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Equivariant K K-theory for
semimultiplicative sets

Bernhard Burgstaller

ABSTRACT. A semimultiplicative set G is a set which has a partially
defined associative multiplication. We associate a reduced C™-algebra
Cr(G) to G and define reduced crossed products A x G. Moreover,
we introduce a G-equivariant K K-theory and show the existence of a
Kasparov product.
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1. Introduction

In this work we introduce and analyze some rudiments of semimultiplica-
tive sets in connection with C*-algebras. Semimultiplicative sets appear
in [1], and the somewhat stronger notion of a semigroupoid is due to Exel
[3]. A semimultiplicative set G is a set which is endowed with a partially
defined associative multiplication (Definition 1). That means we allow, as
in groupoids, that a product zy may or may not be defined. When G is a
group then there exists a left regular representation \ : G — B(¢%(G)). In
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a similar way we define a left regular representations for semimultiplicative
sets G (Definition 2), thereby canceling all invalid multiplications in G. This
concept can also be used to define a reduced product A x, G for any left
G-C*-algebra A, that is, a C*-algebra A which is endowed with a morphism
a: G — End(A). (Technically, one uses the right regular representation in
this case.)

In the second and final part of this work we focus on the K-theory of G-
C*-algebras. We introduce a G-equivariant K K-theory K K% (A, B) (Defi-
nitions 16, 17 and 22) for Hilbert C*-algebras A, B and discrete countable
semimultiplicative sets GG. A Hilbert C*-algebra A is a C*-algebra which is
endowed with a left action G — End(A) and a right action G — End(A)
under which A becomes a G-Hilbert A-module in the natural way. When
G happens to be a group, then any G-C*-algebra is a Hilbert C*-algebra
and our equivariant K K-theory has a similarity to Kasparov’s equivariant
K K-theory for discrete groups G, the difference being that the underly-
ing G-actions on Hilbert modules need not be full but degenerate (a “unit
problem” so to say). See Lemma 7 and its preceding paragraph for the de-
tails. Our main work is to prove the existence of a Kasparov product for
KK (Theorems 2 and 3), and to show its functoriality and associativity
(Section 7).

An ongoing study of continuous semimultiplicative sets and their crossed
products seems to be necessary to find the right continuity assumptions
in KK%, and actually we aim to continue our investigation in this direc-
tion. Kasparov’s equivariant K K-theory [7] was generalized by Le Gall for
groupoids G in [11] and [12], see also Tu [15] for an overview. Since discrete
semimultiplicative sets generalize discrete groupoids it is tempting to com-
pare Le Gall’s theory with ours when G is a groupoid (though there seems
to be an obvious difference already in the group case), but we will not go
into that in this paper.

We give a brief overview of this paper. The Sections 2 and 3 are dedicated
to semimultiplicative sets, some of their basic examples, and their crossed

products. In Sections 4-6 we introduce K K%(A, B) (cycles divided out by
operator equivalence) for left G-C*-algebras A, B and prove the existence of

a Kasparov product for K K&. By definition we require a left and a right G-
action for Hilbert modules, though, we are only provided with a left action
for the C'*-algebras. This anomaly turns out to be a weak point in the theory,
with bad functorial properties, whence in the last Section 7 we consider
KKC(A, B) exclusively for Hilbert C*-algebras A and B. Comparing the
category of G-C*-algebras and Hilbert C*-algebras, the latter one seems
be the “smooth” one when working in KK (at least in the approaches
presented here). In the K K-theory part of this paper we closely follow
Kasparov’s exposition in [8] and Skandalis’ paper [14]. This sometimes goes
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without saying. Influencing in general was also Valette’s book [16], which is
also recommendable as an introduction to K K-theory.

2. Semimultiplicative sets

Definition 1. A semimultiplicative set G is a set which is endowed with
a partially defined associative multiplication, that is, there exists a subset
G® C G'x @ and a multiplication G® — G, (a,b) — ab such that whenever
(ab)c or a(be) is defined then both (ab)c and a(be) are defined and are equal.

If one also requires in the last definition that (ab)c is defined whenever
both ab and bc are defined then one would speak of a semigroupoid, see Exel
[3]. Let L, denote the left multiplication operator on G, that is, Ly(h) = gh
for g,h € G. Its domain is {h | gh is defined}. Write R, for the right
multiplication operator. We say that G has injective left (resp. right) multi-
plication if L, (resp. Ry) is injective for all g € G. We write (eg)4ec for the
canonical base in £2(G).

Definition 2. Assume that G has injective left multiplication. The left
reqular representation of G is the map A : G — B({?(G)) given by

)‘9<Z aheh> = Z QpCgh,

heG heG, gh is defined

where aj, are scalars in C. The C*-subalgebra of B(¢?(G)) generated by
A(G) is called the reduced C*-algebra of G and denoted by C}(G).

Analogously, for G with injective right multiplication we can define a right
regular representation p : G — B(£?(G)) in the obvious way.

We are going to give some simple examples of semimultiplicative sets.
Clearly, groups, groupoids, semigroups, semigroupoids and multiplicative
sets are semimultiplicative sets. If R is a ring then R\{0} is a semimulti-
plicative set under multiplication (however not a semigroupoid in general).
The set of natural numbers under addition is a semimultiplicative set (and
semigroup), and its reduced C*-algebra is the Toeplitz algebra.

If A is a higher rank graph [9], that is one has a degree map d mapping
A in NF| then the truncated graph ACN) = {4 € S | d(a) < N} is a
semimultiplicative set (that is, a product ab is defined if and only if d(ab) <
N) which has injective left multiplication. This is not a semigroupoid.

For N > 0, the real interval [0, N] is a semimultiplicative set (but not a
semigroupoid) under addition. That means, we let the composition a o b be
defined if and only if a + b € [0, N], and in this case we put aob = a + b.
More generally, the interval [0, N - 1] in a C*-algebra is a semimultiplicative
set.

Take the nonnegative reals Ry and the compact interval [0, N] of reals
whose elements are formally written as tu for ¢t € [0, N]. Then Ry U [0, N]
is a semimultiplicative set (but not a semigroupoid) under the composition
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aob = a+bif both a and b are in R, and aoby = (a+b)pifa € Ry, b € [0, N]
and a + b < N. Other compositions are not allowed.

If G is a semimultiplicative set with injective multiplication, and \ is
the left regular representation, then the set of nonzero words in the letters
MG) UX(G)* is a semimultiplicative set G*). Though one is now provided
with a left inverse A(s)* for A(s), in general G*) need not to be a groupoid,
see the next examples.

