x0, x

−1
0 or x−1

j for j ∈ {1, . . . , n − 2}. Since both conditions of
Definition 3.4 are met in these cases, all that will change as a result of
the multiplication by g is the type of a single caret in the negative tree. We
outline these changes and their effect on the length of the element in Table 3.

Therefore, ∀i ∈ {1, . . . , n− 2}, any path from l to r which remains in Bm

cannot pass through rxn−1xi .
(3) rxn−1x

−1
i g ∀i ∈ {1, . . . , n−2}: Now we look at the minimal tree-pair diagram

for rxn−1x
−1
i ∀i ∈ {1, . . . , n−2}, which we can see in Figure 15, and we con-

sider the length of rxn−1x
−1
i g where g±1 ∈ {x0, x1, . . . , , xn−1}. rxn−1x

−1
i g

does not satisfy the subtree condition of Definition 3.4 in the cases when
g = x−1

0 , xj with i �= j ∈ {1, . . . , n − 1}, or x−1
j with j ∈ {1, . . . , n − 1}, so

we know from Theorem 3.6 that |rxn−1x
−1
i g| > m whenever g = x−1

0 , xj

with i �= j ∈ {1, . . . , n − 1}, or x−1
j with j ∈ {1, . . . , n − 1}.
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Table 3. Type changes to carets in the negative tree of rxn−1xi

when rxn−1xig, g± ∈ {x0, x1, . . . , , xn−1}, satisfies both conditions
of Definition 3.4. Here ∧k is the caret that changes type in the
negative tree of rxn−1xi, τrxn−1xi(∧k) denotes the type pair of
∧k in the minimal tree-pair diagram representative for rxn−1xi,
and Δw(∧k) denotes the change in weight of that caret pair from
the minimal tree-pair diagram representative for rxn−1xi to the
minimal tree-pair diagram representative for rxn−1xig. Here j ∈
{1, . . . , n − 2}.

g ∧k τrxn−1xi(∧k) τrxn−1xig(∧k) Δw(∧k) |rxn−1xig|
x0 ∧q+1 (LL,Ri) (R∅,Ri) +1 m + 1
x−1

0 ∧q+2 (R∅,Mi
∅) (LL,Mi

∅) +1 m + 1
x−1

j ∧q+2 (R∅,Mi
∅) (Mj

∅,Mi
∅) +1 m + 1

Figure 15. Minimal tree-pair diagram representative for

rxn−1x
−1
i ∀i ∈ {1, . . . , n − 2}

in F (n).

Now all that remains is to check the length of rxn−1x
−1
i x0, i = 1, . . . , n−2.

Multiplying rxn−1x
−1
i by x0 satisfies both conditions of Definition 3.4 and

changes ∧q+1 in T− from type LL to type Ri . This changes the caret pairing
from (LL,R∅), which has weight 1, to (Ri ,R∅), which has weight 2, thereby
increasing the length by one. So |rxn−1x

−1
i x0| = m + 1. Therefore, ∀i ∈

{1, . . . , n−2}, any path from l to r which remains in Bm cannot pass through
rxn−1x

−1
i .

(4) rx2
n−1: Now we look at the minimal tree-pair diagram for rx2

n−1, which
we can see in Figure 16 and consider the length of rx2

n−1g where g±1 ∈
{x0, x1, . . . , , xn−1}. rx2

n−1g does not satisfy the subtree condition of Def-
inition 3.4 in the cases when g = xi, i ∈ {1, . . . , n − 1}, so we know from
Theorem 3.6 that |rx2

n−1g| > m for g = xi, i ∈ {1, . . . , n − 1}.
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Figure 16. Minimal tree-pair diagram representative for rx2
n−1 in F (n).

Table 4. Type changes to carets in the negative tree of rx2
n−1

when rx2
n−1g, g± ∈ {x0, x1, . . . , , xn−1}, satisfies both conditions

of Definition 3.4. Here ∧j is the caret that changes type in the
negative tree of rx2

n−1, τrx2
n−1

(∧j) denotes the type pair of ∧j in the
minimal tree-pair diagram representative for rx2

n−1, and Δw(∧j)
denotes the change in weight of that caret pair from the minimal
tree-pair diagram representative for rx2

n−1 to the minimal tree-pair
diagram representative for rx2

n−1g. Here i ∈ {1, . . . , n − 2}.

g ∧j τrx2
n−1

(∧j) τrx2
n−1g(∧j) Δw(∧j) |rx2

n−1g|
x0 ∧q+1 (LL,Rn−1 ) (R∅,Rn−1 ) +1 m + 1
x−1

0 ∧q+2 (R∅,Mn−1
∅ ) (LL,Mn−1

∅ ) +1 m + 1
x−1

i ∧q+2 (R∅,Mn−1
∅ ) (Mi

∅,Mn−1
∅ ) +1 m + 1

Now all that remains is to check the length of rx2
n−1g when g = x0, x

−1
0

or x−1
i , i ∈ {1, . . . , n− 2}. Since both conditions of Definition 3.4 are met in

these cases, Theorem 3.5 applies and we need only outline the effect of the
change of the type of a single caret in the negative tree on the length, which
we do in Table 4.

Therefore any path from l to r which remains in Bm cannot pass through
rx2

n−1.

Because any path from l to r which remains in Bm cannot pass through rxn−1g
whenever g ∈ {x−1

0 , x±1
1 , x±1

2 , . . . , x±1
n−1}, any path from l to r which remains in Bm

must pass through rxn−1x0. �

Corollary 4.5. Any path γ from l to r which remains in Bm must pass through
the vertex rxn−1x0, and this vertex is the last balanced vertex along the arbitrary
fixed path γ (i.e., hr = rxn−1x0).

