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Homological index formulas for elliptic
operators over C∗-algebras

Charlotte Wahl

Abstract. We prove index formulas for elliptic operators acting be-
tween spaces of sections of C∗-vector bundles on a closed manifold. The
formulas involve Karoubi’s Chern character from K-theory of a C∗-
algebra to de Rham homology of smooth subalgebras. We show how
they apply to the higher index theory for coverings and to flat foliated
bundles, and prove an index theorem for C∗-dynamical systems associ-
ated to actions of compact Lie groups. In an Appendix we relate the
pairing of odd K-theory and KK-theory to the noncommutative spec-
tral flow and prove the regularity of elliptic pseudodifferential operators
over C∗-algebras.
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1. Introduction

One of the generalizations of the Atiyah–Singer index theorem is to elliptic
pseudodifferential operators associated to C∗-vector bundles. Mishchenko–
Fomenko introduced these operators and their index, an element in the
K-theory of the C∗-algebra [MF80]. Furthermore they defined a Chern
character for C∗-vector bundles and used it to formulate and prove an ana-
logue of the Atiyah–Singer index theorem. However, in general it is not clear
how to calculate the Mishchenko–Fomenko Chern character of a C∗-vector
bundle: its definition is based on the map

K0(C(M,A)) ⊗ C → K0(C(M)) ⊗ K0(A) ⊗ C ⊕ K1(C(M)) ⊗ K1(A) ⊗ C

for a closed manifold M and a unital C∗-algebra A, which exists by the
Künneth formula.

In this paper we prove index theorems for the same situation using Karou-
bi’s Chern character from the K-theory of a C∗-algebra to the de Rham
homology of smooth subalgebras [K87]. Karoubi’s Chern character is a gen-
eralization of the Chern character in differential geometry and is closely
related to the Chern character in cyclic homology. Karoubi’s de Rham ho-
mology has been used especially in noncommutative superconnection proofs
beginning with [Lo92].

We also prove (in the Appendix) that the pairing

K1(A) × KK1(A,B) → K1(B),

where A, B are unital C∗-algebras, can be expressed in terms of the non-
commutative spectral flow, which was introduced in the context of family
index theory by Dai–Zhang [DZ98]. See [Wa07] for further references and a
systematic account. The formula is well-known for B = C and the ordinary
spectral flow.

The main ingredient of the proof of the index theorem is a result about
the compatibility of Karoubi’s Chern character with the tensor product in
K-theory. This allows the comparison of Karoubi’s Chern character with
Mishchenko–Fomenko’s Chern character.

Our proof generalizes the derivation of Atiyah’s L2-index theorem from
the Mishchenko–Fomenko index theorem in [S05]. It is also closely related
to the proof of an index theorem for flat foliated bundles in [J97], which
is a special case of Connes’ index theorem for foliated manifolds [C94, p.
273] and implies the C∗-algebraic version of the higher index theorem of
Connes–Moscovici [CM90]. As an illustration we derive the latter in detail
from our formula. We also show how to apply the formula to flat foliated
bundles. In this context we introduce a smooth subalgebra which is defined
in more general situations than the one in [J97].

We also prove an index theorem for Toeplitz operators associated to a
C∗-dynamical system (A, G, α) where G is a compact Lie group. The Chern
character involved here has been defined in [C80]. In [Le91] a similar index
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theorem was proven for G = R using Breuer–Fredholm operators. We relate
both theorems in the case where the R-action is periodic.

In the Appendix we explain how the pairing of K-theory with KK-theory
is related to index theory and collect some useful facts about pseudodiffer-
ential operators over C∗-algebras beyond those proven in [MF80], in par-
ticular that elliptic pseudodifferential operators are adjointable as bounded
operators between appropriate Sobolev spaces and regular as unbounded
operators on a fixed Sobolev space.

Unless specified otherwise, all tensor products between graded spaces are
graded tensor products. Tensor products between two Fréchet spaces are
understood to be the completed projective tensor products, with the excep-
tion of tensor products between C∗-algebras: These are understood to be
the minimal C∗-algebraic tensor products.

Acknowledgements. I would like to thank Peter Haskell for helpful com-
ments on previous versions of this paper.

2. De Rham homology and the Chern character

2.1. Definition. In this section we recall and slightly extend the definition
of Karoubi’s Chern character and collect properties that are relevant for
index theory. The main reference is [K87].

Let A∞ be a locally m-convex Fréchet algebra.
The left A∞-module of differential forms of order k of A∞ is defined as

Ω̂kA∞ := A∞ ⊗ (A∞/C)⊗k

and the Z-graded space of all differential forms is

Ω̂∗A∞ :=
∞∏

k=0

Ω̂kA∞.

There is a differential d on Ω̂∗A∞ of degree one defined by

d(a0 ⊗ . . . ⊗ ak) = 1 ⊗ a0 ⊗ . . . ⊗ ak

and a product determined by the properties that

a0 ⊗ . . . ⊗ ak = a0 d a1 . . . d ak

and that the Leibniz rule holds, which says that for α ∈ Ω̂kA∞, β ∈ Ω̂∗A∞
d(αβ) = (d α)β + (−1)kα dβ.

With these structures Ω̂∗A∞ is a graded differential locally m-convex Fréchet
algebra.

For a closed manifold M

Ω̂p,q(M,A∞) := Ω̂p(M, Ω̂qA∞) = Ω̂p(M) ⊗ Ω̂qA∞,

where Ω̂∗(M) is the space of smooth differential forms on M .



322 Charlotte Wahl

We call an open subset U ⊂ M regular if the compactly supported de
Rham cohomology H∗

c (U) is finite-dimensional, and if there are open subsets
U0, U1, with U0 ⊂ U ⊂ U ⊂ U1, for which there is a smooth homotopy F :
[0, 1]×U1 → U1 such that F (0, x) = x, for all x ∈ U , F−1({1}×U) ⊂ {1}×U0

and such that F−1({t} × U) ⊂ {t} × U for all t ∈ [0, 1].
For a regular open subset U in M we define Ω̂p,q

0 (U,A∞) to be the closure
of the subspace of Ω̂p,q(M,A∞) spanned by forms with support in U .

The product on Ω̂∗∗
0 (U,A∞) is determined by the natural isomorphism

Ω̂∗∗
0 (U,A∞) ∼= Ω̂∗

0(U) ⊗ Ω̂∗A∞. Here the right-hand side is understood
as a graded tensor product of graded algebras. Let dU be the de Rham
differential on U . The differential of the total complex of the double complex
(Ω̂∗∗

0 (U,A∞), dU ,d) is denoted by dtot and its homology by H∗
0 (U,A∞). The

definition does not depend on the embedding of U into M as a regular subset.
For a closed manifold M we usually omit the suffix and write H∗(M,A∞).
For F as above let ft = F (t, ·) : U → U . Then f∗

1 : H∗
0 (U) → H∗

c (U) is
inverse to the map H∗

c (U) → H∗
0 (U), since for a closed form ω ∈ Ω̂∗

0(U) the
form f∗

1 ω is a closed form supported in U and f∗
1ω −ω = dU

∫ 1
0 F ∗ω. Hence

H∗
c (U) ∼= H∗

0 (U).
The isomorphism Ω̂∗∗

0 (U,A∞) ∼= Ω̂∗
0(U) ⊗ Ω̂∗A∞ induces isomorphisms

Ω̂∗∗
0 (U,A∞)/[Ω̂∗∗

0 (U,A∞), Ω̂∗∗
0 (U,A∞)]s ∼= Ω̂∗

0(U) ⊗ Ω̂∗A∞/[Ω̂∗A∞, Ω̂∗A∞]s,

Hn
0 (U,A∞) ∼= ⊕p+q=nHp

0 (U) ⊗ Hq
0(A∞) ∼= ⊕p+q=nHp

0 (U,Hq(A∞)).

These isomorphisms have been proven in [K87, §§4.7, 4.8] in a slighly dif-
ferent situation. The proof carries over. It uses completed tensor products,
therefore we use Ω̂∗

0(U) instead of compactly supported forms for the def-
inition of cohomology. The proof uses furthermore the fact that H∗

0 (U) is
finite-dimensional.

We call a smooth possibly noncompact manifold M regular if there is a
covering (Un)n∈N by regular subsets with Un ⊂ Un+1.

Extending a form by zero induces a well-defined push forward map

H∗
0 (Un,A∞) → H∗

0 (Un+1,A∞)

so that we can define

H∗
c (M,A∞) = lim−→

n→∞
H∗

0 (Un,A∞).

It is clear that H∗
c (M) agrees with the compactly supported de Rham

cohomology of M .
If M → B is a fiber bundle of regular oriented manifolds, then integration

over the fiber yields a homomorphism∫
Mb

: H∗
c (M,A∞) → H∗−dimMb

c (B,A∞).
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The de Rham homology of A∞ is

H∗(A∞) := H∗(∗,A∞),

where ∗ is the point.
If M is a closed manifold, we usually write H∗(M,A∞) for H∗

0 (M,A∞).
Note that then the quotient map Ω̂n(C∞(M,A∞)) → ⊕p+q=nΩ̂p,q(M,A∞)
induces a homomorphism

H∗(C∞(M,A∞)) → H∗(M,A∞).

We proceed with the definition and the properties of the Chern character.
Let A be a unital C∗-algebra and let A∞ ⊂ A be a dense subalgebra

that is closed under involution and holomorphic functional calculus in A.
Assume that A∞ is endowed with the topology of a locally m-convex Fréchet
algebra such that the inclusion A∞ ↪→ A and the involution are continuous.
We call such a subalgebra a smooth subalgebra of A.

Let M be a regular manifold. Recall that

K0(C0(M,A)) = Ker(K0(C0(M,A)+) → K0(C)),

where C0(M,A)+ denotes the unitalization of C0(M,A). As C∞
c (M,A∞)+

is dense and closed under holomorphic functional calculus in C0(M,A)+, we
have that K0(C∞

c (M,A∞)) ∼= K0(C0(M,A)).
The Chern character form of a projection P ∈ Mn(C∞

c (M,A∞)+) is
defined as

chM
A∞(P ) :=

∞∑
k=0

(−1)k

(2πi)kk!
tr P (dtotP )2k.