Consider the two graphs

[ Y4} 'Y} [ 17}
|l N

g g h

oC od oh —— oC —h> od

Assume the left graph is realized in a C*-algebra where a, b, ¢, d are mutually
orthogonal projections, and g, h are partial isometries with source and range
projections as indicated in the diagram (s(g) = a +b,7(g9) = c+d). Let G
be the semimultiplicative set which consists of all nonzero products in the
letters {a, b, s,r,g,h}. Then G is not a semigroupoid since ga # 0 and hg # 0
but hga = 0. The semimultiplicative set G associated to the right graph
has injective left multiplication and is a semigroupoid but not a groupoid,
as naturally choosing the source and range maps causes a problem: the
composition ha exists but s(h) = a+ ¢ # a = r(a).

Take a semimultiplicative set G and a family (G;);cr of copies of G. Set
H = | |;c; G;i and write m; : G — G for the canonical bijection. We define
a multiplication on H by m;(x)m;(y) = m;j(xy) for all x,y € G,i,j € I
and whenever xy is defined. Then H is a semimultiplicative set which has
injective left multiplication if G does so. The left regular representation A,
however, is not injective, as Ly, (y) = Ly () for all z € G,4,j € I.

Though the emphasis of this paper lies on discrete semimultiplicative
sets, we will give one continuous example. Take the real interval [0, N| as
our semimultiplicative set G as described above. The formal convolution

axb= “/ a(s)ésds/ b(t)d.dt”
[0,N] [0,N]

leads us to the convolution product

(axb)(t) = /O a(s)b(t — 5)ds.

It is straightforward to check that this convolution product is associative.
So the continuous left regular representation A : C(G) — B(L?[0, N]) given
by A(f) = f x g for g € L?[0,N] yields a reduced C*-algebra C*(G) =
C*(AM(C(G))) associated to the continuous semimultiplicative set G.
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3. Crossed products

For the rest of this paper G denotes a semimultiplicative set, which is
occasionally regarded as a discrete topological set.

Definition 3. A morphism (resp. antimorphism) o : G — H between two
semimultiplicative sets G and H is a map satisfying o(gh) = o(g)o(h) (resp.
o(gh) = a(h)a(g)) for all (g,h) € G@.

Definition 4. If X is a linear space then a left (resp. right) linear action
a on X is a morphism (resp. antimorphism) o : G — L(X), where L(X)
denotes the set of linear maps on X. If X is a C*-algebra then an action
a on X is a linear action on X such that a(g) is a *-homomorphism for all
g € G. In this case we call X a left (resp. right) G-C*-algebra.

Definition 5. A left action of a semimultiplicative set G on a set X is
given by a subset (G'x X)® C G x X and a multiplication (G'x X)® — X,
(g,x) — gz such that (gh)x is defined if and only if g(hx) and gh is defined,
and then (gh)x = g(hx), for all g,h € G,z € X.

Example 1. (a) Suppose G has injective left multiplication, and X is
a discrete set endowed with a left action by G. We obtain a right
G-action on the C*-algebra Cy(X) by letting

(fg)(x) = 1{gw is deﬁned}f(gm)
for f € Cp(X) and g,z € G. Similarly, a left action on Cy(X) is given
by
(9f)(gz) = f(x), (9f)(y) =0if y # ga.
(b) Analogously, if G has injective right multiplication and X has a right
G-action then Cy(X) is a left and right G-C*-algebra by

(gf)(x) = 1{:cg is deﬁned}f(xg)y
(f9)(zg) = f(z), (f9)(y) =0ify#zg.

Definition 6. Assume that G has injective left multiplication. Suppose
that A is a C*-algebra which is endowed with a right G-action and which is
essentially represented on a Hilbert space H. Let U : G — B(£?(G, H)) and
the C*-representation 7 : A — B((*(G, H)) be given by

ﬂ-(a)(geh) = ((ah)§)€h7 Ug(éeh) - 1{gh is deﬁned}{eghy

where e, stands for the function h +— 1y,-n¢ (9,h € G,€ € H,a € A).
Then the reduced crossed product G x,. A is defined as the C*-subalgebra of
B((*(G, H)) generated by Ugm(A) = {Uyn(a) | a € A, g € G}.

Definition 7. Assume that GG has injective right multiplication. Suppose
that A is a left G-C*-algebra essentially represented on H. Let VU : G —
B(*(G,H)) and 7 : A — B({>(G,H)) be given by

7T(a)(geh) = ((ha)g)eha Vg(geh) = 1{hg is deﬁned}gehgy Ug = ‘/g*y
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(g,h € G, € Hya € A). Then the reduced crossed product Ax, G is defined
as the C*-subalgebra of B((?(G, H)) generated by

1(A)Uq ={m(a)Uy | a € A, g € G}.

If A = C and the action of G on C is trivial, that is, ag = a for all
a € A, g € G, then the reduced C*-algebra C}(G) coincides with the reduced
crossed product Gx,C. If 7’ : A — B(H’) is another essential representation
then a canonical unitary W : £2(G, H) — ¢*(G, H') shows that the definition
of the reduced product does not depend on the representation 7@ up to *-
isomorphism.

Definition 8. A left action of G on a Hilbert space H is a morphism U :
G — B(H) such that each U, is a partial isometry (¢ € G). We call H
with such an action U a (left) G-Hilbert space. The action is called strong
if U,Up, = 0 for all undefined compositions gh.

Definition 9. If A is a right G-C*-algebra and H a left G-Hilbert space,
then a x-homomorphism 7 : A — B(H) is called equivariant if

U,Ugm(ag) = Uyn(a)Uy, n(a)U,U; = UyU,m(a), m(a)UyUy = U Uym(a)

forall a € A, g € G. If the action on A is from the left then the first identity
has to be replaced by U,U;m(ga) = Uym(a)U; .

It is easily verified that w of Definition 6 is an equivariant representation,
and the action U on ¢?(G, H) is strong. If the action on A satisfies (ag)h = 0
for all @ € A whenever gh is not defined (g,h € G) then one would have
U,m(a)Uy = m(ag) for all a € A, g € G for the representation of Definition 6.
However, this requirement is too restrictive for us as we also want to consider
the trivial action on C.

The next lemma links convolution algebras and equivariant representa-
tions.

Lemma 1. Endowing C.(G, A) with the convolution product given by

(g : a)(h ’ b) =gh- ((ah)b)l{gh is defined}s

where a,b € A, g,h € G, and g - a denotes the map h — 1(_gya, the map
o(g-a) = Ugn(a) extends to an algebra homomorphism from C.(G,A) to
span(Ugm(A)) for any equivariant representation (mw,U) with strong action
U.

Proof. Straightforward. O

Definition 10. A right (resp. left) G-action o : G — End(A4) on a C*-
algebra A is called left-invertible (resp. right-invertible) if for all g € G there
is a T, € End(A) such that a(h)a(g)Ty, = a(h) for all h € G for which gh
(resp. hg) exists.
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If G has injective right multiplication then we may introduce a virtual
inverse g~ ! for each ¢ € G, and write zg~! = h if = hg, and let zg~!
otherwise undefined. (In general one does not obtain a semimultiplicative
set in this way; take for example [0, N] as a counterexample: [—N, N] is not
a semimultiplicative set.) If we suggestively write T, = a(g™') in the last
definition then it becomes clear that invertibility of a left G-action « is the
counterpart to injective right multiplication in G.