Proof. By Lemma 4.4, any minimal length path from l to r must go through the
vertex rxn−1x0; then any minimal length path from rxn−1x0 to r must go from the
vertex rxn−1x0 to the vertex rxn−1, to the vertex r. By looking at the minimal
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Figure 17. Minimal tree-pair diagram representative of hr in F (n).

tree-pair diagram representatives, it is clear that r and rxn−1 are both positive and
rxn−1x0 is balanced, so clearly rxn−1x0 is the last balanced vertex along γ. �

So we can conclude that hr = rxn−1x0. We can see the minimal tree-pair
diagram for hr = rxn−1x0 in Figure 17.

4.3. Finding the vertex hl. Just as we defined the vertex hr to be the last bal-
anced vertex on the fixed arbitrary path γ in Bm from l to r, we define hl to be
the first balanced vertex on γ. (Again, this definition is a generalized version of the
same definition which Belk and Bux chose for hl in [2], although our terminology,
chosen because it is clearer when using tree-pair diagram representatives, is some-
what different.) Now we want to show that hl is a distinct vertex from hr such that
d(hr, hl) ≥ m+1, because by Lemma 4.1, this will show that |γ| ≥ 2m. To do this,
we first show that any balanced or positive vertex x on the arbitrary path γ in Bm

from l to r for which any previous vertex on the subpath from l to x is positive,
has a minimal tree-pair diagram representative with a specific form. We then show
that any vertex which comes before hl on the path must be positive and therefore
that the minimal tree-pair diagram representative of hl has this same specific form.
This allows us to conclude that hl �= hr and to estimate the distance between hl

and hr.

Lemma 4.6. For some s ∈ Z
∗, let wj = lg1 · · · gj be a vertex on the fixed arbitrary

path γ in Bm from l to r such that for all j ∈ {0, 1, . . . , s− 1} wj is positive (where
we use the convention that w0 = l) and ws is either positive or balanced. (It is
clear that such an s always exists because l is positive.) Then the minimal tree-pair
diagram representative of wj has the form given in Figure 18.

In particular, we note that the last three carets in both the positive and negative
trees of the minimal tree-pair diagram representative of wj have the same type and
relative position to each other as the last three carets in the respective tree in the
minimal tree-pair diagram representative of l (i.e., the subtrees of the negative and
positive trees consisting of the carets ∧q+1,∧q+2,∧q+3 and their successors will be
identical to the subtrees of S− and S+ of l = (S−, S+) consisting of the carets
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Figure 18. Minimal tree-pair diagram representative of arbitrary
vertex wj in Cayley graph Γ of F (n) between l and hl (including
l and hl) on the arbitrary fixed path γ from l to r in Bm. Here
r ∈ Z

∗.

∧q+1,∧q+2,∧q+3 and their successors). These carets will have leaves with index
numbers which are never less than the index number of either the positive or the
negative critical leaf in the tree-pair diagram.

Proof. We prove this by induction. Our hypothesis clearly holds for w0, since
w0 = l.

We proceed to the induction step. We show that for arbitrary j ∈ {1, . . . , s−1},
multiplying wj on the right by a generator or its inverse will not modify the type
or the relative position of the last three carets in the positive or negative trees of
the minimal tree-pair diagram representative of wj . Multiplication by any one of
the generators will modify a tree in an arbitrary tree-pair diagram as follows.

If the tree-pair diagram and generator satisfy the subtree condition of Defini-
tion 3.4, the following changes will be made to the negative tree of wj : multiplica-
tion by x0 will change the caret type of the root, multiplication by xi will change
the caret type of the caret hanging off the ith child vertex of the root (where the
numbering of child vertices begins with 0 and increases from left to right), multi-
plication by xn−1 will change the caret type of the leftmost child of the rightmost
child of the root, and multiplication by x−1

0 , x−1
i , or x−1

n−1 will change the caret type
of the rightmost child of the root. So the positive tree in the tree-pair diagram will
remain completely unchanged, and since wj is positive for all j ∈ {1, 2, . . . , s − 1}
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the caret which changes type will not be one of the last three carets in the tree or a
successor of one of the last three carets in the tree, so this multiplication will leave
any carets in the negative tree whose leaves all have index numbers greater than or
equal to the index number of the positive and negative critical leaves unchanged in
type and relative position in the negative tree.

If the tree-pair diagram and generator do not satisfy the subtree condition in
Definition 3.4, it will be necessary to add carets before considering the changes
which would follow from multiplication by a generator as described in the preceding
paragraph. From the definitions of the various caret types, it is obvious that for an
arbitrary caret ∧v in either tree to have its type changed by the addition of carets
in the tree, ∧v must be type R or M and the added caret must have index number
greater than v. But the only places that carets might need to be added in order for
multiplication by a generator to take place are as follows (each of these added carets
are described by their placement in the negative tree in the tree-pair diagram; a
caret is then also added at the leaf with the same index in the positive tree of the
tree-pair diagram, which will usually not be in the same location with respect to
the root of the positive tree): multiplication by x0 may require the addition of a
caret at the leftmost child of the root, multiplication by xi may require the addition
of a caret at the ith child vertex of the root (where the numbering of child vertices
begins with 0 and increases from left to right), multiplication by xn−1 may require
the addition of a caret at the leftmost child of the rightmost child of the root. Each
of these carets will have index number less than or equal to the index number of
the caret which contains the positive critical leaf, so even after this addition of
carets, the tree-pair diagram for wj for j ∈ {1, . . . , s − 1} will still have the form
given in Figure 18, so our argument from the previous paragraph also follows in
these cases. Because wj is positive for all j ∈ {1, . . . , s − 1}, we will never need to
add a caret when multiplying by x−1