The normalization differs from the normalization in [K87] and is chosen
such that the Chern character of the Bott element B ∈ K0(C0((0, 1)2))
integrated over (0, 1)2 equals 1. (There is also some ambiguity about the
sign of the Bott element B in the literature. Here we take B = 1 − [H] ∈
Ker(K0(C(S2)) → K0(C)), where H is the Hopf bundle.)

In the following proposition we denote by P∞ ∈ Mn(C) the image of
P ∈ Mn(C∞

c (M,A∞)+) under “evaluation at infinity”.

Proposition 2.1. (1) chM
A∞(P ) is closed.

(2) Let P : [0, 1] → Mn(C∞
c (M,A∞)+) be a differentiable path of projec-

tions and let U ⊂ M with supp(P (t) − P∞(t)) ⊂ U for all t ∈ [0, 1].
Then there is a form

α ∈ Ω̂∗∗
0 (U,A∞)/[Ω̂∗∗

0 (U,A∞), Ω̂∗∗
0 (U,A∞)]s

such that dtotα = chM
A∞(P (1)) − chM

A∞(P (0)).
(3) The Chern character form induces a well-defined homomorphism

K0(C0(M,A)) → H∗
c (M,A∞).
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Proof. For M compact the proofs are standard. We include the proof of
(2) in order to show that it works in the noncompact case as well:

From the Leibniz rule, one deduces that the terms PP ′P , (1−P )P ′(1−P ),
P (dtotP )P , (1 − P )(dtotP )(1 − P ) all vanish.

Hence

tr(P (dtotP )2k)′ = tr P ′(dtotP )2k + tr P ((dtotP )2k)′

= tr P ((dtotP )2k)′

=
2k−1∑
i=0

tr P (dtotP )i(dtotP )′(dtotP )2k−i−1.

This vanishes for k = 0.
For i even and k 	= 0

tr P (dtotP )i(dtotP )′(dtotP )2k−i−1

= tr(dtotP )iP (dtotP
′)(dtotP )2k−i−1

= tr(dtotP )i(dtot(PP ′))(dtotP )2k−i−1 − tr(dtotP )i(dP )P ′(dtotP )2k−i−1

= tr(dtotP )i(dtot(PP ′))(dtotP )2k−i−1

= dtot tr P (dtotP )i−1(dtot(PP ′))(dtotP )2k−i−1.

Note that tr P (dtotP )i−1(dtot(PP ′))(dtotP )2k−i−1 vanishes on U for k 	= 0.
For i odd the argument is similar. �
We define the odd Chern character via the following diagram:

(2.1.1)

K0(C0((0, 1) × M,A))
∼=−−−−→ K1(C0(M,A))⏐⏐�ch

(0,1)×M
A∞

⏐⏐�chM
A∞

Hev
c ((0, 1) × M,A∞)

R 1
0−−−−→ Hodd

c (M,A∞).

Note that
∫ 1
0 : H∗

c ((0, 1) × M,A∞) → H∗
c (M,A∞) is an isomorphism by

H∗
c ((0, 1) × M,A∞) ∼= H∗

c ((0, 1)) ⊗ H∗
c (M,A∞) ∼= H∗

c (M,A∞).
In the following we derive a formula for the odd Chern character. It is

analogous to those well-known in de Rham cohomology and cyclic homology
(compare with [Gl93]).

Proposition 2.2. For u ∈ Un(C∞
c (M,A∞)+) in H∗

c (M,A∞)

chM
A∞([u]) =

∞∑
k=1

(
−1
2πi

)k (k − 1)!
(2k − 1)!

u∗(dtotu)((dtotu
∗)(dtotu))k−1.

Proof. Here we use the fact that the Chern character can be defined in
terms of noncommutative connections [K87].

Let Pn ∈ M2n(C) be the projection onto the first n components. Let

W (t) ∈ C∞([0, 1], U2n(C∞
c (M,A∞)+))
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with W (0) = 1 and W (1) = diag(u, u∗). Then the isomorphism

K1(C0(M,A)) → K0(C((0, 1) × M,A))

maps [u] to [WPnW ∗] − [Pn].
The Chern character is independent of the choice of the connection [K87,

Theorem 1.22], thus we may use the connection

WPn(dtot + dx ∂x + xW (1)∗dtot(W (1)))W ∗

on the projective C∞
c ((0, 1) × M,A∞)+-module

WPnW ∗(C∞
c ((0, 1) × M,A∞)+)n

for its calculation. It follows that

chM
A∞(u) = ch(0,1)×M

A∞ (WPnW ∗)

=
∞∑

k=0

∫ 1

0

(−1)k

(2πi)kk!

· tr(x2u∗(dtotu)u∗(dtotu) + x(dtotu
∗)(dtotu) + dx u∗(dtotu))k

=
∞∑

k=0

(−1)k

(2πi)kk!

∫ 1

0
tr((x − x2)(dtotu

∗)(dtotu) + dx u∗(dtotu))k

=
∞∑

k=1

(−1)k

(2πi)kk!

∫ 1

0
dx (x − x2)k−1u∗(dtotu)((dtotu

∗)(dtotu))k−1

=
∞∑

k=1

(
−1
2πi

)k (k − 1)!
(2k − 1)!

u∗(dtotu)((dtotu
∗)(dtotu))k−1,

as desired. �
2.2. Chern character and tensor products. From now on assume that
M is a closed manifold.

Let Ki(A)C := Ki(A) ⊗ C.
In the following we prove the compatibility of the Chern character with

the Bott periodicity map K1(C0((0, 1),A)) ∼= K0(A) and with the Künneth
formulas

K0(C(M))C ⊗ K0(A)C ⊕ K1(C(M))C ⊗ K1(A)C
∼= K0(C(M,A))C

and

K0(C(M))C ⊗ K1(A)C ⊕ K1(C(M))C ⊗ K0(A)C
∼= K0(C(M,A))C.

These isomorphisms are defined via the tensor product

Ki(C(M)) ⊗ Kj(A) → Ki+j(C(M,A)), i, j ∈ Z/2.

This map is injective, hence we may consider Ki(C(M)) ⊗ Kj(A) as a sub-
space of Ki+j(C(M,A)).

First recall the definition of the tensor product. For i, j = 0 the tensor
product is induced by the tensor product of projections. The remaining



326 Charlotte Wahl

three cases are derived from the tensor product of projections using Bott
periodicity, for example

K1(C(M)) ⊗ K1(A) ∼= K0(C0((0, 1) × M)) ⊗ K0(C0((0, 1)) ⊗A)

→ K0(C0((0, 1)2 × M,A))
∼= K0(C(M,A))

and

K0(C(M)) ⊗ K1(A) ∼= K0(C(M)) ⊗ K0(C0((0, 1),A))

→ K0(C0((0, 1) × M,A))
∼= K1(C(M,A)).

A standard calculation (see [K87, Theorem 1.26]) shows that the tensor
product for i = j = 0 is compatible with the Chern character, namely for
a ∈ K0(C(M)) and b ∈ K0(A)

chM
A∞(a ⊗ b) = chM (a) chA∞(b).

In the following proposition

β : K0(C(M,A)) → K0(C0((0, 1)2 × M,A))
a 
→ a ⊗ B

is the Bott periodicity map.

Proposition 2.3. (1) For a ∈ K0(C0((0, 1)2 × M,A))

chM
A∞ β−1(a) =

∫
(0,1)2

ch(0,1)2×M
A∞ (a).

(2) For a ∈ K0(C0((0, 1) × M)) and b ∈ K0(C0((0, 1),A))

chM
A∞ β−1(a ⊗ b) =

∫
(0,1)2

ch(0,1)×M (a) ch(0,1)
A∞ (b).

Proof. Consider K0(C0((0, 1)2×M,A)) as a subgroup of K0(C(T 2×M,A)).
(1) Let b ∈ K0(C(M,A)) with a = B ⊗ b. Then∫

(0,1)2
ch(0,1)2×M

A∞ (B ⊗ b) =
∫

T 2

chT 2×M
A∞ (B ⊗ b)

= chM
A∞(b)

∫
T 2

chT 2
(B)

= chM
A∞(b).
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(2) The assertion follows from the commutative diagram

K0(C0((0, 1) × M))⊗K0(C0((0, 1),A)) ��

��

K0(C(S1 × M))⊗K0(C(S1,A))

⊗
��

K0(C0((0, 1)2 × M,A)) ↪→ ��

chM
A∞ ◦β−1

��

K0(C(T 2 × M,A))
R

T2 chT2×M
A∞��

H∗(M,A∞) = �� H∗(M,A∞).

Since the horizontal arrows are inclusions, the first vertical map on the left-
hand side is determined by the first vertical map on the right-hand side.
The second square commutes by (1). �

Corollary 2.4. The diagram

K1(C0((0, 1) × M,A)
∼=−−−−→ K0(C(M,A))⏐⏐�ch

(0,1)×M
A∞

⏐⏐�chM
A∞

Hodd
c ((0, 1) × M,A∞)

R 1
0−−−−→ Hev(M,A∞)

commutes.

Proof. Consider the diagram

K1(C0((0, 1) × M,A))

ch
(0,1)×M
A∞

��

K0(C0((0, 1)2 × M,A))

ch
(0,1)2×M
A∞��

∼=�� β−1

�� K0(C(M,A))

chM
A∞

��
Hodd

c ((0, 1) × M,A∞) Hev
c ((0, 1)2 × M,A∞)

R 1
0��

R
(0,1)2 �� Hev(M,A∞).

The first square commutes by diagram (2.1.1) applied to (0, 1) × M . The
second square commutes by the first part of the previous proposition. �

We denote by

Rjk : Ki(C(M,A))C → Kj(C(M))C ⊗ Kk(A)C ⊂ Ki(C(M,A))C

the projections induced by the Künneth formulas.
We have a tensor product

chM ⊗ chA∞ : Kj(C(M))C ⊗ Kk(A)C → H∗(M) ⊗ H∗(A∞) ∼= H∗(M,A∞).

Proposition 2.5. (1) On K0(C(M,A))C

chM
A∞ = (chM ⊗ chA∞) ◦ R00 + (chM ⊗ chA∞) ◦ R11.

(2) On K1(C(M,A))C

chM
A∞ = (chM ⊗ chA∞) ◦ R01 + (chM ⊗ chA∞) ◦ R10.
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Proof. (1) Let a ⊗ b ∈ K0(C(M,A)) with a ∈ K1(C(M))) and b ∈ K1(A).
Let a correspond to ã ∈ K0(C0((0, 1) × M)) and b to b̃ ∈ K0(C0((0, 1),A)).