Lemma 2. Assume that G has injective left (resp. right) multiplication
and A is a right (resp. left) G-C*-algebra whose G-action is left-invertible
(resp. right-invertible). (We will write g~' := T, for any choice T, as in
Definition 10.) Then the representation of Definition 6 (resp. 7) satisfies

Uyr(a)U; = (g™ (a))U,U;
(resp. Usm(a)Uy = w(g~ " (a))U;Uy) for alla € A,g € G.
Proof. Straightforward. O

4. Equivariant K K-theory

In the rest of this paper all C*-algebras are supposed to be graded. A
C*-algebra B is graded if there is a grading automorphism € : B — B,
€2 = 1. The grading is called trivial if ¢ = 1. An element ¢ € B has
degree i = 0,1 if ¢(b) = (—1)'b. (Notation: db = i.) All homomorphisms
in the category of graded C*-algebras are graded, i.e., commute with . All
commutators are graded, that is, [a,b] = ab — (—1)?%%ab for homogenous
elements a,b, and the commutator is extended by linearity to all a,b. A
Hilbert module £ over a C*-algebra B is always supposed to be graded,
that is, there is a grading linear map € : £ — &, €2 = 1, which is compatible
with the grading of B, i.e., e(zb) = e(x)e(b) and £((x,y)) = (e(z),e(y)), for
all z,y € £,b € B. The space of linear maps L(£) on & is graded by the
grading operator (1) = eTe, T' € L(E). We write L(&) for the C*-algebra
of adjointable operators 7' : £ — &, and K(&) C L(E) for the C*-algebra of
compact operators, that is, (&) is generated by the elements ¢, € L(E),
O n(x) = &£(n,x), for all £,n € &, see Kasparov [6] or the books [10], [5].
We write M(A) for the multiplier algebra of a C*-algebra A, see also [6],
Theorem 1, for an isomorphism M(K(E)) = L(E).

For the rest of this paper we (may) drop the associativity requirement
on G, that is, G is only a set together with a subset G& C G x G and
a function G® — G. However, we still call G a semimultiplicative set.
All semimultiplicative sets G are supposed to be discrete and countable
(thus locally compact, o-compact Hausdorff spaces). All algebras and C*-
algebras are left G-C*-algebras (if nothing else is said). All homomorphisms
o : A — B between C*-algebras A, B are supposed to be x-homomorphisms
which are graded (i.e., commute with €) and equivariant (i.e., o(ga) = go(a)
forall g € G,a € A).
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Definition 11. Let B be a G-C*-algebra. An action of G on a Hilbert
B-module £ consists of a left linear G-action U : G — L(£) on &, and a
right linear G-action V' : G — L(&), which we denote by U* = V| satisfying

U,UsUg =U,, U UUS = Uy,

(Ugz,y) = glz, Ugy), Ug(ad) = (Ugz)(gb)
for all z,y € £,b € B,g € G. Uy and Uy must respect the grading (i.e.,
commute with ) for each g € G. Further we require g to be isometric on

By =span{(U,Uyz,y) € B | v,y € £}
for all g € G. Given such maps U and V we call £ a G-Hilbert B-module.

One may observe that B, is a two-sided closed ideal (without G-action)
in B, see Lemma 3 below. Notice that Definition 11 consistently redefines
G-Hilbert spaces when B = C with the trivial action and grading.

Lemma 3. Let £ be a G-Hilbert module with action U. Then each Uy is
a partial isometry on £ with self-adjoint source and range projections U Uy
and UgUy respectively in L(E), and inverse partial isometry Ug. Moreover,
(z,Ugy) = g(Uyz,y) and Uy (xg(b)) = Uy(x)b for all z,y € £,9 € G,b € B.
Proof. Let us begin with proving the following claim:

Then one has g(U; U, U Uy, y) = g(U Uy, U;Uyy), and by injectivity of g
on By this shows that (UjUyz,y) = (U;Ugw, U;Uyy). This shows that U, U,
is selfadjoint and hence in £(£). Each U, is a partial isometry, that means,
|Ug(UsUgz)|| = [|[UsUgz|| and Uy(1 — UyUy) = 0. The last claim follows
from U U Uy (2g(b)) = Uy (UyUy(2)g(b)) = U, (Ug(Uy(2)b)). O

Definition 12. A Hilbert C*-algebra A is a G-C*-algebra which is also a G-
Hilbert module over A with inner product (z,y) = 2™y and action Uy(z) =
g(x) for all z € A, g € G. We also require that Uy is a *-homomorphism for
all g € G.

The algebra Cp(X) of Example 1 is a Hilbert C*-algebra. Any C*-algebra
A with trivial action g(a) = a, a € A, g € G, is a Hilbert C*-algebra.

Definition 13. Given a G-Hilbert module £, we endow £(€) with the left
linear action g(7) = U,TU; and the right linear action g UT) = UyTU,
for g e G,T € L(E).

L(€) and subalgebras of it are usually not regarded as G-algebras, as the
action is not a C*-action. Note that g~!(T) is indeed adjointable: from
g(U,TUyz,y) = gz, U;T*Uygy) for all z,y € £,g € G, the injectivity of g
on By and self-adjointness of U Uy it follows (U;TUyz,y) = (z,U;T*Uyy).
With Lemma 3 one checks that g(T),g *(T) € K(€) for all ¢ € G and
compact operators 1" € K(E).
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Definition 14. A subalgebra A of £(€) is called G-invariant if for all g € G
the sets g(A), g1 (A), UyUy A, AU, Uy, UsUg A, AUSU, are subsets of A.

Definition 15. If A is a left G-C*-algebra and & is a G-Hilbert B-module,
then a x-homomorphism 7 : A — L£(&) is called equivariant if

UgUgm(ga) = Ugm(a)Ug,
UgUgm(a) = m(a)U,Uy, UgUym(a) = m(a)U, U,

for all a € A, g € G. Moreover, we require that U;m(A)U,; C Uy;Uym(A) for
all g € G (‘G~'-invariance’).

In the rest of this article all Hilbert modules are supposed to be G-Hilbert
modules, and all homomorphisms from C*-algebras into £(£) are supposed
to be equivariant. We call a Hilbert B-module £ together with an equivariant
s-homomorphism ¢ : A — L(E) a Hilbert (A, B)-bimodule. (Notice that
a-z:= ¢(a)(r) makes £ a left A-module.) With some abuse of notation we
shall often identify elements of A with operators on £.

Example 2. If C is endowed with the trivial action and £ is a G-Hilbert
B-module then € is a G-Hilbert (C, B)-bimodule.

Any C*-algebra A with the trivial action is a Hilbert (A, A)-bimodule.