0 , x−1
i , or x−1

n−1 because we will already have
a caret present in the tree which is the rightmost child of the root, and for wj for
j ∈ {1, . . . , s− 1}, this caret will not be one of the last three carets in the negative
tree or a successor of one of the last three carets in the negative tree. So we can
conclude that for any wj for j ∈ {1, . . . , s − 1}, wj+1 will also have the form given
in Figure 18, and will be either positive or balanced. �

Now if we can establish that there is no negative or balanced vertex on the
subpath from l to hl of the fixed arbitrary path γ from l to r in Bm except the
balanced vertex hl, we will be able to conclude that hl satisfies the same conditions
as the vertex ws in 4.6 and therefore has minimal tree-pair diagram of the form
given in Figure 18. We now proceed to prove this.

Lemma 4.7. Let x be a vertex on the fixed arbitrary path γ from l to r in Bm

which lies on the subpath from l to hl. If x �= hl, then x is positive.

In other words, this lemma states that hl (which we recall is balanced by defini-
tion) is the first vertex on γ which is not positive.

Proof. We note that it is clear from the definition of critical leaf that the indexes of
the negative and positive critical leaves will always be a multiple of n−1 apart. We
must consider when, if ever, as we proceed along γ from l to r, we might encounter
a negative vertex before we encounter a balanced vertex.
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For this proof, we will use the following convention: let yj = lg1 · · · gj (where
j ∈ {0, . . . , t} for some t ∈ N) be a vertex on the subpath of γ which begins with l
and ends with hl such that l = y0 by convention, hl = yt, and for all i, k ∈ {0, . . . , t},
yi comes before yk on γ if and only if i < k (i.e., l = y0 → y1 → y2 → · · · → yt = hl

is exactly the subpath of γ beginning with l and ending with hl).
We know from Lemma 4.6 that there exists s ∈ N, s ≤ t such that yj = lg1 · · · gj

for all j ∈ {0, . . . , s−1} is positive and ys is either positive or balanced. We choose
the largest possible value of s for which this is true; in other words, we choose s so
that ys+1 is not positive. Our task now is to consider whether s = t or whether it
is possible that s < t. We also recall that yj for all j ∈ {0, . . . , s} has a minimal
tree-pair diagram representative of the form given in Figure 18. We proceed by
considering what the effect is on the minimal tree-pair diagram representative for
ys when we multiply it by a generator on the right.

First we consider the effect of adding a caret to the tree-pair diagram represen-
tative for ys, which will be required before we can multiply ys by a generator in
any case in which ys and the generator do not satisfy the subtree condition of Def-
inition 3.4. For the following cases, we let c± be the index of the positive/negative
critical leaf of the tree-pair diagram representative of ys.

(1) If we add a caret on a leaf with index less than or equal to c−, then the new
index of the negative critical leaf will be c−+(n−1) and the new index of the
positive critical leaf will be c++(n−1). Because (c++(n−1))−(c−+(n−1)) =
c+ − c− we can see that the relative positions of the positive and negative
critical leaves do not change with the addition of this caret.

(2) If we add a caret on a leaf with index i such that c− < i ≤ c+, then the index
of the negative critical leaf remains c− and the index of the positive critical
leaf becomes c+ +(n− 1). Since (c+ +(n− 1))− c− = c+ − c− +(n− 1), the
relative difference between the positive and negative critical leaves increases
by n − 1, so the resulting tree-pair diagram is still positive.

(3) If we add a caret on a leaf with index greater than c+, both the index of the
positive and negative critical leaves will remain unchanged.

So the act of adding carets alone to the minimal tree-pair diagram of ys will not
cause the resulting tree-pair diagram to become negative or balanced.

Now we consider the movement of carets in the tree-pair diagram of ys that
can be induced by multiplication by a generator on the right after any carets have
been added as needed, and we explore when this movement will produce a positive
or balanced tree-pair diagram as a result. For simplicity in this section, we will
let c±(g) denote the index of the positive/negative critical leaf of the (possibly
nonminimal) tree-pair diagram representative of ys after any carets have been added
as needed to the tree-pair diagram so that multiplication by g can be performed.

To proceed, we will consider Figure 19, which is the tree-pair diagram of ys

once any carets have been added as needed to satisfy the subtree condition of
Definition 3.4. We note that by Lemma 4.6, the index of the rightmost leaf of
subtree dr,1 and the index of the rightmost leaf of subtree e1 must be the same. We
will use the convention that the subtree d0,1 is the subtree consisting of ∧D and its
descendants. Since multiplication by a generator will only change the structure of
the negative tree (because we have already added any carets to both trees that will
be needed for the multiplication), when multiplying by each generator, we know
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Figure 19. A (possibly nonminimal) tree-pair diagram represen-
tative of ys in F (n) after carets have been added as needed so that
R′

− satisfies the subtree condition of Definition 3.4 for a given g
such that g± ∈ {x0, x1, . . . , , xn−1}.

that the index of the positive critical leaf will remain c+(g), and only the index of
the negative critical leaf will change with the multiplication. We also note that in
Figure 19, the right foot will be the rightmost leaf in the subtree labeled c1.