Then by definition chM (a) =
∫ 1
0 ch(0,1)×M (ã) and chA∞(b) =

∫ 1
0 ch(0,1)

A∞ (̃b).
Now by the previous proposition and its corollary

chM
A∞(a ⊗ b) =

∫
(0,1)2

ch(0,1)×M (ã) ch(0,1)
A∞ (̃b)

=
∫ 1

0
ch(0,1)×M (ã)

∫ 1

0
ch(0,1)

A∞ (̃b)

= chM (a) chA∞(b).

(2) follows applying by (1) to K0(C0((0, 1) × M,A)) since the Chern
character interchanges the suspension isomorphisms in K-theory and de
Rham homology. �

Define ChM
A as the map

K0(C(M,A)) → K0(C(M,A))C

∼= K0(C(M))C ⊗ K0(A)C ⊕ K1(C(M))C ⊗ K1(A)C

chM

−→ Hev(M) ⊗ K0(A) ⊕ Hodd(M) ⊗ K1(A).

and analogously for K1(C(M,A)). This is the Chern character introduced
by Mishchenko–Fomenko [MF80].

The previous proposition is equivalent to the equation

(2.2.1) chA∞ ◦ChM
A = chM

A∞ .

2.3. Pairing with cyclic cocycles. In noncommutative geometry it is
more common to consider the Chern character with values in cyclic homology
than the one with values in de Rham homology. De Rham homology can be
paired with normalized cyclic cocycles; in this pairing both Chern characters
agree up to normalization:

Let C
λ
n(A∞) be the quotient of the algebraic tensor product (A∞/C)⊗n+1

by the action of Z/(n + 1)Z. Let

b : C
λ
n(A∞) → C

λ
n−1(A∞),

b(a0 ⊗ · · · ⊗ an) = (−1)nana0 ⊗ · · · ⊗ an−1

+
∞∑
i=0

(−1)ia0 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an.

The homology of the complex (Cλ
∗(A∞), b) is the reduced cyclic homol-

ogy HC∗(A∞). Using the completed projective tensor product instead
of the algebraic one we obtain the topological reduced cyclic homology
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HC
top
∗ (A∞). Furthermore we denote by HC

sep
∗ (A∞) the topological ho-

mology of (Cλ
n(A∞), b), i.e., we use the completed projective tensor product

and quotient out the closure of the range of b.
The reduced cyclic cohomology HC

∗(A∞) is the homology of the dual
complex (Cn

λ(A∞), bt) (in the algebraic sense). Elements of C
n
λ(A∞) are

called normalized cochains. The continuous reduced cyclic cohomology
HC

∗
top(A∞) is the homology of the topological dual complex.

The pairing HC
∗
top(A∞) ⊗ HC

top
∗ (A∞) → C descends to a pairing

HC
∗
top(A∞) ⊗ HC

sep
∗ (A∞) → C.

Furthermore the quotient map Ω̂n(A∞) → C
n
λ(A∞) induces an homomor-

phism Hn(A∞) → HC
sep
n (A∞), which is an embedding for n ≥ 1 (see

[K87, §§4.1 and 2.13]). In degree zero there is a pairing of H0(A∞) =
A∞/[A∞,A∞] with traces on A∞.

The Chern character chλ : K0(A∞) → HC∗(A∞) is defined by

chλ(p) =
∞∑

m=0

(−1)m tr p⊗2m+1

for a projection p ∈ Mn(A∞). Hence the composition

K0(A∞) chλ

−→ HC∗(A∞) → HC
sep
∗ (A∞)

agrees up to normalization with the map

K0(A∞)
chA∞−→ H∗(A∞) ↪→ HC

sep
∗ (A∞).

In particular if φ ∈ HC
m
top(A∞), then

φ ◦ chλ = (2πi)mm! φ ◦ chA∞ .

3. Index theorems

In the following we give a formulation of the Mishchenko–Fomenko in-
dex theorem, which is different from the original one and adapted to the
applications. Furthermore we translate its proof into the language of KK-
theory: We show the compatibility of the Chern character with the pair-
ing Ki(C(M,A)) ⊗ KKj(C(M), C) → Ki+j(A) for i, j ∈ Z/2, where on
KKj((C(M), C) we use the Chern character from K-homology to de Rham
homology of M . We refer to Appendix A.1 for some facts about the con-
nection of KK-theory to index theory.

Lemma 3.1. (1) For x ∈ Ki(C(M)) ⊗ Ki(A) ⊂ K0(C(M,A)) and y ∈
KKj(C(M), C) with i 	= j

x ⊗C(M) y = 0 ∈ Kj(A).



330 Charlotte Wahl

(2) For x ∈ Ki(C(M))⊗Kj(A) ⊂ K1(C(M,A)) and y ∈ KKj(C(M), C)
with i 	= j

x ⊗C(M) y = 0 ∈ Ki(A).

It follows that for x ∈ Ki(C(M,A)) and y ∈ KKj(C(M), C)

x ⊗C(M) y = Rj,i+j(x) ⊗C(M) y ∈ Ki+j(A)C.

Proof. (1) Let B0 ∈ KK0(C0((0, 1)2), C) be the Bott element. By the
standard isomorphism Ki(A) ∼= KKi(C,A) and the fact that the tensor
product in K-theory is a special case of the Kasparov product all we have to
show is that for a ∈ KKj(C, C0((0, 1),A)) and b ∈ KKj(C, C0((0, 1) × M))

((a ⊗ b) ⊗C0((0,1)2) B0) ⊗C(M) y = 0.

This follows from the associativity of the product and the fact that

(b ⊗C0((0,1)) B0) ⊗C(M) y ∈ KK0(C0((0, 1)), C) = 0.

(2) Let i = 0, j = 1. Let B1 ∈ KK1(C0((0, 1)), C) be the Bott element.
Let a ∈ K0(C0((0, 1),A)) and b ∈ K0(C(M)). Then

((a ⊗ b) ⊗C0((0,1)2) B1) ⊗C(M) y = 0

by associativity and since

(b ⊗C0((0,1)) B1) ⊗C(M) y ∈ KK0(C0((0, 1)), C) = 0.

The proof for i = 1, j = 0 is analogous. �

Let now chM : KKi(C(M), C) → H∗(M) be the homological Chern char-
acter where H∗(M) is the de Rham homology of M with complex coefficients.

Note that the pairing 〈 , 〉 : H∗(M) × H∗(M) → C induces a pairing
〈 , 〉 : (H∗(M) ⊗ K∗(A)) × H∗(M) → K∗(A)C.

Lemma 3.2. For x ∈ Ki(C(M,A)) and y ∈ KKj(C(M), C)

〈ChM
A x, chMy〉 = 〈ChM

A Rj,i+j(x), chMy〉 ∈ Ki+j(A)C.

Proof. Consider the case i, j = 0. We must show 〈ChM
A R11(x), chMy〉 =

0 or equivalently that 〈ChM
A (x), chMy〉 = 0 for x = x1 ⊗ x2 with x1 ∈

K1(C(M)) and x2 ∈ K1(A).
Clearly ChM

A x = (chM x1)x2.
Hence

〈ChM
A (x), chM (y)〉 = 〈chM x1, chM (y)〉x2.

Since chM x1 ∈ Hodd(M) and chM (y) ∈ Hev(M), 〈chM x1, chM (y)〉 vanishes.
The remaining three cases are analogous. �

Proposition 3.3. If x ∈ Ki(C(M,A)) and y ∈ KKj(C(M), C), then

x ⊗C(M) y = 〈ChM
A x, chMy〉 ∈ Ki+j(A)C.
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Proof. By the first lemma x⊗C(M) y = Rj,i+j(x)⊗C(M) y ∈ Ki+j(A)C. By
the previous lemma the right-hand side of the formula also only depends
on Rj,i+j(x). Therefore and by linearity we may restrict to the case where
x = x1 ⊗ x2 with x1 ∈ Kj(C(M)) and x2 ∈ Ki+j(A). Then in Ki+j(A)C

x ⊗C(M) y = (x1 ⊗C(M) y)x2

= 〈chM x1, chMy〉x2

= 〈ChM
A x, chMy〉. �

Using formula (2.2.1) and considering the pairing

〈 , 〉 : H∗(M,A∞) × H∗(M) → H∗(A∞)

we obtain:

Corollary 3.4. If x ∈ Ki(C(M,A)) and y ∈ KKj(C(M), C), then

chA∞(x ⊗C(M) y) = 〈chM
A∞ x, chMy〉 ∈ H∗(A∞).

In the following we translate these results into a more classical language
(see Appendix A.1):

Now let M be a closed Riemannian manifold and let E be a hermitian,
possibly Z/2-graded, complex vector bundle on M .

Let D : C∞(M,E) → C∞(M,E) be an elliptic symmetric pseudodiffer-
ential operator of order 1. If E is graded, then D is assumed to be odd. In
the ungraded case the symbol σ(D) defines an element in K1(C0(T ∗M)), in
the graded case [σ(D+)] ∈ K0(C0(T ∗M)). If E is ungraded, then

[(L2(M,E),D)] ∈ KK1(C(M), C),

else [(L2(M,E),D)] ∈ KK0(C(M), C). In the ungraded case the values of
the index ind are in K1(A), in the graded case in K0(A).

Define the A-vector bundle

L(U) := ([0, 1] × M ×An)/(0, x, v) ∼ (1, x, U(x)v)

on S1×M and let ∂/L(U) be the operator 1
i

d
dx acting on the sections of L(U).

Pull E back to S1 ⊗ M . Then φ(t)D + (1 − φ(t))UDU∗ is well-defined on
L2(S1 × M,L(U) ⊗ E).

Let π! : H∗
c (TM) → H∗(M) be integration over the fiber and k =

dimM(dim M+1)
2 .

Theorem 3.5. (1) Let P ∈ Mn(C∞(M,A)) be a projection.
(a) Assume that E is Z/2-graded. Then

chA∞ ind P (⊕nD+)P = (−1)k
∫

M
Td(M)π! chTM [σ(D+)] chM

A∞ [P ].

(b) If E is ungraded, then

chA∞ ind P (⊕nD)P = (−1)k
∫

M
Td(M)π! chTM [σ(D)] chM

A∞ [P ].
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(2) Let U ∈ Un(C∞(M,A)) be a unitary.
(a) If E is ungraded, then

chA∞ sf((1 − t)D + tUDU∗) = (−1)k
∫

M
Td(M)π! chTM [σ(D)] chM

A∞ [U ].