Consider C*-algebras A, B (without G-action) and a homomorphism o :
A — B. Let X and G be as in Example 1. Then A; = Cp(X,A) =
Co(X) ® A and By = Cy(X,B) are Hilbert C*-algebras, and Cy(X, B)
is a Hilbert (A1, By)-bimodule with Aj-action (ab)(z) = o(a(z))b(z) (a €
Aybe By,x € X)

Somewhat more generally, one may consider a family B = (B;)zecx of
C*-algebras with a family of isomorphisms ¢g., : B, — By, whenever
gz is defined (g € G) such that ¢pge gz © Ggz.c = Ohger Whenever (hg)x is
defined. Then the (continuous) sections I'g(B) of B vanishing at infinity are a
Hilbert C*-algebra under the G-action 8, (bz0x) = 1{4s is defined} g,z (ba)dga-
One may also consider another C*-family A = (Ay;¥,)zex and a family of
homomorphisms o, : A, — B, (¢ € X) satisfying ¢gu 202 = 0g2gan to
obtain a G-Hilbert (I'g(A), I'o(B))-bimodule I'y(B).

If G has injective right multiplication and A is a C*-algebra with invertible
left G-action then the representation (7, U) of Definition 7 is equivariant in
the sense of Definition 15 by Lemma 2.

Let S be an inverse semigroup and « an S-action on a C*-algebra A in
the sense of Sieben [13], i.e., a morphism of S into the partial actions on
A. Assume there exist commuting Hilbert-module-self-adjoint projections
Qss+, Qs+s € End(A) projecting onto the range and source, respectively, of
as (s € 5). Then s = asQss € End(A) is a S-Hilbert C*-action on
A. Indeed, note that (ay o a)Qse1r1s = QiriasQsxixts (s,t € S), and
50 Qs*t*ts = as*Qt*tast*t*ts' Hence atQt*tast*s = atQt*ths*ast*s =
Qs Qg Qt*tast*s = atst*t*ts'
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For the definitions of the internal and skew tensor products of Hilbert
modules see Kasparov [7], Section 2. The grading operator for tensor prod-
ucts of Hilbert modules or C*-algebras is the diagonal grading operator
e ® e. We denote the skew commutative (minimal) tensor product be-
tween C*-algebras A, B (see Kasparov [7], Section 2) by A ® B (that is
(a1 @ b1)(ag @ by) = (=1)P9%2(aya9 @ biby), (a @ b)* = (—1)?*P(a* @ b¥)
for a,a; € Abb; € B). We endow A ® B with the diagonal action
gla®b) =gla) @ g(b) for all g € G,a € A,b € B.

Lemma 4. If & are G-Hilbert B;-modules (i = 1,2) and ¢ : By — L(&2) is
an equivariant *-homomorphism (not necessarily satisfying the G~ -invari-
ance) then the internal tensor product £ ®p, E2 is a G-Hilbert Ba-module
under the diagonal-action UV @U®). If & is a G-Hilbert (A, By)-bimodule,
then £ ®p, &2 is a G-Hilbert (A, By)-bimodule (under the A-action m: A —
L(E ®@p, &), m(a) =a®1).

Proof. Consider the algebraic tensor product £ ® & with its natural struc-
ture of a Ba-module and with the By-scalar product given by the formula

(1 © 22,51 © y2) = (w2, 0((T1,91))Y2)
for all x1,y1 € &1, x2,ys € . Factoring out the Bo-submodule

N={ze€& 0&]|(zz) =0}

and then completing the factor module in the norm ||z|| = ||(z, 2)||*/? we
obtain a Hilbert By-module which is denoted by & ®p, £&2. This tensor
product will be endowed with a G-action that comes from the diagonal
action (Ufgl) ©® Uf))(:rl © x9) = Uél)(:rl) ©® Ung) (x2) on & © &, where the
“adjoint” operator to W, = Uél) ©) Uf) is given by Wy = (Uél))* ©) (Uf))*.
Indeed, it is straightforward to compute that

(U @ UP) (21 © 29), 51 @ 42) = g1 © 29, (U @ UP ) (31 @ y2))

for all z1,y1 € &1, 29,y2 € E2,9 € G. It is also straightforward to check
that (Uél) ©) Uf))*(Uél) ©) Uf)) is self-adjoint, idempotent and seminorm-
contractive on & ©® & by a similar argument usually used to show that
L(E1)®1C L(EI ®E) (see for instance Lance [10], Section 4). Hence for
z,y € & © & one has

<Wg$a Wgy> = g{z, W;Wgy> = 9<W;Wg$a W;Wgy>,
(2)

*
and since g is isometric on (WyWyr,y) € spanmb(Uf) g2 a,b), one gets
[Wyz| = [W;Wyz|| < [lz||, and consequently also ||[Wyz|| = [[W,Wyz| <
||| by Wy W, Wy = W. Thus W, and W, leave N invariant and their linear
quotient maps extend by continuity to linear maps on & ®p, & denoted by

Ug(l) ® Ué2) and Ug(l)* ® Uém* which make & ®p, & a G-Hilbert module. [
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Lemma 5. If & are G-Hilbert B;-modules (i = 1,2) then the skew tensor
product & ® & is a G-Hilbert (B ® Bs)-module under the diagonal action
of G. If & are G-Hilbert (A;, B;)-bimodules (i = 1,2), then & ® & is a
G-Hilbert (A1 ® As, By ® Bs)-bimodule.

Proof. This may be proved similarly as Lemma 4. We only discuss the G~!-
invariance of Definition 15: Let U denote the diagonal action on & ® & and
m: Al ® Ay — L(E ® &) the canonical homomorphism. It is clear that
Uym(A1 © A9)Uy C UyUym(A1 @ Ag) =: X for all g € G. But then also
Uym(A1 ® A2)Uy C X, as X is the closed image of the *-homomorphism o,
where o(x) = U;Uym (). O
For a Hilbert (A, B)-bimodule £ and a subset C' C £(&), we denote
Qc(&) ={T € L&) | [T,c] € K(€), Ve € C},
Ic(&)={T € L(E)| Tcand T in L(£), Ve e C}.
Definition 16. Let A and B be G-C*-algebras. A cycle over (A, B) is a
pair (£,T), where £ is a countably generated G-Hilbert (A, B)-bimodule,
and 7' is an operator in Q4 (&) of degree 1 such that
T-T T?-1, ¢ilg) =U,TU; - U,U;TUU,; = g(T) — g9~ '(T),
pa2(g) = U,U;T —TUU,,  p3(g) = U U, T —TUSU,
belong to [4(€) for all ¢ € G. We shall not distinguish between cycles
(€1,T71) and (&2, T3) if there is an isometric, grading preserving isomorphism
u: & — & of G-Hilbert (A, B)-bimodules with T, = uTyu~!. The set of all

cycles will be denoted by E“(A, B). A cycle (€,T) will be called degenerate
if the elements

[, T], a(T—=T%), a(T?>-1), api(g), apag), aps(g)

are 0 for all a € A, g € G. The set of degenerate cycles is denoted by
DY (A, B).