Now we consider the effect of multiplying ys by the following generators on the
right:

(1) Multiplication by x0: The negative critical leaf will become the rightmost
leaf in subtree an−1, which clearly has index less than c−(x0), so the tree
pair diagram resulting from multiplication by x0 will still be positive.

(2) Multiplication by x−1
0 : The negative critical leaf will become the rightmost

leaf in subtree d1,1; if r = 1 then the index of the rightmost leaf in d1,1 will
equal the index of the rightmost leaf in e1, and then the resulting tree-pair
diagram will be balanced. If, however, r > 1, then the index of the negative
critical leaf will remain lower than the index of the positive critical leaf,
and the tree-pair diagram resulting from multiplication by x−1

0 will still be
positive.

(3) Multiplication by xi for some i ∈ {1, . . . , n − 2}: The negative critical leaf
will become the rightmost leaf in subtree cn−i

i , which clearly has index less
than c−(xi), so the tree-pair diagram resulting from multiplication by xi will
still be positive.
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Figure 20. Minimal tree-pair diagram representative of hl in F (n).

(4) Multiplication by x−1
i for some i ∈ {1, . . . , n− 2}: The negative critical leaf

will become the rightmost leaf in subtree d1,1, and the same consequences
will hold as in the case of multiplication by x−1

0 .
(5) Multiplication by xn−1: The negative critical leaf will become the rightmost

leaf in subtree d1
0,1, which clearly has index less than c−(xn−1), so the tree-

pair diagram resulting from multiplication by xn−1 will still be positive.
(6) Multiplication by x−1

n−1: The negative critical leaf will become the rightmost
leaf of subtree d1,1, and the same consequences will hold as in the case of
multiplication by x−1

0 .
And finally, if any of the tree-pair diagrams resulting from the multiplication

enumerated above are not minimal, the removal of exposed caret pairs will not make
the resulting tree-pair diagram negative for the same reasons that the addition of
caret pairs could not result in a negative tree-pair diagram. So multiplication of ys

by a generator (or its inverse) g on the right will never result in a negative product
ysg. �

Corollary 4.8. hl has a minimal tree-pair diagram representative of the form given
in Figure 20.

Proof. If yj and s are as defined in the proof of Lemma 4.7, then by Lemma 4.7
and the definition of hl, ys = hl. This means that there are no negative vertices on
the subpath of the fixed arbitrary path γ from l to r in Bm between l and hl, and
by Lemma 4.6 this means that all vertices on the subpath of γ from l to hl have
the form given in Figure 18. But the only tree-pair diagram of the form which will
be balanced is of the form given in Figure 20. �

Corollary 4.9. hl �= hr.
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Figure 21. The two possible forms of the minimal tree-pair di-
agram representative of h′

l in F (n): if subtrees d0,1 and e1 were
both empty in the minimal tree-pair diagram representative of hl

(see Figure 20), then the minimal tree-pair diagram representative
of h′

l will have the form given in the bottom figure; otherwise it
will have the form given by the top figure. By Lemma 4.11, the
total number of caret pairs in all the labeled subtrees of either of
these tree-pair diagrams (i.e., not counting ∧B or ∧E , if it exists)
must be strictly less than q.

Proof. This is obvious by looking at the form of the minimal tree-pair diagram
representative of hl as given in Figure 20 and the form of the minimal tree-pair
diagram representative of hr as given in Figure 17. �
4.4. Finding d(hr, hl). Now we calculate the distance between hl and hr; we
show that dΓ(hl, hr) ≥ m + 1. In order to show that dΓ(hl, hr) ≥ m + 1, we will
first define a new element, h′

l = hlx
−1
0 x−1

n−1x0 (which is a generalized version of the
same definition which Belk and Bux chose for h′

l in [2]) and describe its minimal
tree-pair diagram representative. Then we will show that |h−1

r h′
l| ≥ m − 2 and

|h−1
r hl| = |h−1

r h′
l| + 3, which will immediately yield dΓ(hl, hr) ≥ m + 1.

Definition 4.10 (h′
l). We define h′

l = hlx
−1
0 x−1

n−1x0. We can see the minimal
tree-pair diagram representative for h′

l in Figure 21.

Lemma 4.11. If we let v equal the number of caret pairs in the minimal tree-pair
diagram representative for h′

l, excluding ∧B and ∧E (if it exists), then v < q. The
total number of caret pairs in the minimal tree-pair diagram representative for hl

is strictly less than q + 4. (See Figures 20 and 21.)

Proof. hl ∈ Bm, so we must have |hl| ≤ m = 2q + 2. When we go from hl to
h′

l, only the last three caret pairs in the minimal tree-pair diagram representative
change type or are canceled: if we supposed that the index of the last caret pair in
the minimal tree-pair diagram of hl is t, then the differences in the weight of the
carets ∧t−2,∧t−1,∧t is described in Table 5.

So clearly we will have |h′
l| = |hl|−3 ≤ 2q−1. All carets in the minimal tree-pair

diagram representative of h′
l (except ∧E , if it exists — see Figure 21) will be of type

L or M. If we look at Table 1, we can see that any caret type pair except (L∅,L∅)
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Table 5. Differences between the carets ∧t−2,∧t−1,∧t in the min-
imal tree-pair diagram of hl and the minimal tree-pair diagram of
h′

l. Here τhl
(∧i) denotes the type pair of ∧i in the minimal tree-

pair diagram representative for hl, and whl
(∧i) denotes the weight

of that caret pair in the minimal tree-pair diagram representative
of hl. Here “d.n.e.” stands for “does not exist.”