(b) If E is Z/2-graded and σ is the grading operator, then

chA∞ ind(−σ∂/L(U) + iσ(χ(t)D + (1 − χ(t))UDU∗))

= (−1)k
∫

M
Td(M)π! chTM [σ(D+)] chM

A∞ [U ].

See Appendix A.1 for more possibilities to express the left-hand side of
2(a) and 2(b).

4. Applications

4.1. Higher index theory for coverings and flat foliated bundles. In
the following we deduce the higher index theorem for coverings of Connes–
Moscovici [CM90] from the previous formulas. We do not recover the theo-
rem in full generality (which calculates the pairing of an index in algebraic
K-theory with group cocycles), but for extendable cocycles.

Let Γ be a discrete group.
We begin by recalling some facts about the group cohomology H∗(Γ), in

particular how to embed it into HC
∗(Γ).

Let

Cn(Γ) = {τ : Γn+1 → C, τ(gg0, . . . , ggn) = τ(g0, . . . , gn) for all g ∈ Γ}
and let

dΓ : Cn(Γ) → Cn+1(Γ),

dΓτ(g0, . . . , gn+1) =
n+1∑
j=0

(−1)jτ(g0, . . . , gj−1, gj+1, . . . gn+1).

We denote by Cn
al(Γ) ⊂ Cn(Γ) the subspace of alternating elements. The

homology of (C∗
al(Γ), dΓ) is H∗(Γ) (as is the homology of (C∗(Γ), dΓ)).

Furthermore let

C
n
λ(CΓ)〈e〉 = {c ∈ C

n
λ(CΓ) | c(g0, g1, . . . gn) = 0 for g0g1 . . . gn 	= e}

and let

C
n
λ(CΓ)〈g〉�=〈e〉 = {c ∈ C

n
λ(CΓ) | c(g0, g1, . . . gn) = 0 for g0g1 . . . gn = e}.

The complex (C∗
λ(CΓ), bt) decomposes into a direct sum (C∗

λ(CΓ)〈e〉, bt) ⊕
(C∗

λ(CΓ)〈g〉�=〈e〉, bt).
In the following we assume n ≥ 1.
For c ∈ C

n
λ(CΓ)〈e〉 define τc ∈ Cn

al(Γ) by

τc(e, g1, . . . , gn) := c(g−1
n , g1, g

−1
1 g2, g

−1
2 g3, . . . g

−1
n−1gn)
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and for τ ∈ Cn
al(Γ) define cτ ∈ C

n
λ(CΓ)〈e〉 by

cτ (g0, g1, . . . , gn) = τ(e, g1, g1g2, . . . , g1 . . . gn) if g0g1 . . . gn = e

and
cτ (g0, g1, . . . , gn) = 0 if g0g1 . . . gn 	= e.

The maps
C

n
λ(CΓ)〈e〉 → Cn

al(Γ), c 
→ τc

and
Cn

al(Γ) → C
n
λ(CΓ)〈e〉, τ 
→ cτ

are inverse to each other and compatible with the differentials. The isomor-
phism of complexes

(C∗
al(Γ), dΓ) ∼= (C∗

λ(CΓ)〈e〉, bt)

induces an injection Hn(Γ) → HC
n(CΓ), n ≥ 1.

The case n = 0 is different but easy, therefore we leave it to the reader.
Let M be a closed Riemannian manifold with fundamental group Γ and

universal covering π : M̃ → M . Let C∗
r Γ be the reduced C∗-algebra of Γ.

We recall the definition of the higher index in K0(C∗
r Γ) of an elliptic

differential operator on M .
Let E be Z/2-graded hermitian vector bundle on M and let Ẽ := π∗E.

Then Ẽ is endowed with a right Γ-action. There is an induced left Γ-
action R∗

g : C∞(M̃ , Ẽ) → C∞(M̃, Ẽ), (R∗
gs)(x) = Rg−1(s(xg)). Let D :

C∞(M,E) → C∞(M,E) be an odd symmetric elliptic differential operator.
It lifts to a Γ-invariant odd elliptic operator D̃ on C∞

c (M̃ , Ẽ). On the right
CΓ-module C∞

c (M̃ , Ẽ) (which is defined using the right Γ-action R∗
g−1) we

have a C∗
r Γ-valued scalar product

〈x, y〉 :=
∑
g∈Γ

g

∫
fM
〈x,R∗

gy〉 eEdvolfM .

The completion of C∞
c (M̃ , Ẽ) with respect to the corresponding norm is a

Hilbert C∗
r Γ-module denoted by H. The higher index of D is defined as the

index of the closure of D̃+ : C∞
c (M̃, Ẽ+) → H−. In the following we show

that D̃ is unitarily equivalent to an elliptic differential operator on M . In
particular its closure is indeed regular and Fredholm (see Appendix §A.2).

If V is a vector space with a left Γ-action, there is a left Γ-action on
(M̃ × V ) defined by (x, v) 
→ (xg−1, gv). The Mishchenko–Fomenko bundle
on M is

P := M̃ ×Γ C∗
r Γ = (M̃ × C∗

r Γ)/Γ.

It inherits a C∗
r Γ-valued scalar product from the standard C∗

r Γ-valued scalar
product on C∗

r Γ.
Let Palg = M̃ ×Γ CΓ ⊂ P.
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Lemma 4.1. There is an isometric isomorphism between the Hilbert C∗
r Γ-

modules H and L2(M,E ⊗P) inducing an isomorphism between C∞
c (M̃, Ẽ)

and C∞(M,E ⊗ Palg).

Proof. A left Γ-action on C∞(M̃, Ẽ ⊗ CΓ) is defined by

Lh(sg) = (R∗
hs)hg

for s ∈ C∞(M̃, Ẽ) and g ∈ Γ. Let C∞(M̃, Ẽ ⊗ CΓ)Γ be the subspace of
Γ-invariant sections. There is an C∗

r Γ-valued scalar product on C∞(M̃, Ẽ ⊗
CΓ)Γ given by

〈x, y〉 =
∫

F
〈x, y〉 eE⊗C∗

r Γ
dvolfM

where F ⊂ M̃ is a fundamental domain. We denote the completion of
C∞(M̃, Ẽ ⊗ CΓ)Γ with respect to the induced norm by H1.

Any s ∈ C∞(M,E ⊗ Palg) lifts uniquely to an element
∑

g∈Γ sgg ∈
C∞(M̃, Ẽ ⊗ CΓ)Γ with sg ∈ C∞

c (M̃, Ẽ). The induced map is an isomet-
ric isomorphism

C∞(M,E ⊗ Palg) ∼= C∞(M̃ , Ẽ ⊗ CΓ)Γ

hence we get an isometric isomorphism L2(M,E ⊗ P) ∼= H1.
It can easily be checked that the isomorphism

C∞
c (M̃ , Ẽ) → C∞(M̃ , Ẽ ⊗ CΓ)Γ, s 
→

∑
g∈Γ

(R∗
gs)g

is an isometry as well, inducing an isometry H ∼= H1. �

By the lemma and its proof D̃ : C∞
c (M̃ , Ẽ) → H is unitarily equivalent

to an elliptic differential operator D : C∞(M,E ⊗ Palg) → L2(M,E ⊗ P).
In order to apply Theorem 3.5 we embed P into a trivial bundle as follows:
Let {Ui}i∈I be a finite open covering of M such that π−1Ui is diffeomor-

phic to Ui × Γ. By refining the covering we may assume that Ui ∩ Uj is
connected for each i, j ∈ I. Let {χ2

i }i∈I be a subordinate partition of unity.
For each i ∈ I fix an open set U ′

i ⊂ π−1Ui, such that π : U ′
i → Ui is a

diffeomorphism. The projection p : M̃ × C∗
r Γ → P induces isometric iso-

morphisms pi : U ′
i×C∗

r Γ → P|Ui . Hence we get an isometry P → M×C∗
r Γ|I|

by mapping sx ∈ Px to (x, χi(x)vi)i∈I , where vi is defined by the equation
p−1

i sx = (x′, vi) for x ∈ Ui.
Let gij ∈ Γ be the deck transformation inducing a diffeomorphism

U ′
i ∩ π−1Uj → U ′

j ∩ π−1Ui.

One verifies easily that

P = (χiχjgij)ij ∈ C∞(M,M|I|(C∗
r Γ))

is the projection onto the image of the embedding P → M × C∗
r Γ|I|.
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D and P (⊕|I|D)P are elliptic pseudodifferential operators on L2(M,E ⊗
P) with the same symbol, so we get

ind D̃+ = indD+ = ind((P (⊕|I|D)P )+) ∈ K0(C∗
r Γ).

Let B∞ ⊂ C∗
r Γ be a smooth subalgebra containing CΓ. Let τ ∈ Cn

al(Γ) be
a cocycle such that cτ extends to a continuous cyclic cocycle on B∞. Such
a cocycle τ is called extendable.

Note that P ∈ C∞(M) ⊗ M|I|(CΓ), hence its Chern character form is in
Ω̂∗(M)⊗Ω∗CΓ/[Ω∗CΓ,Ω∗CΓ], which we indicate by writing chM

CΓ(P ). Here
Ω∗CΓ is defined using the algebraic tensor product.

By Theorem 3.5

cτ chB∞ ind((P (⊕|I|D)P )+) = (−1)k
∫

M
Td(M)π! chTM [σ(D+)]cτ chM

CΓ(P )

with k = dimM(dim M+1)
2 .

It remains to identify cτ chM
CΓ(P ).

Let ν : M → BΓ be the classifying map of the covering M̃ → M .
Lift the functions χi to functions χ′

i : U ′
i → R and define h =

∑
i χ

′2
i .

In [Lo92] it was shown that for τ ∈ Cn
al(Γ) with dΓτ = 0 the differential

form

ω̃τ =
∑

g1,...,gn

(R∗
g1

dMh) ∧ (R∗
g2

dMh) ∧ . . . (R∗
gn

dMh)τ(e, g1, . . . , gn)

on M̃ is closed and Γ-invariant and that the form ωτ ∈ Ωn(M) defined by
π∗ωτ = ω̃τ fulfills

ν∗[τ ] = [ωτ ] ∈ Hn(M)

under the identification H∗(Γ) ∼= H∗(BΓ).