Lemma 6. If (£,T) € E(A, B) then U,TU, —UsUTU U, € 14(E) for all
acA

Proof. By the rules of Definition 15 it is straightforward to check that
ag~H(T) — ag~g(T) = g~ (g(a)gg™ " (T) — g(a)g(T)) € K(£). O

We define an addition of cycles (£1,T1), (2, Ts) € E¢(A, B) by taking the
direct sum: (&1,T1) ® (E2,T2) = (&1 ® E3,T1 © T).

Definition 17. Two cycles (€, Tp) and (€1, T1) over (A, B) are operatorially
homotopic if & = & and there exists a norm continuous path ¢t — T; €
L(&) (t € [0,1]) such that for each ¢ € [0,1] the pair (&,T}) is a cycle
over (A, B). Two cycles (Ey,Tp) and (&1, T1) in EY(A, B) are operatorially
equivalent if there are degenerate cycles (Fo,So), (Fi,S1) € DY(A, B) such
that (&9, To) @ (Fo, So) is operatorially homotopic to (£1,71) @ (Fi,51). The



516 BERNHARD BURGSTALLER

set KKCG(A,B) is defined as the quotient of E“(A, B) by the equivalence
relation given by operatorial equivalence.

Proposition 1. KKG(A, B) is an abelian group with addition given by
direct sum.

Proof. One proves this along the lines of [7], Section 4, Theorem 1, or [14],
Proposition 4. O

We remark that the G-action of a Hilbert module can be completely
degenerate to zero, and cycles of such Hilbert modules in the sense of Def-
inition 16 coincide with cycles in the sense of Kasparov [8] for the trivial
group. One may circumvent this difference by restricting to unital semi-
multiplicative sets G (possibly by adjoining a unit) and requiring that the
unit of G always acts as the identity on C*-algebras and Hilbert modules.
Otherwise we have the following elementary observation.

Lemma 7. If G is a group and & is a G-Hilbert module then UyUy = U U/
and UyUy = UZUe for all g € G, and U is the adjoint of U, € L(E). If
ker(Ue) = 0 then U;Uy = UyUy =1 and U; = Uy for all g € € (and thus
€ is a G-Hilbert module in the sense of [T]).

Proof. The first claim follows from U Uy, = Ugg-1,Uy = UgUgUgUy-1, Uy =
UgUgUpUy and similarly U Uy = U,UgURUy for all g,h € G. Further,
U = (UUNULU,) € L(E) and its adjoint is (UXU,)(UUY) = U}. For
the last claim, P = UZU, = UjUy is a full selfadjoint projection and hence
P = 1. Moreover, by Lemma 3 all U, are bijective and consequently Uy =

Ug_leg—l. O

5. Kasparov’s technical theorem

If nothing else is said, approximate units are supposed to be positive,
increasing and all their elements having degree 0. If A is a subalgebra and
A a subset of an algebra B then A derives A if [a,d] € Aforalla € A,d € A.
(All commutators are graded.) In this section we prove a modification of the
so-called Kasparov technical theorem, see Kasparov [7], Section 3. We follow
closely Kasparov [8], Section 1.4, a simplification of Kasparov’s original proof
due to Higson [4]. If X is a locally compact Hausdorff space and A a C*-
algebra then we also write A(X) for the C*-algebra Cp(X, A).

Lemma 8. Let £ be a G-Hilbert module with G-action U, A o G-invariant
o-unital subalgebra of L(E), Y a o-compact locally compact Hausdorff space,
and ¢ : Y — L(E) a function such that [p(y),a] € A for alla € A,y €Y,
and y — [¢(y),a] is a continuous function on'Y (norm topology in L(E))
for all a € A. Then there is a countable approzimate unit (u;) C A for A
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such that the limits

lim | [ui, (y)]l],

1—00
lim [|[Uyw;Uy —wUgUg ||, lim |Juw;UgUy — UgUguil],
1—00 71— 00
lim [|[Ugu;Uy —wUgUg|l,  lim |Ju;U Uy — UgUguil],
1— 00 71— 00

are 0 for ally € Y, g € G. These limits are uniform on compact subsets of
Y and G respectively.

Proof. Let X; C X5 C --- be an increasing sequence of open sets in G,
with compact closures and | J,, X, = G. Let also Y7 C Y5 C --- be a similar
sequence in Y and (v;) € A a (positive increasing) countable approximate
unit for A. Using induction, suppose that we have already constructed
up < ug < -+ < u, out of finite convex linear combinations of elements of
v;, and the following conditions are fulfilled:

lurvj —vjll < 1/k, - Nue, Wl < /K, urUgUg — UgUgu|| < 1/,

lurUy Uy = UgUgurll < 1/k,  llg(ur) — 997" (ur)|| < 1/k

for all j < k,y € Yj,g € Xp,k < n. To construct u,,1, note that v; > u,
for all ¢ > m for some m > 1. Let A be the convex hull of {Vms Vmt1,s--- }-
Denote by Z the disjoint union of {vq,...,vn11}, Y41 and three copies
)_(Sil,)?ﬁl,)?ﬂl of X,,11. For any v € A let a, € A(Z) be the function
defined by

ay(vy) = vvj — 5, au(y) = [v,0®)],  avlg) = UUgv —vU,Uy,
ay(h) = UiUpv — oU Uy, ay(l) = 1(v) — 1171 (v)

forall1 < j<n+1l,y€Y,i1,9¢€ )?fllll,h € )TSJ)AJ € )7,(13421. Suppose
that there is no element wu,,4+1 € A with the required properties. Since the set
of functions {a, | v € A} is convex, the separation theorem gives a bounded
linear functional f on A(Z) with |f(a,)| > 1 for all v € A. This leads to a
contradiction in the following way.

Write B = L(€), and denote by B(Z)"” and A(Z)" the universal envelop-
ing von Neumann algebras of B(Z) and A(Z), respectively, and identify
A(Z)" as a subset of B(Z)"”. Regarding v; as an element in B(Z) (constant
function with value v;), we have v; T p in the weak operator topology for
some element p € B(Z)"”. Since Z is compact, by a simple compactness
argument we see that v; is an approximate unit for A(Z), and so p is a
unit for A(Z)"”. Write ¢/ € B(Z) for the function ¢’|?n+1 = g0|§7n+1 and

QO/‘Z\Y,LH = 0. Since [p,¢'] € A(Z)",

[p,¢'] = P>, ¢'] = plp, '] + Ip, ¢'Ip = 2[p, '],

which implies that [p, ¢'] = 0. Define 9(z) = U,U? for z € )?,(11421 C G and
¥(z) = 0 for other z. By the G-invariance of A, [p,¢] € A(Z)", and by the
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same argument as before we thus obtain [p,¢] = 0. For a € A(Z), write
o(a),oc"(a) € A(Z) for the functions

o(a)(z) = 2(a(2)) = Uza(2)U;,
o7 (a)(2) = 27 (a(2)) = UZa(2)Us,

for z € )?,(13421 C G, and o(a)(z) = 07 !(a)(2) = 0 for other z. As

vio™ (a) — o (a)],

lo(vi)oo ! (a) — oo (a)
v; ! lvio (1)a — o1 (1)al|

(a) — oo a)

for all @ € A(Z), and since 0~ (a),0"(1)a € A(Z), the sequences o(v;) =
oo lo(v;) and oo~ !(v;) are (not necessarily increasing and positive) ap-
proximate units for the C*-subalgebra A, = co~1(A(Z)) C A(Z). Hence
the weak operator topology limits «, 3 of o(v;) and oo~ (v;) in B(Z)" (if the
sequence o(v;) does not converge, we go over to a weak operator topology
convergent subsequence o(vy,)) are units of A”, and so a = f3.