∧i τhl
(∧i) τh′

l
(∧i) whl

(∧i) wh′
l
(∧i)

∧t−2 (Rn−1 ,R∅) (R∅,R∅) 2 0
∧t−1 (Mn−1

∅ ,R∅) d.n.e. 1 d.n.e.
∧t (R∅,R∅) d.n.e. 0 d.n.e.

Figure 22. Minimal tree-pair diagram representative of h−1
r in F (n).

which does not contain any carets of type R must have weight 2 or more. So there
will be one caret in the tree-pair diagram of h′

l which will be of type (L∅,L∅) which
will not contribute anything to the length, and the caret ∧E if it exists will not
contribute anything to the length, but all other carets must contribute a weight
of at least 2 to the length. So |h′

l| ≥ 2v and therefore v ≤ q − 1
2 , which implies

that v < q. Since the number of caret pairs in the minimal tree-pair diagram
representative of hl is 4 more than v, we can conclude that the total number of
caret pairs in the minimal tree-pair diagram representative for hl is strictly less
than q + 4. �

Now we show that |h−1
r h′

l| ≥ m−2. First we give the minimal tree-pair diagram
representative for h−1

r h′
l, and then we use this tree-pair diagram to calculate a

bound for |h−1
r h′

l|.
Lemma 4.12. We let h′

l = (T−, T+) and h−1
r = (R−, R+). We let (T ′

−, T ′
+) and

(R′−, R′
+) denote (T−, T+) and (R−, R+) respectively after all necessary carets have

been added so that the product h−1
r h′

l can be computed. Then Figure 23 is a (possibly
nonminimal) tree-pair diagram representative of h−1

r h′
l and:
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Figure 23. Possibly nonminimal (see Lemma 4.12) tree-pair dia-
gram representative of h−1

r h′
l in F (n). This will be minimal except

when subtrees gn and h(q+1)(n−1) are both empty, in which case
∧βq+1 can be deleted from both trees and the resulting tree-pair
diagram will be minimal.

....

Figure 24. One possible form of the minimal tree-pair diagram
representative of hl in F (n). Here i ∈ {1, . . . , q − 1}. (We cannot
have i = q because the number of caret pairs in this tree-pair
diagram must be strictly less than q + 4 by Lemma 4.11. We
note also that the total number of carets in all of the subtrees
e1,(q−i)(n−1)+1, . . . , e1,q(n−1)−1 must be strictly less than q − i.)

(1) If the minimal tree-pair diagram representative of hl can be written in the
form given in Figure 24, then the minimal tree-pair diagram representative
of h−1

r h′
l is of the form given in Figure 25.

(2) Otherwise, Figure 23 is the minimal tree-pair diagram representative of h−1
r h′

l.

Proof. We begin by proving (1). Then we show that h−1
r h′

l must always have a
(possibly nonminimal) tree-pair diagram representative which can be written in the
form given in Figure 23. Then we prove (2).

The proof of (1) is a straightforward calculation. The minimal tree-pair diagram
representative of h′

l will be the tree-pair diagram given in Figure 24 with the last
two carets in each tree removed. Then in order to compose h−1

r h′
l, we must add a

string of q − i carets of type Mn−1
∅ to the leaf with index number e1 in T+ and

likewise to the leaf with index number e1 in T−. Then we must add the subtrees
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Figure 25. One possible form of the minimal tree-pair diagram
representative of h−1

r h′
l in F (n). This form is obtained when the

minimal tree-pair diagram of hl has the form given in Figure 24.
Here a′, c′1, . . . , c

′
n−2 are obtained from the subtrees q, c1, . . . , cn−2

of hl in Figure 24 by possibly adding carets to those subtrees.

f1, . . . , fn−1 in T+ to the leaves with index numbers 0, . . . , n − 2 respectively in
R− and the subtrees e1,(q−i)(n−1)+1, . . . , e1,q(n−1)−1 in T+ to the leaves with index
numbers (q − i + 1)(n− 1) + 1, . . . , (q + 1)(n− 1)− 1 respectively in R−. This will
make T ′

+ identical to R′−. Taking (T ′−, R′
+) as the tree-pair diagram representative

of h−1
r h′

l, we see that the caret pair with index number αq+1 cancels, resulting in
the minimal tree-pair diagram representative given in Figure 25. Because Figure 25
can be put into the form given in Figure 23 by adding one caret to the last leaf
in each tree, we can see that in this case, Figure 23 is a (nonminimal) tree-pair
diagram representative of h−1

r h′
l.

Now we show that h−1
r h′

l must always have a (possibly nonminimal) tree-pair
diagram representative which can be written in the form given in Figure 23. We
begin by considering the possible forms of the minimal tree-pair diagram represen-
tative of hl as depicted in Figure 20. Either the subtree e1 is empty or it is not.
If e1 is empty, then hl can be written in the form given in Figure 26. Then the
minimal tree-pair diagram representative of h−1

r h′
l is of the form given in Figure 27.

This tree-pair diagram is clearly in the same form as Figure 23.
If subtree e1 is not empty and the minimal tree-pair diagram of hl cannot be

written in the form given in Figure 24, then it can be written in the form given in
Figure 28. Then the minimal tree-pair diagram representative of h−1

r h′
l is of the

form given in Figure 29. This tree-pair diagram is also clearly in the same form as
Figure 23.