Proposition 4.2. Let τ ∈ Cn
al(Γ) n ≥ 1 with dΓτ = 0. Then on the level of

differential forms

cτ (chM
CΓ(P )) = (−1)

(n−1)n
2 ((2πi)nn!)−1 ωτ .

Hence in Hn(M)

[cτ (chM
CΓ(P ))] = (−1)

(n−1)n
2 ((2πi)nn!)−1 ν∗[τ ].

Proof. The following calculation is a modification of an argument in [Lo92].
See also [Wu97, §3].

First we show that the connection P d P behaves like a flat connection
in the sense that in the expansion of cτ (chM

CΓ(P )) with respect to the de-
composition dtotP = dMP + d P all terms containing the factor P d P dP
vanish.

By the cyclicity of the trace we only need to consider terms of the form
cτ (tr P (dtotP )mP (d P )(d P )). Using the Leibniz rule for d we deduce that
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tr P (dtotP )mP (d P )(d P ) can be written as∑
i0,i1,...,in∈I

χi0χi1fi1...in−1χin−1χ
2
inχi0gi0i1 d gi1i2 . . . d gin−1in d gini0

in Ω∗M ⊗ Ω̂∗CΓ/[Ω̂∗CΓ, Ω̂∗CΓ] with fi1...in−1 ∈ Ω∗M . Since

χi0χi1fi1...in−1χin−1χ
2
inχi0cτ (gi0i1 d gi1i2 , . . . ,d gin−1in d gini0)

= χi1fi1...in−1χin−1χ
2
inχ2

i0τ(e, gi1i2 , gi1i2gi2i3 , . . . , gi1i2 . . . gin−1ingini0)

= χi1fi1...in−1χin−1χ
2
inχ2

i0τ(e, gi1i2 , gi1i3 , . . . , gi1in , gi1i0)

and since τ is antisymmetric, the summands are antisymmetric with respect
to the pair (i0, in), hence cτ (tr P (dtotP )m(d P )(d P )) = 0.

Thus

cτ (chM
CΓ(P )) =

(−1)n

(2πi)nn!
cτ tr (P (dMP )(d P ) + P (d P )(dMP ))n .

We have the equation

(P (dMP )(d P )P )im

=
∑

j,k,l∈I

χiχjgijdM (χjχk)gjkχkχl(d gkl)χlχmglm

=
∑

j,k,l∈I

χiχjdM (χjχk)χkχ
2
l χm(gik d gkm − gil d glm)

=
1
2

∑
j,k,l∈I

(χi(dMχ2
j )χ

2
kχ

2
l χm + χiχ

2
j (dMχ2

k)χ
2
l χm)(gik d gkm − gil d glm)

=
1
2

∑
k∈I

χi(dMχ2
k)χmgik d gkm.

Here we used
∑

i∈I χ2
i = 1.

A similar calculation for P (d P )(dMP )P shows that

P (dMP )(d P )P = P (d P )(dMP )P.

It follows that

((P (dM P )(d P )P + P (d P )(dMP )P )n)im

= (−1)
(n−1)n

2

∑
i1,...,in

χidM (χ2
i1)dM (χ2

i2) . . . dM (χ2
in)

· χmgii1 d gi1i2 d gi2i3 . . . d ginm.

Hence cτ (chM
CΓ(P )) equals, up to the factor (−1)

(n+1)n
2 ((2πi)nn!)−1,∑

i0,i1,...,in

χ2
i0dM (χ2

i1)dM (χ2
i2) . . . dM (χ2

in)cτ (gi0i1 d gi1i2 d gi2i3 . . . d gini0)
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=
∑

i0,i1,...,in

χ2
i0dM (χ2

i1)dM (χ2
i2) . . . dM (χ2

in)τ(gi0i1 , gi0i2 , gi0i3, . . . , gi0in , e).

The Γ-invariant lift of the sum to M̃ equals∑
g0,g1,...,gn∈Γ

R∗
g0

hR∗
g1

dMhR∗
g2

dMh . . . R∗
gn

dMhτ(g1, g1g2, . . . , g1 . . . gn, e)

= (−1)n
∑

g0,g1,...,gn

R∗
g0

(h(R∗
g1

dMh)(R∗
g1g2

dMh) . . .

. . . (R∗
g1...gn

dMh))τ(e, g1, g1g2, . . . , g1 . . . gn)

= (−1)n
∑

g0,g1,...,gn

R∗
g0

(h(R∗
g1

dMh)(R∗
g2

dMh) . . .

. . . (R∗
gn

dMh))τ(e, g1, g2, . . . , gn)

= (−1)n
∑
g0

R∗
g0

(hω̃τ ) = (−1)nω̃τ ,

as desired. �
Corollary 4.3. For any cocycle τ ∈ Cn

al(Γ), n ≥ 1 such that cτ extends to
a continuous cocycle on C

λ
n(B∞)

cτ chB∞ ind D̃+ = (−1)k((2πi)nn!)−1

∫
M

Td(M)π! chTM [σ(D+)]ν∗[τ ]

with k = dim M(dimM+1)
2 + n(n−1)

2 .

The formula for the higher index in K1(C∗
r Γ) of an ungraded operator is

analogous.
If D is the signature operator on M , then the right-hand side equals

the higher signature associated to τ , up to normalization. The Novikov
conjecture for extendable τ follows then from the homotopy invariance of
ind D̃+.

In the following we give an example of a smooth subalgebra B∞ with
CΓ ⊂ B∞ ⊂ C∗

r Γ. Its construction is typical for the construction of smooth
subalgebras from unbounded derivations. Up to minor details the construc-
tion is due to Connes–Moscovici [CM90] who showed that for Γ Gromov-
hyperbolic every class in H∗(Γ) has a representative that is extendable
with respect to this particular B∞, which implies the Novikov conjecture
for Gromov-hyperbolic groups.

Let l be a word length function on Γ. Define an unbounded operator Dl

on l2(Γ) with domain CΓ by Dlg := l(g)g. Let A be the smallest subalgebra
of B(l2(Γ)) containing CΓ and multiplication by elements of l∞(Γ) . We
define an unbounded derivation

δ : A → B(l2(Γ)), δ(T ) := [Dl, T ].

Note that in general δ(g) is not Γ-invariant, hence δ(CΓ) is not a subset of
C∗

r (Γ).
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Lemma 4.4. (1) δ is closable.
(2) δ(A) ⊂ A.

Proof. (1) Let (Tn)n∈N ⊂ dom δ converge to zero in B(l2(Γ)) with

lim
n→∞[Dl, Tn] = L ∈ B(l2(Γ)).

For f ∈ l2(Γ) we have that [Dl, Tn]f = Dl(Tnf) − TnDl(f). The second
term on the right-hand side converges to zero, hence the first converges to
Lf . Since Tnf converges to 0 and Dl is closable, it follows that Lf = 0.

(2) It is clear that δ annihilates multiplication operators. From

[Dl, g]h = (l(gh) − l(h))gh

and |l(gh) − l(h)| ≤ l(g) it follows that δ(g) ∈ A. �

Let δ1 be the closure of δ. For i ∈ N define inductively the Banach algebra
Ai = dom δi with norm ‖a‖i = ‖a‖i−1 + ‖δi(a)‖i−1 and the operator δi+1

as the closure of δ on Ai. Let A∞ be the projective limit of the Banach
algebras Ai. Then A∞ is a locally m-convex Fréchet algebra. Let Bi be the
Banach algebra Ai∩C∗

r Γ and B∞ = A∞∩C∗
r Γ. Then A∩C∗

r Γ ⊂ CΓ ⊂ B∞,
hence B∞ is dense in C∗

r Γ and CΓ is dense in B∞.

Lemma 4.5. The algebras Bi, i ∈ N, and B∞ are closed under holomorphic
functional calculus in C∗

r Γ.

Proof. We set B0 = C∗
r Γ and show that Bi+1 is closed under holomorphic

functional calculus in Bi for each i ∈ N0 .
If x ∈ Bi+1 with ‖1 − x‖i < 1, then x−1 =

∑∞
n=0(1 − x)n ∈ Bi. Since

δi+1((1 − x)n) ∈ Ai and

‖δi+1((1 − x)n)‖i ≤ n‖(1 − x)‖n−1
i ‖δi+1(1 − x)‖i,

we have that x−1 ∈ dom δi+1 ∩ C∗
r Γ = Bi+1. Since A is dense in Ai, for

general x ∈ Bi+1 such that x−1 ∈ Bi exists there is y ∈ A ∩ Bi such that
‖1 − xy‖i ≤ 1

2 . Hence x−1 = y(xy)−1 ∈ Bi+1. �

We can also obtain an index theorem for the operator D twisted by the
Mishchenko–Fomenko bundleP(m) := M̃×ΓC∗Γ, where C∗Γ is the maximal
group algebra of Γ. This is a refined version of the theorem for C∗

r Γ since
there is a surjective homomorphism p : C∗Γ → C∗

r Γ. We set B(m) = C∗Γ
and B(m)i = p−1Bi. The norm on B(m)i is given by ‖a‖i = ‖a‖ + ‖p(a)‖i,
where ‖a‖ is the norm of a in C∗Γ. It is straight-forward to check that
B(m)i is closed under holomorphic functional calculus in B(m).

In the following we briefly discuss how these results modify in the situation
of flat foliated bundles. Our approach is motivated by the approach taken
in [J97].

If not specified, the notation is as before. Let X be a closed manifold. We
assume that Γ acts on X from the right by diffeomorphisms. By pullback one
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gets an induced left action on the algebra Ω∗(X) of continuous differential
forms on X.

Thus we get reduced crossed products B := C(X) ×r Γ and Ω∗(X) ×r Γ.
We denote elements of Ω∗(X) by greek letters in the following and assume

they are homogeneous, where necessary. Let g, h ∈ Γ.
Multiplication on Ω∗(X) ×r Γ is given by the formula

(αh)(βg) = (α ∧ h∗β)hg.

Ω∗(X) ×r Γ acts faithfully on the Hilbert Ω∗(X)-module Ω∗(X, l2(Γ)) by
(ωg)(αv) = (ω ∧ g∗α)gv, where v ∈ l2(Γ).

A smooth subalgebra of Ω∗(X)×r Γ was constructed in [J97] if the group
acts isometrically with respect to some Riemannian metric on X. The fol-
lowing construction, which is a generalization of the construction above,
works in general.