The above calculations show that the weak operator topology limit of a,,
vanishes in A(Z)"”. Hence lim; f(a,,) = 0 (by a well-known linear topological
identification of A(Z)” with the bidual space A(Z)**), which is a contradic-
tion. Obviously, the constructed sequence uy, satisfies the claim. O

oo™ (vi)oo™

In the next theorem we regard M(J) as a subalgebra of L(&), see [10],
Proposition 2.1.

Theorem 1. Let £ be a Hilbert module, J a mnondegenerate o-unital G-
invariant subalgebra of L(E), Ay a o-unital G-invariant subalgebra of M(J),
and As a o-unital subalgebra (without G-action) of M(J). Let A be a
norm-separable subset of M(J) which derives Ay. Let Q be a o-compact
locally compact Hausdorff space, and @, : Q@ — M(J) be bounded functions.
Assume that

A1 Az, A1p(Q), ¥(Q) A1 € J,
and the functions
w—ap(w), wewa, wea(w), wePwa

are continuous on €2, with respect to the mnorm topology in M(J), for all
a € Ay + J. Then there are positive elements My, My € M(J) of degree 0
such that My + My =1,

Miai7 [szd]v MQSO(W)’ ¢(W)M2 C Ja
foralla; € Aj,d e Ajg € G,w € Q (i =1,2), and the functions
w = Map(w), w—P(w)Ms

are norm continuous on .
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Proof. The proof is similar to the proof of the Theorem of Subsection 1.4
on page 151 of Kasparov’s paper [8], with some adaption we discuss now. In
Kasparov’s paper G is a group, and somewhere in the proof of the theorem
one chooses approximate units (u;) C A for A; and (v;) C J for J according
to the lemma on page 152 in Kasparov’s paper satisfying (among other
things)

3) lg(un) = unll <277, V¥n,¥g € X,, and
(6) lg(bn) = bull <277, Vn,V¥g € Xy,

where b, is defined by b, = (v, — vn_1)1/2. The sought element My € L(E)
is defined as the series anl bnunb, which converges in the strict topology.
By the estimates (3) and (6) one gets the estimate

llg(brnby) — bpupby| < 3-27"

for all n > 1 (see the bottom of page 153 in Kasparov’s paper).

We modify Kasparov’s proof as follows. At first, Kasparov’s stated theo-
rem deals only with one function . But it is quite obvious how to modify
the proof that one can handle both functions ¢ and . Next, Kasparov’s
function ¢ has domain G. At the beginning of the proof he writes G as
G = U, en Xn with open subsets X;,, € G with compact closures. We mod-
ify the proof in that we also choose a union 2 = | J,,c 2, of open subsets
Q, C Q with compact closures, and substitute X,, by €2, everywhere there
where X, acts as a domain of ¢ or . Instead of the subset W,, C J defined
under point (4) in Kasparov’s proof, we take

W, = {k, upha, un+1h2}uun¢(§n)Uun-i-lSO(ﬁn-i-l)Uw(ﬁn)unUw(ﬁn-i-l)un-i-l-

Next, we choose the mentioned approximate units (u;) and (v;) by Lemma 8
in such a way that we have the estimates

3)  llg(un) = 997" ()| + 1UgUgun — unUgUg || + U5 Ugtin — unUg Uyl
<2" VYn,Vge X,, and
() llg(en) = 997" ()| + 1UgUgen — ealUgUg || + U5 Ugen — eaUg Ul
< (1/100)27" /N2, Vn,Vg € X,,
rather than the estimates (3) and (6) in Kasparov’s paper. Thereby denote
Cn = b%, let Z?’:O ag(x — 1)k — 212 be the power series of x/? at 1, and
choose N, such that » 2 . ag| < (1/100)27" for all n € N. Note that
||bn, — EkN;’O ag(c, — D¥|| < (1/100)27™ for all n € N. From (6') we thus
deduce
6)  Nlg(bn) = 99" (ba)ll + 1UgUbn = bpUgUg || + [|Ug Ugbn — buUy Uy
<27 vn,Vge X,
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(mainly by similar estimates we show next). This leads one to the following
estimate.

[UgbnunbpUy — Ugbp Uy Ugun U Ugbp Uy ||
< NUg(UyUgbn — by U Uy )unbn Uy ||
+ [[UgbnUg Uy (Ug Uguin, — unUg Uy )br U ||
+ |Ugbn Uy Ugun U, Uy (Ug Ugby, — b, Uy Ug)U || < 3-277.
for all g € G,n € N. A similar estimate yields
199" (bntinbn) — 997" (ba)gg™ " (un)gg ™" (bn)[| < 3-27".

Hence
9(brunby) — 99_1( nUnbn) ||
<6-27" 4 lg(bn)g(u n)g( n) =99 (bn)gg™ " (un)gg ™" (bn) |
<6-27"+ [l(g(bn) — ( n))g (un)g( n)l
+lgg™" (bn) (g (un ) “Hu ))g(bn)H
+ Hgg_l(bn)gg_l(un)(g(b ) =99~ (b))l <9277
Also,
[UgU g bntinby — brunbyUUS || < 3-277,
Uy Ugbnunbyn — bpunby Uy Uyl < 3-277.
Other things of Kasparov’s proof need not to be changed. O

Corollary 1. Let My and My be the operators of Theorem 1, and assume
that J = K(E). Then all claims of Theorem 1 (excepting My + Ms = 1) hold

also for ]\4;/2 rather than M; (i = 1,2).

Proof. As g(M]') = g(M;)" and g(1)M]* = (g(1)M;)" modulo J, writing
Mil/2 as a power series shows that g(Mil/Q) —g(M)Y? € J, g(1 )]\41/2
(g(1)M;)V/? € J and [d, Mi1/2] € J for all d € A. Hence, modulo J we get

g(M}1%) = gg™ (M) = g (M) V? — gg™" (M;)/2
= (9(M;) = gg~ " (M) (g(M:)"/? + g9~ (M:)"/*) ™!
=0.
Next, M, 124, = =M, 12, sa; € J, and similarly we treat the remaining
cases. O

6. The Kasparov cap product

Given a G-Hilbert module &£, we define A(€) as the smallest G-invariant
C*-subalgebra of L(£) generated by 1. Note that U, = 0U; = 0 for all

g € G, whence all elements of A(E) are zero graded.
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Lemma 9. If 7 : A — L(€) is an equivariant representation then mw(A)
commutes with A(E).
If (,T) € ES(A, B) then a[z,T] € K(E) for alla € A,z € A(E).