To prove (2), we show that when none of the conditions of (1) are met, there
does not exist a pair of exposed carets in the tree-pair diagram given in Figure 23.

If we can consider all possible exposed carets in Q− and show that none of them
can possibly pair up with an exposed caret in Q+, then this will be sufficient to
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Figure 26. One possible form of the minimal tree-pair diagram
representative of hl in F (n).

Figure 27. The minimal tree-pair diagram representative of
h−1

r h′
l when the minimal tree-pair diagram representative of hl

is in the form given by Figure 26. The subtrees f1, . . . , fn−1 are
taken from Figure 26, and the subtrees a′, c′1, . . . , c

′
n−2, d

′
0,1 are

formed from the subtrees a, c1, . . . , cn−2, d0,1 in Figure 26 by pos-
sibly adding carets. If the subtree d0,1 in Figure 26 was empty,
then the subtree d′0,1 has the form given in the box in the lower
left corner.

show that the diagram is minimal. We note that the minimal tree-pair diagram
representative of h−1

r h′
l in (2) will always be able to be written in the form given in

either Figure 27 or 29. For the duration of this proof, we use the convention that
hl = (T−, T+) and h−1

r h′
l = (Q−, Q+).

So we begin by considering all possible exposed carets in Q−:
(a) ∧βq+1 : In Q−, ∧βq+1 will only be exposed if the subtree gn is empty, which

implies that the subtree d′0,1 in Figure 27 or 29 is empty; but this is possible
only in Figure 29. So in order for gn to be empty in Q−, hl must have
the form given in Figure 28. In Q+, ∧βq+1 will be exposed only if the last
caret in the positive tree of the tree-pair diagram given in Figure 27 or 29
is exposed, but since e1,q(n−1) will always be nonempty in Figure 29 if d0,1

in T− is empty and d0,1 in T− will always be empty whenever d′0,1 in Q− is
empty, this is only possible in Figure 27. So hl must have the form given
in Figure 26. This is a contradiction, so in (2), the caret pair ∧βq+1 in
Figure 23 will never cancel.
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Figure 28. One possible form of the minimal tree-pair diagram
representative of hl in F (n). Here the subtree e1,q(n−1) or d0,1

is nonempty, and i ∈ {1, . . . , q − 1}. (We cannot have i = q by
Lemma 4.11. This lemma also tells us that the total number of all
carets in all the subtrees f1, . . . , fn−1, e1,(q−i)(n−1)+1, . . . , e1,q(n−1)

must be strictly less than q − i.)

(b) ∧βi for i = 1, . . . , q: The carets in Q+ with index numbers β1, . . . , βq each
have a child caret, so none of them can be exposed, and therefore none of the
caret pairs ∧βj for j ∈ {1, . . . , q} will cancel unless one of their descendants
cancels first.

(c) A caret descended from one of the carets ∧β1 , . . . ,∧βq in Q− which itself
does not have index number βi for any i ∈ {1, . . . , q}:

The carets ∧β0 , . . . ,∧βq correspond to the carets ∧α0 , . . . ,∧αq respectively
in Figure 27 or 29. First we consider whether ∧α0 in the positive tree of
Figure 27 or 29, which is a descendent of ∧αi for i ∈ {1, . . . , q}, could be
exposed. We note that the minimal tree-pair diagram representative of h′

l

will be the same as Figure 26 or 28 with the last 2 carets removed from each
tree. Then, in order to compose h−1

r h′
l, it will be necessary to add at least

one caret to the leaf numbered e1 in both the positive and negative trees of
the minimal tree-pair diagram representative of h′

l. Once all of the necessary
carets are added, the leaves with index number e1 in the minimal tree-pair
diagram of h′

l will be the leftmost child vertex of an exposed caret. This
exposed caret with leftmost leaf index e1 in the negative tree of the minimal
tree-pair diagram for h′

l will still be exposed in the negative tree of Figure 27
or 29, but we notice that the leaf with index e1 is now the rightmost child
vertex of ∧α0 in the positive tree of Figure 27 or 29. So we can see that it
will not be possible for there to be an exposed caret in the negative tree of
Figure 27 or 29 with rightmost leaf having index e1, and therefore ∧α0 will
not be exposed in the negative tree of 27 or 29.

Now we consider whether there can be any exposed carets in the subtrees
f1, . . . , fn−1, e1,(q−i)(n−1)+1, . . . , e1,q(n−1) that will cancel in Figure 27 or 29.
Let ∧j be an exposed caret in one of these subtrees. Then ∧j in the negative
tree will be in one of the subtrees a′, c′1, . . . , c

′
n−2, d

′
0,1, and if it is exposed in

one of these subtrees, then it must have been exposed in the corresponding
subtree a, c1, . . . , cn−1, d0,1 in Figure 26 or 28; but since the tree-pair diagram
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Figure 29. The minimal tree-pair diagram representative of
h−1

r h′
l when the minimal tree-pair diagram representative of hl is

in the form given by Figure 28. Here the subtrees

f1, . . . , fn−1, e1,(q−i)(n−1)+1, . . . , e1,q(n−1)

are taken from Figure 28 (so e1,q(n−1) will always be nonempty if
d0,1 in T− is empty and the total number of all carets in all the
subtrees

f1, . . . , fn−1, e1,(q−i)(n−1)+1, . . . , e1,q(n−1)

must be strictly less than q − i), and and the subtrees

a′, c′1, . . . , c
′
n−2, d

′
0,1

are formed from the subtrees a, c1, . . . , cn−2, d0,1 in Figure 28 by
possibly adding carets.

given in Figure 26 or 28 is already minimal, this is not possible, so none of
these caret pairs can cancel in Figure 27 or 29.