Let A ⊂ B(Ω∗(X, l2(Γ))) be the algebra generated by multiplication op-
erators associated to elements in l∞(Γ) and by the algebraic crossed product
C∞(X,ΛT ∗X) ×alg Γ ⊂ Ω∗(X) ×r Γ. One checks that δ(T ) = [Dl, T ] is a
derivation on A. We denote by A the closure of A in B(Ω∗(X, l2(Γ))). The
de Rham operator dX on X defines a derivation on C∞(X,ΛT ∗X)×alg Γ by
dX(ωg) := (dXω)g. The Leibniz rule follows from

dX(αhβg) = dX(α ∧ h∗β)hg

= (dXα ∧ h∗β + (−1)|α|α ∧ h∗dXβ)hg

= (dXα)hβg + (−1)|α|αh(dXβ)g.

We extend dX to a derivation on A by letting it commute with multipli-
cation operators coming from elements in l∞(Γ).

Lemma 4.6. The derivations dX and δ on A are closable.

Proof. Let (an)n∈N ⊂ A be a sequence converging to zero in A and with
limn→∞ dX(an) = a ∈ A. For f ∈ C∞(X,ΛT ∗X) ⊗ CΓ ⊂ Ω∗(X, l2(Γ))

af = lim
n→∞ dX(anf).

Choose a Riemannian metric on X and let Ω∗
(2)(X) be the L2-completion

of Ω∗(X). The unbounded operator dX is densely defined and closable on
the Hilbert space Ω∗

(2)(X) ⊗ l2(Γ). Since there is a continuous injection
Ω∗(X, l2(Γ)) → Ω∗

(2)(X)⊗ l2(Γ), the operator dX is closable on Ω∗(X, l2(Γ))
(considered here as a Banach space) as well. Hence af = 0.

The proof of the closability of δ is analogous, using the closability of Dl

on Ω∗
(2)(X) ⊗ l2(Γ). �

Let now δ1, d
X
1 be the closure of δ, dX respectively. We define, generalizing

the above construction, for i ∈ N inductively the Banach algebra Ai =
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dom δi ∩ dom dX
i with norm

‖a‖i = ‖a‖i−1 + ‖δi(a)‖i−1 + ‖dX
i (a)‖i−1

and the operator δi+1, d
X
i+1 as the closure of δ, dX , respectively, on Ai. Then

Ai is closed under holomorphic functional calculus in A. Again, let Bi be
the Banach algebra Ai ∩ B. We have that A ∩ B = C∞(X) ×alg Γ, which is
dense in Bi for any i.

If Γ is trivial, then there is a continuous embedding from Bi to C1(X).
Examples of cyclic cocycles on C1(X) are the traces f 
→

∫
X α ∧ df for α a

closed k form, k = dimX − 1.
We define a B-vector bundle PX := M̃ ×Γ B. An isometric embedding

PX → M × B|I| can constructed as above. (Indeed, it holds that PX =
P ⊗C∗

r Γ B.) Now let F be a hermitian vector bundle on M̃ ×Γ X and
F → (M̃×ΓX)×C

p an isometric embedding. We let PF : (M̃×ΓX)×C
p → F

be the orthonormal projection and denote by P̃F the Γ-invariant lift to
(M̃ × X) × C

p.

Lemma 4.7. Let T be a C∞(X)-linear Γ-equivariant differential opera-
tor on C∞

c (M̃ × X). Then T descends to a differential operator T on
C∞(M,PX ). The map T 
→ T is compatible with taking sums and prod-
ucts of differential operators.

Proof. The operator T induces a Γ-equivariant operator on C∞
c (M̃ ×X)⊗

CΓ and extends to a Γ-equivariant operator on C∞(M̃,C(X) ×r Γ), thus is
well-defined on C∞(M̃,C(X) ×r Γ)Γ ∼= C∞(M,PX ). �

Thus the projection P̃F defines a projection PF on C(M,PX)p and there-
fore a C(X) ×r Γ-vector bundle F on M . We denote the composition of
the projection M × B|I|p → (PX)p with PF by PF again. We have that
PF ∈ C∞(M,M|I|p(B∞)).

Now one can apply Theorem 3.5 to the pairing of [D] ∈ KK0(C(M), C)
with [PF ] ∈ K0(C(M,C(X) ×r Γ)), where D is as before.

For cyclic cocycles concentrated at the conjugacy class of the identity
(see [GL03] for the terminology) on B∞ one can evaluate the pairing with
chM

B∞(PF ) further, in a similar but more complicated way as in Prop. 4.2,
see [J97][GL03] for related calculations. We refrain from giving details since
the formula would be a special case of [GL03]. (To be precise, in [GL03] it
was assumed that the holonomy groupoid is Hausdorff and remarked that
the results might hold in general. Here we do not make this assumption.)

As above we also get index formulas if we take the maximal crossed prod-
uct.

4.2. An index theorem for C∗-dynamical systems. Let G be an n-
dimensional oriented compact Lie group with n odd. We assume that G is
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endowed with an invariant Riemannian metric with unit volume. Let D be
an invariant Dirac operator associated to an invariant Dirac bundle E on G.

Let (A, G, α) be C∗-dynamical system associated to G. Hence A is a
C∗-algebra, which we assume to be unital, and α : G → AutA is a group
homomorphism such that the map A → C(G,A), a 
→ α(a) is a well-defined
homomorphism of C∗-algebras.

The operator P = 1≥0(D) acts on the Hilbert A-module H := L2(G,E ⊗
A). We define the following Toeplitz type extension: Let T (D,α) be the
C∗-algebra generated by the compact operators K(PH) on PH and the
Toeplitz operators Pα(a)P, a ∈ A.

Let ΨA(E) be the closure in B(L2(G,E ⊗A)) of the algebra of classical
pseudodifferential operators of order smaller than or equal to zero. We
obtain a commutative diagram with exact rows

0 −−−−→ K(PH) −−−−→ T (D,α) −−−−→ A −−−−→ 0⏐⏐� ⏐⏐� ⏐⏐�
0 −−−−→ K(H) −−−−→ ΨA(E) σ−−−−→ C(SG,EndE) ⊗A −−−−→ 0.

See Appendix A.2 for the exactness of the second row. Here the second
vertical map is defined by Pα(a)P 
→ (Pα(a)P + (1 − P )) and the last
vertical map is defined by a 
→ σ(1−P )+ (α(a)◦p)σ(P ) where p : SG → G
is the projection. Since this map is injective, the last map in the first row,
defined as Pα(a)P 
→ a, is well-defined.

The connecting map K1(A) → K0(K(PH)) ∼= K0(A) maps [u] ∈ K1(A)
with u ∈ Uk(A) to ind((⊕kP )α(u)(⊕kP )) ∈ K0(A), where (⊕kP )α(u)(⊕kP )
is understood as a Fredholm operator on (PH)k and α(u) is defined by
applying α componentwise. For notational simplicity we assume that k = 1
in the following. If μ : C(G) → B(L2(G,E)) is the multiplication operator,
then (L2(G,E), μ,D) is an unbounded Kasparov (C(G), C)-module, which
can be paired with [α(u)] ∈ K1(C(G,A)). By Proposition A.6

ind(Pα(u)P ) = [α(u)] ⊗C(G) [(L2(G,E), μ,D)].

In order to apply Theorem 3.5 define the algebra

A∞ = {x ∈ A | (g 
→ αg(x)) ∈ C∞(G,A)}.

Endowed with the subspace topology of C∞(G,A) this is a smooth subal-
gebra of A. Let g = TeG and define

de : A∞ → g∗ ⊗A∞, a 
→ dG(α(a))(e).

We denote by [g] ∈ Λng the dual of the volume form of G at e. Let τ
be an invariant trace on A∞. Then for u ∈ U(A∞) we have that α(u) ∈
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U(C∞(G,A∞)). We obtain the following index formula:

τ(ind(Pα(u)P ))

= τ(chA∞ [α(u)][D])

= (−1)
n(n+1)

2

∫
G

Â(G) ch(E/S)τ(chG
A∞ α(u))

= (−1)
n(n+1)

2

(
−1
2πi

)n (n − 1)!
(2n − 1)!

〈τ(u∗deu((deu
∗)(deu))k−1), [g]〉.

The second equality follows from Theorem 3.5.
As an example consider G = S1, E = S1 × C and D = 1

i
d
dx . Let

δ(u) :=
d

dt
αt(u)|t=0 = de(u)[TeS

1].

Then we get

(4.2.1) τ(ind(Pα(u)P )) = − 1
2πi

τ(u∗δ(u)) =
1

2πi
τ(uδ(u∗)).

If furthermore A = C(S1) with the S1-action α given by translation and
τ(1) = 1, then for u = e−2πit the formula gives τ(ind(Pα(u)P )) = 1. Hence
in this case the above connecting map K1(C(S1)) → K0(C(S1)) is given by
the Bott periodicity isomorphism.

We relate formula (4.2.1) to an index theorem proven in [Le91]: Assume
that the trace is faithful, normal and τ(1) = 1. Let Aτ be the Hilbert space
completion of A with respect to the scalar product 〈a, b〉 := τ(a∗b). Let
D̃ be the closure of 1

i
d
dx acting on L2(R,Aτ ) and let P̃ = 1≥0(D̃). Let

α̃ be the lift of α to an action of R on A, furthermore π the left regular
representation of A on Aτ and λ the representation of R on L2(R) given
by (λ(y)f)(x) = f(x − y). Then (π, λ) is a covariant representation of
(A, R, α̃) and induces a representation π×λ of the cross product A×eα R on
L2(R,Aτ ). Let N be the von Neumann algebra generated by the image of
π×λ in B(L2(R,Aτ )). By [Le91] the operator P̃ α̃(u)P̃ is Breuer–Fredholm
in P̃N P̃ and

indτ (P̃ α̃(u)P̃ ) =
1

2πi
τ(uδ(u∗)),

where indτ denotes the index with respect to the trace τ . We conclude:

Proposition 4.8.

indτ (P̃ α̃(u)P̃ ) = τ(ind(Pα(u)P )).

Appendix A.

A.1. Index theory and KK-theory. Let A,B be unital C∗-algebras.
We recall the notion of a truly unbounded Kasparov (A,B)-module from
[Wa07]. Such modules define elements in KK∗(A,B). We then express the
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pairing of K∗(A) with a truly unbounded Kasparov (A,B)-module in terms
of index theory. We refer to [B98] for more about KK-theory.