Proof. Let W be the smallest set in £(£) which is closed under taking
products, is invariant under G and G~!, and contains 1. Since W is self-
adjoint, A(E) = spanW. That 7(A) commutes with W can be proved by
induction for expressions in W. Suppose that x € W and n(a)z = z7(a) for
all a € A. Fix a € A,g € G. Then Ujn(a)Uy = U Uyn(b) for some b € A
by Definition 15, and thus 7(a)U, = U,m(b) and 7(b)U; = U m(a). Hence,
m(a)UgzUy = UgzUgm(a). This proves the first claim of the lemma.

Let (£,T) € EY(A, B). Take z € W and assume that a(zT —Tz) € K(&)
for all a € A. Fix a € A,g € G, and write b = UjaU, = U;‘Ugb’ for some
b € A by Definition 15. Multiplying

a(U,TU; — TU,U}) = U,U U TU; — aTU,U; € K(E)

from the right with Uy (thereby noticing that ¥'TU,U, = b'U;U,T modulo
K(E€)), one gets a(U,T — TU,) € (K(E)Uy 4+ UgK(E)). In a similar way, by
multiplying a(U;TU, — TU;U,) € K(€) (see Lemma 6) from the right with
U, , one obtains a(U, T —TU;) € (K(€)U, +U;K(£)). With these formulas,
the formulas aUy = Ugb,Uja = bUy, ax = za,br = xb,b = U;Ugb’, and the
invariance of K(€) under G and G~1, it is straightforward to compute that
a(g(x)T—Tg(z)) = g(b/(2T—Tx)) = 0 modulo K(£). A similar computation
shows that a(g~(z)T — Tg~t(x)) € K(£). O

Definition 18. Let & be a Hilbert Bj-module, & a Hilbert (B, Ba)-
bimodule, and £12 = & ®p, &. For any { € &, define 0 € L(&,E12)
by Og(n) = & ®@n (with an adjoint given by 0£(& @ n) = (§,&) - n). Let
Ty € L(&E). An element Tio € L(E12) will be called a Th-connection on E19
if for any £ € & both

0Ty — (—1)%9T2 90,
0cTy — (—1)% 217,60,

are in K(€2, £12). (Adjoining the last element gives T50;7 — (—1)85'3T292‘T12.)

Note that the definition of Th-connections does not involve a G-structure.
Connections were introduced by Connes and Skandalis in [2]. By Lemma 9,
1® T is a well-defined operator in £(&12) for T' € A(&2).

Lemma 10. With the notation from the previous definition, let Tis be a
T5-connection.
If 15 € IBl (52) then Tio € IK(51)®1(512).
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If (SQ,TQ) S EG(Bl,BQ) then

(1) T2 € Qk(e)wA(E) (E12),

(2) 9(Ti2) — 99 (Th2) € Iic(e,) o1 (Er2),

3) (K(&) © D)(g()Ty — 99~ 1 (Th)) € K(&12),
(4) (K(E) @) (g ()T, — g '9(Th)) € K(&12)

Jor all pn € {1,%}.

If T € E(El) then (’C(51) & 1)[T12,T1 & 1] S ,C(glg)
Proof. First notice that ¢, ® 1 = 00 for all {,n € &. Take £ €
&1 and write b; = (£,6)((€,€) +1/i)"'. Then 6 = lim;_. b¢p;, and so
9§T2 = lim; HfbiTg. Thus, if Tr, € 131(52), then 9§T2,9§T2* S K:(gm,gg),
and consequently T120¢0; and T7,0¢0; are in K(&12,E&2), which proves that
Thz € I(e)21(12)-

If 75 € EG(Bl,Bg), then by Lemma 9 one has 0/Thx = lim; O¢bThxr =
lim; Ogb;aTy = x> modulo KC(Es, £12) for all x € A(E2). Hence

OcaTy — (—1)% 2T 000 € K(Er, E19)
for all z € A(&2). Modulo K(€12), this gives
00 Tio = OcxTo0;(—1)770T = Typ0c0; (—1)7%4 07> (—1) 77972
= Tiafext;y(—1)20eetn) 02

for all z € A(&,), for the last identity noticing that d(0¢) = 9¢ and d(x) = 0.
If 8(T12) = 8(T2), this proves that [951‘9;,1—112] € K:(glg) If 6(T12) 75 8(T2)
then 0(0:T2) # O0(Th20¢), which shows that Ths is a 0-connection, and in
this case [0¢x0;, Ti2] € K(&12) is obvious. Noticing 0¢20; = (1® x)0¢0;, this
shows (1).

If Ty € EY(By, By), and S, = g(Tz) — gg~ (1), then By S, C K(&). By
O = lim; Oy, we get 0:5g,0:5; € K(Ea,E12). Denote the G-action on & and
& by U and V, respectively. Fix g € G, € £ and assume that £ = U,U €.
Then

Oeg(Ty) — (=1)70T2) g (T,)6,
= (Uy ® Vg) (Ouz¢To — (1) 2TIT1000- )V € K(Es, E12).
Similarly, 9§gg_1(T2) — (—1)8(5)'8(T2)gg_1(T12)95 € K(&,&12). Hence,
(9(Ti2) — g9~ ' (T12))0¢0; € K(E12).
This identity holds even for any £ € &7, since
(9(Th2) = 99~ (Th2))0 = (9(T12) — 99" (T12))0u, U3¢

for all £ € &;. The identity also holds for T3 replaced by 175, and hence we
checked (2). The claims (3) and (4) are proved similarly. (Recall Lemma 6
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when checking (4).) For the last claim, it is straightforward to compute that
[T, T @ 11065 € K(E12)- O

The following lemma is Lemma 2.7 of Kasparov’s paper [8].

Lemma 11. If &; is countably generated and Ty € Qp, (E2) then there exists
a Tyr-connection Tia on E19.

Definition 19. Let A, By, By be G-C*-algebras. An element (€12,712) €
EY(A, By) is called a Kasparov (or cap) product of (£1,Ty) € E¢(A, By) and
(E2,Ty) € E9(By, By), if £12 = & ®p, E2, T12 is a Th-connection on &1z, and
a[Ty ® 1,Tis]la* > 0 in the quotient £(E12)/K(E12) for all a € A.

Lemma 12. Let £ be a Hilbert (A, B)-bimodule, (£, F),(£,F') € E%(A, B),
and assume that o[F, F'la* > 0 in L(E)/K(E) for all a € A. Then (E,F)
and (€, F') are operatorially homotopic.