(d) Carets in the subtrees g1, . . . , gn in Q− (other than ∧β1 , . . . ,∧βq or descen-
dants of these carets):

The subtrees g1, . . . , gn are exactly the subtrees a′, c′1, . . . , c
′
n−2, d

′
0,1 in

Figure 27 or 29, which are formed by taking the subtrees a, c1, . . . , cn−2, d0,1

in Figure 26 or 28 respectively and adding any carets which will have the
same index numbers as the carets ∧β0 , . . . ,∧βq in Figure 23. So any exposed
carets in the subtrees g1, . . . , gn which are not ∧β0 , . . . ,∧βq will have been
present and exposed in a, c1, . . . , cn−2, d0,1 respectively in Figure 26 or 28.
But all carets in a, c1, . . . , cn−2, d0,1 were paired with carets in at least one
of the subtrees f1, . . . , fn−1, e1,1, . . . , e1,q(n−1) in Figure 26 or 28, and none
of these subtrees have been modified from their form in (T−, T+). So if
a given caret pair with one caret in one of the subtrees a′

0, . . . , a
′
n−2, d

′
0,1

of Figure 27 or 29 is exposed, then that same caret pair would have been
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exposed in (T−, T+); but since (T−, T+) is minimal, this is not possible, and
therefore none of the carets in the subtrees a′

0, . . . , a
′
n−2, d

′
0,1 in Q− can be

canceled. �
The following lemma is also related to a lemma (Lemma 4.4 in [2]) of Belk and

Bux (in Belk and Bux, this is specifically proven for what they define as “left sided
elements”):

Lemma 4.13. If we let N(w) denote the number of carets in the minimal tree-pair
diagram representative of an element w of F (n), then |h−1

r h′
l| ≥ 2(N(h−1

r h′
l) − 2).

Proof. We consider all the possible types of caret pairings in the minimal tree-pair
diagram representative of h−1

r h′
l (see Figure 23):

(1) The first caret pair must have type pair (L∅,L∅), which has weight 0.
(2) The only caret pair which contains right carets, if it exists, may have type

pair (R∅,R∅), which has weight 0.
(3) All other caret pairs in the tree-pair diagram must be one of the following

types (note that the order in which the types appear in the caret pair does
not change its weight, i.e., w(τ1, τ2) = w(τ2, τ1) where τ1 and τ2 are caret
types):

(LL,LL) which has weight 2,
(Mi

∅, LL) which has weight 2,
(Mi

∅, Mj
∅) which has weight 2,

(Mi
∅, Mk

l ) which has weight 2 if i ≤ l and weight 4 if i > l,
(Mi

k , LL) which has weight 2,
(Mi

k , Mj
∅) which has weight 2 if k > j and weight 4 if k ≤ j,

(Mi
k , Mk

l ) which has weight 2.
So the weight of each caret pair in the tree-pair diagram is greater than or equal to
2, with the exception of the first and last caret pair. Adding all of these together
gives us the following length of the element h−1

r h′
l:

|h−1
r h′

l| ≥ 2(N(h−1
r h′

l) − 2). �
Now we use |h−1

r h′
l| to compute |h−1

r hl|.
Corollary 4.14. |h−1

r h′
l| ≥ m − 2

Proof. By looking at the minimal tree-pair diagram representative of h−1
r h′

l in
Figure 23, we can see that N(h−1

r h′
l) ≥ q + 2, because simply counting the labeled

carets ∧β0 , . . . ,∧βq+1 in the positive tree yields q + 2 carets. By Lemma 4.13,
|h−1

r h′
l| ≥ 2(N(h−1

r h′
l) − 2) ≥ 2q = m − 2. �

Lemma 4.15. |h−1
r hl| = |h−1

r h′
l| + 3.

Proof. We can see by considering the tree-pair diagram representative for h−1
r hl =

h−1
r h′

lx
−1
0 xpx0 in Figure 30 that h−1

r hl will have exactly the same caret pairings
as h−1

r h′
l did except for the caret pairs ∧βq+1 ,∧β+q+2,∧βq+3 . If present in h−1

r h′
l,

the caret pair ∧βq+1 produces the type pair (R∅,R∅) which has weight 0, but in
h−1

r hl the type of this caret pair is (Rn−1 ,R∅) which has weight 2. The caret pair
∧βq+2 was added to the minimal tree-pair diagram representative of h−1

r h′
l in order

for multiplication by x−1
0 xpx0 to take place, so it did not contribute any weight to

the length of h−1
r h′

l. In h−1
r hl it has type pair (Mn−1

∅ ,R∅), which has weight 1.
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Figure 30. Minimal tree-pair diagram representative of h−1
r hl

(h−1
r h′

lx
−1
0 xpx0). (Here the subtree f is exactly the subtree present

in Q+ in Figure 23 which has ∧βq−1 as the root.) in F (n)

The caret pair ∧βq+3 was added to the minimal tree-pair diagram representative of
h−1

r h′
l in order for multiplication by x−1

0 xpx0 to take place, so it did not contribute
any weight to the length of h−1

r h′
l but in h−1

r hl it has type (R∅,R∅), which has
weight 0. So

|h−1
r hl| = |h−1

r h′
l| + 3 �

Corollary 4.16. |h−1
r hl| ≥ m + 1.