Let H be a countably generated Hilbert B-module.
Recall that a densely defined selfadjoint operator D on H is regular if

(1 + D2) has a bounded inverse. For a selfadjoint regular operator D on
H we denote by H(D) the Hilbert B-module whose underlying B-module is
domD and whose B-valued scalar product is given by

〈x, y〉D := 〈x, y〉 + 〈Dx,Dy〉,

where 〈 , 〉 is the B-valued scalar product on H. We say that a regular
selfadjoint operator D is Fredholm if F := D(1 + D2)−

1
2 is invertible in the

Calkin algebra B(H)/K(H). This is equivalent to D : H(D) → H being
Fredholm and also to the existence of an odd nondecreasing smooth function
χ whose limit at ±∞ is ±1 such that χ(D)2 − 1 ∈ K(H). Such a function
is called a normalizing function for D.

For the definition of the index note that by the Stabilization Theorem

H ⊕ HB ∼= HB.

Hence there is an inclusion K(H) → K(HB). The induced map

Ki(K(H)) → Ki(K(HB))

does not depend on the choice of the isomorphism. Thus we get a map

Ki(B(H)/K(H)) → Ki+1(K(H)) → Ki+1(K(HB)) ∼= Ki+1(B).

If H is Z/2-graded with H+ ∼= H− and D is odd, then we identify H+ with
H− and define indD+ as the image of [D+(1+D2)−

1
2 ]∈ K1(B(H+)/K(H+))

in K0(B). If H+ is not isomorphic to H−, we define the index of D as the
index of the direct sum of D with an invertible odd operator on H+

B ⊕ H−
B .

This works by the Stabilization Theorem.
In the case where H is ungraded, the index ind(D) ∈ K1(B) is defined as

the image of [2χ(D) − 1] ∈ K0(B(H)/K(H)) in K1(B).

Definition A.1. Let H be a Hilbert C∗-module and ρ : A → B(H) a unital
C∗-homomorphism.

Let D be a selfadjoint regular Fredholm operator and assume that there
is a dense subset A∞ ⊂ A such that for all a ∈ A∞ the operator [D, ρ(a)] is
defined on a core for D and extends to a compact operator from H(D) to
H and that there is x ∈ [0, 1

2) such that [D, ρ(a)](1 + D2)−x is bounded.
Then (H, ρ,D) is called a truly unbounded odd Kasparov (A,B)-module.
If in addition H is Z/2-graded, ρ is even and D is odd, then (H, ρ,D) is

called a truly unbounded even Kasparov (A,B)-module.
A truly unbounded Kasparov (A,B)-module (H, ρ,D) is called an un-

bounded Kasparov (A,B)-module if (D2 + 1)−1 ∈ K(H) and if [ρ(a),D] is
bounded for a ∈ A∞.
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A truly unbounded Kasparov (A,B)-module (H, ρ, F ) is a called a bound-
ed Kasparov (A,B)-module if F is bounded and F 2 − 1 ∈ K(H).

If (H, ρ,D) is a truly unbounded odd (resp. even) Kasparov (A,B)-module
and χ is a normalizing function for D, then (H, ρ, χ(D)) is a bounded odd
(resp. even) Kasparov (A,B)-module. The class [(H, ρ,D)] in KK1(A,B)
(resp. KK0(A,B)) is defined as the class [(H, ρ, χ(D))].

For example let D be an elliptic scalar selfadjoint pseudodifferential opera-
tor on a closed manifold M and let A = C(M), A∞ = C∞(M) and for a ∈ A
let ρ(a) ∈ B(L2(M)) be the multiplication operator. Then (L2(M), ρ,D) is
an odd truly unbounded Kasparov (C(M), C)-module.

If A = C and ρ : C → B(H) is the unique unital homomorphism, then
we suppress ρ in the notation in the following. We identify KK0(C,B) with
K0(B) via the natural isomorphism [(H,D)] 
→ ind(D+) and KK1(C,B)
with K1(B) via [(H,D)] 
→ ind(D).

For the following lemma note that (H, ρ,D) is an even (resp. odd) truly
unbounded Kasparov (A,B)-module, then (Hn,Mn(ρ),⊕nD) is an even
(resp. odd) Kasparov (Mn(A),B)-module and that a projection P ∈ Mn(A)
defines a class [P ]1 ∈ K0(A) as well as [P ]n ∈ K0(Mn(A)).

In the following we write a for ρ(a).

Lemma A.2. Let P ∈ Mn(A) be a projection.
Let (H, ρ,D) be an even (resp. odd) truly unbounded (A,B)-Kasparov

module.
Then in K0(B) (resp. K1(B))

[P ]n ⊗Mn(A) [(Hn,Mn(ρ),⊕nD)] = [P ]1 ⊗A [(H, ρ,D)].

Proof. By Morita-equivalence the map i : A → Mn(A), a 
→ aE11 induces
an isomorphism in KK-theory. We have that

[(H, ρ,D)] = i∗[(Hn,Mn(ρ),⊕nD)],

hence

[P ]1 ⊗A [(H, ρ,D)] = [P ]1 ⊗A i∗[(Hn,Mn(ρ),⊕nD)]

= i∗[P ]n ⊗Mn(A) [(Hn,Mn(ρ),⊕nD)].

Since i∗[P ]1 = [P ]n,

[P ]1 ⊗A [(H, ρ,D)] = [P ]n ⊗Mn(A) [(Hn,Mn(ρ),⊕nD)]. �

Lemma A.3. Let P ∈ A be a projection.
Let (H, ρ, F ) be an even (resp. odd) bounded (A,B)-Kasparov module.
If F = PFP + (1 − P )F (1 − P ), then in KK0(C,B) (resp. KK1(C,B))

[P ] ⊗A [(H, ρ, F )] = [PH,PFP ].

Proof. Define the C∗-algebra AP = PAP ⊂ A and let i : AP → A be
the injection. Let p : C → AP the unique unital homomorphism. Then
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[(AP , p, 0)] ∈ KK0(C,AP ) and i∗[(AP , p, 0)] = [P ]. Hence

[P ] ⊗A [(H, ρ, F )] = [p] ⊗AP
i∗[(H, ρ, F )]

= p∗i∗[PH, ρ, PFP ]

= [PH, ρ ◦ i ◦ p, PFP ]

= [PH,PFP ]. �
Lemma A.4. Let D be a regular selfadjoint operator and let A be an un-
bounded symmetric operator on H with domD contained in dom A. Assume
that A : H(D) → H is compact. Then D+A is regular. If furthermore there
is x < 1

2 such that A(1 + D2)−x is bounded, then

f(D + A) − f(D) ∈ K(HA)

for any function f ∈ C(R) such that limx→∞ f(x) and limx→−∞ f(x) exist.

Proof. Let (φn)n∈N ⊂ Cc(R) be a uniformly bounded sequence converging
uniformly to 1 on each compact subset of R. Then φn(D)Aφn(D) converges
to A in B(H(D),H). Furthermore φn(D)Aφn(D) ∈ B(H). Since D is
regular, the operators D ± i are invertible. Hence there is n such that
D + A − φn(D)Aφn(D) ± i are invertible, thus D + A − φn(D)Aφn(D) is
regular. A bounded perturbation of a regular operator is regular, thus D+A
is regular.

For D0 = D + A and D1 = D let Fi = Di(1 + D2
i )

−1/2. As in the
proof of [Wa07, Proposition 3.7.] it follows that F0 − F1 ∈ K(HA) . Then
π(F0) = π(F1), where π : B(H) → B(H)/K(H) is the projection, hence
π(f(F0)) = π(f(F1)) for any function f ∈ C([−1, 1]). �
Proposition A.5. Let P ∈ Mn(A∞) be a projection.

Let (H, ρ,D) be an even (resp. odd) truly unbounded Kasparov (A,B)-
module. Then in KK0(C,B) (resp. KK1(C,B))

[P ] ⊗A [(H, ρ,D)] = [PHn, P (⊕nD)P ].

Hence for D even

[P ] ⊗A [(H, ρ,D)] = ind(P (⊕nD+)P ) ∈ K0(B),

and for D odd

[P ] ⊗A [(H, ρ,D)] = ind(P (⊕nD)P ) ∈ K1(B).

Proof. By the first lemma it is enough to consider the case P ∈ A.
Let DP = PDP + (1 − P )D(1 − P ).
Since DP = D − 2P [D,P ] and 2P [D,P ] : H(D) → H is compact, the

operator DP is Fredholm. Furthermore by assumption there is x < 1
2 such

that 2P [D,P ](1−D2)−x is bounded. Let χ be a normalizing function of D.
Then by the previous lemma χ(D) − χ(DP ) ∈ K(H), hence in KK0(A,B)
(resp. KK1(A,B)) we have that

[(H, ρ,D)] = [(H, ρ, χ(D))] = [(H, ρ, χ(DP )].
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Hence

[P ] ⊗A [(H, ρ, χ(DP )] = [PH,Pχ(DP )P ]

= [PH,χ(PDP P )]

= [PH,PDP ],

where the first equation follows from the second lemma. �

In the following we use the definition of and results on the relative index
of projections and the noncommutative spectral flow from [Wa07]. We also
refer to [Wa07] for history and references concerning the noncommutative
spectral flow, which generalizes the family spectral flow introduced by Dai–
Zhang [DZ98]. We denote the even and the odd spectral flow both by sf.
The relative index of a pair of projections and the relative index of pair of
Lagrangian projections are denoted by ind.

Let D be a regular selfadjoint Fredholm operator on H. Recall that a
selfadjoint operator A ∈ K(H) is called a trivializing operator of D if D+A
is invertible. If H is Z/2-graded and D is odd, we assume furthermore
that A is odd. We point out that in the following proposition we deal with
unbounded Kasparov (A,B)-modules.

Proposition A.6. Let (H, ρ,D) be an unbounded even (resp. odd) Kasparov
(A,B)-module.

Let U ∈ Mn(A∞) be a unitary such that U∗ ∈ Mn(A∞) as well and let
[U ] be its class in K1(A).

If there is a trivializing operator A of ⊕nD, then with P = 1≥0(⊕nD+A)

ind(P,UPU∗) = sf((1 − t)(⊕nD) + tU(⊕nD)U∗, A, UAU∗)
= [U ] ⊗A [(H, ρ,D)].