Proof. By Lemma, 4.15, |h−1
r hl| ≥ |h−1

r h′
l|+3 and by Lemma 4.14, |h−1

r h′
l| ≥ m−2,

so |h−1
r hl| ≥ m + 1. �

References

[1] Belk, James M.; Brown, Kenneth S. Forest diagrams for elements of Thompson’s
group F . Internat. J. Algebra Comput. 15 (2005) 815–850. MR2197808 (2007d:20069),
Zbl pre05017961.

[2] Belk, James; Bux, Kai-Uwe. Thompson’s group F is maximally nonconvex. Contemp.
Math. 372 (2005) 131–146. MR2139683 (2006f:20050), Zbl 1085.20021.

[3] Brin, Matthew G.; Guzmán, Fernando. Automorphisms of generalized Thompson groups.
J. Algebra 203 (1998) 285–348 MR1620674 (99d:20056), Zbl 0930.20039.

[4] Brown, Kenneth S. Finiteness properties of groups. J. Pure Appl. Algebra 44 (1987) 45–75.
MR0885095 (88m:20110), Zbl 0613.20033.

[5] Brown, Kenneth S.; Geoghegan, Ross. An infinite-dimensional torsion-free FP∞ group.
Invent. Math. 77 (1984), no. 2, 367–381. MR0752825 (85m:20073), Zbl 0426.20039.

[6] Cannon, James W. Almost convex groups. Geom. Dedicata 22 (1987) 197–210. MR0877210
(88a:20049), Zbl 0607.20020.

[7] Cannon, J. W.; Floyd, W. J.; Parry, W. R. Introductory notes on Richard Thompson’s
groups. Enseign. Math. 42 (1996) 215–256. MR1426438 (98g:20058), Zbl 0880.20027.

[8] Cleary, Sean; Taback, Jennifer. Dead end words in lamplighter groups and other wreath
products. Q. J. Math. 56 (2005), no. 2, 165–178. MR2143495 (2006h:20055), Zbl pre02230593.

[9] Cleary, Sean; Taback, Jennifer. Thompson’s group F is not almost convex. J. Algebra
270 (2003) 133–149. MR2016653 (2004m:20077), Zbl 1054.20022.

[10] Elder, Murray; Hermiller, Susan. Minimal almost convexity. J. Group Theory 8 (2005),
no. 2, 239–266. MR2126733 (2005j:20048), Zbl pre02157197.

[11] Fordham, S. Blake. Minimal length elements of F (p). Preprint.
[12] Higman, Graham. Finitely presented infinite simple groups. Notes on Pure Mathematics, No.

8 (1974). Department of Pure Mathematics, Department of Mathematics, I.A.S. Australian
National University, Canberra, 1974. MR0376874 (51 #13049).

[13] Kapovich, Ilya. A note on the Ponaru condition. J. Group Theory 5 (2002), no. 1, 119–127.
MR1879521 (2003d:20039), Zbl 0996.20018.

http://www.emis.de/cgi-bin/MATH-item?0996.20018
http://www.ams.org/mathscinet-getitem?mr=1879521
http://www.ams.org/mathscinet-getitem?mr=0376874
http://www.emis.de/cgi-bin/MATH-item?pre02157197
http://www.ams.org/mathscinet-getitem?mr=2126733
http://www.emis.de/cgi-bin/MATH-item?1054.20022
http://www.ams.org/mathscinet-getitem?mr=2016653
http://www.emis.de/cgi-bin/MATH-item?pre02230593
http://www.ams.org/mathscinet-getitem?mr=2143495
http://www.emis.de/cgi-bin/MATH-item?0880.20027
http://www.ams.org/mathscinet-getitem?mr=1426438
http://www.emis.de/cgi-bin/MATH-item?0607.20020
http://www.ams.org/mathscinet-getitem?mr=0877210
http://www.emis.de/cgi-bin/MATH-item?0426.20039
http://www.ams.org/mathscinet-getitem?mr=0752825
http://www.emis.de/cgi-bin/MATH-item?0613.20033
http://www.ams.org/mathscinet-getitem?mr=0885095
http://www.emis.de/cgi-bin/MATH-item?0930.20039
http://www.ams.org/mathscinet-getitem?mr=1620674
http://www.emis.de/cgi-bin/MATH-item?1085.20021
http://www.ams.org/mathscinet-getitem?mr=2139683
http://www.emis.de/cgi-bin/MATH-item?pre05017961
http://www.ams.org/mathscinet-getitem?mr=2197808


Thompson’s group F (n) is not minimally almost convex 481

[14] McKenzie, Ralph; Thompson, Richard J. An elementary construction of unsolvable word
problems in group theory. Word problems: decision problems and the Burnside problem in
group theory (Conf., Univ. California, Irvine, Calif. 1969; dedicated to Hanna Neumann),
Studies in Logic and the Foundations of Math., 71, 457–478. North-Holland, Amsterdam,
1973. MR0396769 (53 #629), Zbl 0286.02047.

Department of Mathematics, Borough of Manhattan Community College/City Univer-

sity of New York, 199 Chambers St., New York, NY 10007

cwladis@gmail.com

This paper is available via http://nyjm.albany.edu/j/2007/13-19.html.

http://nyjm.albany.edu/j/2007/13-19.html
mailto:cwladis@gmail.com
http://www.emis.de/cgi-bin/MATH-item?0286.02047
http://www.ams.org/mathscinet-getitem?mr=0396769


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