Without the assumption on the existence of trivializing operators for-
mula (A.1.1) below holds in the ungraded case and formula (A.1.2) in the
graded case.

Proof. The equality

ind(P,UPU∗) = sf((1 − t)(⊕nD) + tU(⊕nD)U∗, A, UAU∗)

was proven in [Wa07, Example after Proposition 3.15] in the ungraded case.
The proof of this formula in the graded case is analogous.

For the second equality it is enough to consider the case n = 1 by the
first lemma.

Assume that H is ungraded.
Let χ ∈ C∞(R) be a monotonous function with χ(x) = 0 for x < 1

3 and
χ(x) = 1 for x > 2

3 .
Let ∂/S1 = 1

i
d
dx on L2(S1) and let [∂/S1 ] ∈ KK1(C(S1), C) be the corre-

sponding class, where the C(S1)-action on L2(S1) is given by multiplication.
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Define the A-vector bundle L(U) := ([0, 1] × A)/(0, v) ∼ (1, Uv) on S1

and let ∂/L(U) be the Dirac operator ∂/S1 twisted by the bundle L(U) with the
trivial connection. Then i∂/L(U) +χ(t)D+(1−χ(t))UDU∗ is densely defined
and and its closure is Fredholm on the Hilbert B-module L2(S1, L(U))⊗ρ H.
We claim that in K0(A)

(A.1.1) [U ][D] = ind(i∂/L(U) + χ(t)D + (1 − χ(t))UDU∗).

If D admits a trivializing operator A ∈ B(H), then

sf((1 − t)D + tUDU∗, A, UAU∗)
= sf(χ(t)D + (1 − χ(t))UDU∗)
= ind(i∂/L(U) + χ(t)D + (1 − χ(t))UDU∗)),

where the last equation follows from [Wa07, Proposition 3.15] and the rela-
tive K-theoretic index theorem.

Let χ0 (resp. χ2) be a smooth positive function equal to 1 on [0, 1
3 ] (resp.

on [23 , 1]) and equal to 0 on [12 , 1] (resp. on [0, 1
2 ]). Let χ1 =

√
1 −√

χ0 + χ2;
hence χ2

1 + (χ0 + χ2)2 = 1. It is easy to check that the map M from the
bundle L(U) to the range of the projection

P (U) =
(

χ2
1 χ1(χ0 + χ2U)

χ1(χ0 + χ2U
∗) (χ0 + χ2)2

)

on S1 ×A2 defined by

(x, v) 
→ (x, χ1(x)v ⊕ (χ0(x)v + χ2(x)Uv))

is an isometric isomorphism. It induces an isometric isomorphism between
P (U)(L2(S1,A2)⊗ρ H) and L2(S1, L(U))⊗ρ H, denoted by M as well. On
L2(S1, L(U)) ⊗ρ H the maps

∂/L(U) − M−1P (U)(⊕2∂/S1)P (U)M ∈ M2(C(S1,A))

and χ(t)D+(1−χ(t))UDU∗−M−1P (U)(⊕2D)P (U)M are bounded. Hence
in K0(B)

ind(−i∂/L(U)+χ(t)D+(1−χ(t))UDU∗) = ind(P (U)(−i⊕2∂/S1+⊕2D)P (U)).

We have that [U ] ⊗A [(H, ρ,D)] = [P (U)] ⊗C(S1,A) ([∂/S1 ] ⊗ [(H, ρ,D)]).
Since the Kasparov product [∂/S1] ⊗ [(H, ρ,D)] ∈ KK0(C(S1,A),B) is

represented by the odd selfadjoint operator(
0 −i∂/S1 + D

i∂/S1 + D 0

)

on L2(S1,H+ ⊕ H−), the previous proposition implies that

([P (U)]⊗C(S1,A) [∂/S1 ])⊗[(H, ρ,D)] = ind(P (U)((−i⊕2∂/S1)+(⊕2D))P (U)).
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If H is graded, let σ be the grading operator. One proves analogously
that in K1(B)

(A.1.2) [U ][D] = ind(−σ∂/L(U) + iσ(χ(t)D + (1 − χ(t))UDU∗)).

This, [Wa07, Remark after Proposition 8.4] and the relative index theorem
imply the assertion. �

By the following argument, which was pointed out to the author by
Ryszard Nest, the pairing of U with (H, ρ,D) as in the proposition can
always be expressed in terms of a spectral flow (in the ungraded case): let
d be an invertible unbounded operator on HB with compact resolvents and
such that the ranges of 1≥0(d) and 1≤0(d) contain a copy of HB. Then the
pairing of [U ] with [(H, ρ,D)] coincides with the pairing of [U ] with the odd
Kasparov (A,B)-module (H ⊕H ⊕HA, ρ⊕ 0⊕ 0,D⊕ (−D)⊕ d). The index
of D⊕ (−D)⊕ d in K1(B) vanishes, and there are trivializing operators (see
[Wa07, §3.1] and references therein). Now apply the proposition.

A.2. Pseudodifferential operators over C∗-algebras. See [MF80] for
the definition and general facts about pseudodifferential operators over C∗-
algebras.

Let A be a C∗-algebra with unit. Let M be a closed Riemannian manifold
and let E be an A-vector bundle over M endowed with an A-valued metric.
Endow An with the standard A-valued scalar product and let E → M ×
An be a smooth isometry (such an isometry always exists). Let F be the
complement of E in M ×An.

Let Δ be the scalar Laplacian on M . For any p ∈ R we define the Sobolev
space Hp(M,An) as the completion of C∞(M,An) with respect to the norm
induced by the A-valued scalar product

〈f, g〉Hp := 〈(1 + Δ)p/2f, (1 + Δ)p/2g〉L2 .

We first assume that E = An.
Let P : C∞(M,E) → C∞(M,E) be a symmetric pseudodifferential oper-

ator of order s ∈ R. The nonsymmetric case can be reduced to the symmetric

by considering
(

0 P ∗
P 0

)
.

In [MF80] it was shown that P : Hp+s(M,E) → Hp(M,E) is continuous.

Lemma A.7. The operator P : Hp+s(M,E) → Hp(M,E) is adjointable.

Proof. It is straightforward to check that

P T = (1 + Δ)−2s−pP (1 + Δ)p : Hp(M,E) → Hp+s(M,E)

is the adjoint of P . �

The proof of the following lemma is analogous to the classical case and is
given here for completeness.
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Lemma A.8. Let s > 0. If P is elliptic, then P as an unbounded operator
on L2(M,E) with domain Hs(M,E) is selfadjoint.

Proof. Let Q be the parametrix of P and P ∗ the adjoint of P . The closure
of QP ∗ equals the closure of QP on L2(M,E). Thus Kh = (1 − QP ∗)h ∈
C∞(M,E) for h ∈ dom P ∗. Clearly QP ∗h ∈ dom P . Hence

h = QP ∗h − Kh ∈ dom P. �
Proposition A.9. Let s > 0. If P is elliptic, then P is regular as an
unbounded operator on L2(M,E) with domain Hs(M,E).

Proof. From

‖(P 2 + 1)f‖L2 ≥ ‖f‖L2 , f ∈ C∞(M,E),

it follows that the operator P 2 +1 : H2s(M,E) → L2(M,E) is injective and
its range is closed. Furthermore it is adjointable by Lemma A.7.

It follows that the range of (1 + P 2) : H2s(M,E) → L2(M,E) is comple-
mented. By the previous lemma (1 + P 2) is selfadjoint, hence

Coker(1 + P 2) = Ker(1 + P 2) = {0}.
Therefore (1 + P 2) is surjective and thus P is regular. �

Corollary A.10. Let s > 0 and assume that P is elliptic. The identity
induces an adjointable isomorphism between the Hilbert A-modules H(P )
and Hs(M,E).

Proof. The identity H(P ) → Hs(M,E) equals the composition of

(1 + P 2)
1
2 : H(P ) → L2(M,E)

with (1+P 2)−
1
2 : L2(M,E) → Hs(M,E). The first map is an isometry and

the second is adjointable since (1 + P 2)−
1
2 is a pseudodifferential operator

of order −s. �
Since (1 + P 2)q is a pseudodifferential operator for any q ∈ R we also get

adjointable isomorphisms of Hilbert A-modules

(1 + P 2)q : Hp+2qs(M,E) → Hp(M,E).

We conclude that if E is Z/2-graded and P is odd, then the index of
P+ : Hp+s(M,E+) → Hs(M,E−) is independent of p and equals the index
of P+(1 + P 2)−

1
2 : Hp(M,E+) → Hp(M,E−).

For general E let e ∈ C∞(M,Mn(A)) be the orthogonal projection onto
E. Define Δe := eΔe+(1−e)Δ(1−e). Since Δe : H2(M,An) → L2(M,An)
is regular, the restriction of Δe to L2(M,E) is regular as well. We define
Hp(M,E) as the completion of C∞(M,E) with respect to the norm induced
by the A-valued scalar product

〈f, g〉Hp := 〈(1 + Δe)p/2f, (1 + Δe)p/2g〉L2 .

After replacing Δ by Δe, the statements of this sections hold for general E.



350 Charlotte Wahl

Furthermore from the previous corollary one can deduce that the injection
Hp(M,E) → Hp(M,An) is adjointable.

In the end we note the exactness of the sequence associated to the symbol
map for classical pseudodifferential operators over C∗-algebras.

We assume that E is the trivial vector bundle with fiber A. The general
case can be derived from this. Let ΨA be the closure of the algebra of
classical pseudodifferential operators of order smaller than or equal to zero
in B(L2(M,A)). Let SM be the sphere bundle of TM . Since C(SM) and
K(L2(M)) are nuclear, the algebra ΨC is nuclear as an extension of C(SM)
by K(L2(M)) [B98, Theorem 15.8.2]. Hence ΨC ⊗A ∼= ΨA where ⊗ is any
tensor product of C∗-algebras, and there is the commutative diagram

0 −−−−→ K(L2(M,A)) −−−−→ ΨC ⊗A −−−−→ C(SM,A) −−−−→ 0⏐⏐� ⏐⏐� ⏐⏐�
0 −−−−→ K(L2(M,A)) −−−−→ ΨA

σ−−−−→ C(SM,A) −−−−→ 0.

In particular the second row is exact.
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