Proof. The proof is the same as in [14], Lemma 11, and we shall only check
the aspects involving G. As in Skandalis’ paper the operatorial homotopy is
given by the path F; = (1 + (cost)(sint)P)~'/?((cost)F + (sint)F’) € L(E)
(t € [0,7/2]) for some operator P > 0 satisfying [F, F'] — P € I4(£). By
Skandalis’ proof, (€, F}) € E(A, B). Given Fy,...,F, € {F,F'}, a € A, and
b € A such that UjaU, = UsU,b, one has

ag(Fh ... F,) = gOU UgFy ... F,) = gU,UyU Uy ... UjUgF,)
=ag(F1)...g(Fn)
modulo K(£), as bF; = (—1)?F;b. By induction on n one gets
ag(Fy...F,) —agg Y (Fy... F,)
=ag(Fy)...g(F,) —agg™ " (F1)...g99 " (F,) =0

modulo K(€). Using power series, there are fixed scalars a,, B, Yn,dn € C
(n > 0) such that for any ¢ € A there exist K,, € K(£) (n > 0) such that

¢Fy =Y anc(FF')"F + Buc(F'F)"F + 7, c(FF')"F' + 6,¢(FF')"F' + K,
n>0

Note that the series is (still) absolutely convergent. In order to show that
ag(Fy) — agg™*(Fy) € K(£), it is enough to show that ag((FF')"F) —
agg Y ((FF")"F) € K(€) for all n > 0 (and similarly for the other terms).
But we have checked this. il

Theorem 2. If A is separable then the Kasparov product of (£1,T1) €
ES(A, By) and (E2,T2) € EY(By, By) ewists and is unique up to operato-
rial homotopy. The Kasparov product induces a bilinear map

®Bl : KKG(A, Bl) ®KKG(Bl,BQ) — KKG(A, Bg)
denoted by x @ y — x ®p, Y.
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Proof. Ezistence. By Lemma 11 there is a T5-connection fg of degree 1
on &19. Put J = K(&12), and Ay = J+ K(&) ® A(E2). A; is closed and
o-unital by [7], Section 3, Lemma 2. Note that A; is G-invariant. Denote
by As the C*-subalgebra (without G-action) of L£(&12) generated by the
elements

T —T5,T5 - 1,[T2, Ty ® 1], [T», ]
for all @ € A. Let
A={Ty®1,To} UA.
It is clear that A derives A, see Lemma 10. Of course, To —T5 is a (Th —T%)-

connection, and @2 —1is a (T§ — 1)-connection. Noting Ty — Ty € I, (E2),
and writing

K€1) @ A(&2) = (1 @ A(&2))(K(&1) ® 1),

we get Al(fQ — T;*) € J by Lemma 10. Similarly, Al(fg —1) € J. By
Lemma 10, one has A1[T5, 71 ® 1] C J and A;[Tz,a] C J for all a € A. Tt
thus follows that A; Ay C J. Define

p1(9) = 9(T2) — g9~ (T2), #2(9) = g()Ts — gg~ " (Th),

p3(9) =g (NTz — g7 ' g(T2), ¢1(9) = Tag(1) — g9~ (T2),

ba(9) = Tag (1) — g~ g(T3)
for all g € G. We may combine @1, @2, @3 and 11,19,0 to one function ¢

and 1), respectively, with domain ) being a threefold disjoint copy of G. We
apply Theorem 1 to obtain M;, My € L£(&12) and set

Ty = M(Ty © 1) + M) Ty

It is well established (and straightforward to check) that (£12,772) is in
E(A, By) (without the set (), which is why will focus on those additional
relations showing even (€12, T12) € E¢(A, Bs). The other properties which
show that 779 is a Kasparov product are deduced as in Skandalis [14], The-
orem 12. Denote the G-action on & and & by U and V, respectively, and
the diagonal action U @ V on &2 by W. Write M; = Ml.l/2 (i=1,2). Since
[MZ-, A] C J by Corollary 1, and for any a € A, W,Wa = aW,W; and there
is a b€ A such that WyaW, = W;Wyb by Definition 15,

aWyM;W; = WoWiaW MWy = WbM;W; = Wy M;W,a

modulo J for all ¢ = 1,2. Similarly, agg_l(Mi) = gg_l(Mi)a modulo J for
all a € A;i = 1,2. Since [M;, WyWy] € J, one has g(M;T) = g(M;)g(T)
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modulo J for any operator T' € £(&12). Thus
ag(My(Ty ® 1)) — agg™ (My(Ty ® 1))

ag(M1)g(T1 ® 1) — agg™" (M1)gg " (T1 ® 1)
= g(M1)ag(T1 ® 1) — gg~* (M1)agg ™ (T1 ® 1)
= (g(My) — gg~ ' (My))ag(Ty ® 1)+

+g9g~ ' (M)a(g(Ty @ 1) — g9~ Ty ® 1))
= g9 '(M)gg '(a)gg " (g(Th @ 1) —gg (T ® 1))
= g9 '(Ma(g(Ty @ 1) —gg " (T1 ®1))) =0

modulo J, since My A; C J, for all a € A, g € GG. A similar computation
yields

ag(MzTh) — agg™ (MyTy) = agg ™ (Ma(g(T2) — g9~ ' (12))) = 0
modulo J, since Mggpl (g) € J, for all a € A,g € G. Thus we have proved
that a(g(Ti2) — g9~ (T12)) € J. Similar calculations show that also

(9(Th2) — g9~ (Th2))a € J.
Next,
ag(1) My (Ty © 1) — aMy(Ty ® 1)g(1) = My (ag(1)(Ty © 1) — a(Ty © 1)g(1))
=0

modulo J, since MiA; C J, fgr allae A, g € G. Note that Mggg_l(fg) =
MyW W T W Wi = WoW ToW, Wi My = gg~*(T2)M; modulo J for all
g € G. Since Mggpg(g) C J and zpl(g)Mg C J, one gets
ag(1)MyTy — alyTog(1) = aMy(g(1)Ts — g9~ (Tn))
+aMy(gg~ " (To) — Tag(1))
= a(gg ™ (Ty) — Tog(1)) Mz = 0
modulo J for all @ € A, g € G. It is thus evident that a(g(1)T12 —T129(1)) €
J, and by a quite similar computation, that a(¢g~1(1)T12 — T2~ (1)) € J
for all a € A, g € G. We have checked that (€12, Ti2) € EG(A, By).
Uniqueness. Consider two Kasparov products (€12, F), (€12, F'). In the
above existence proof we defined sets Ay, A2, A and ¢ = {¢1, 02, 03,101,102}
with respect to a given T: 2-connection T. T0~express dependence on T and
Ty, let us rename this sets as Ang’TQ),Ang’Tz),A(Tl’T2) and ®T112) Now
define J = K(&12), A1 = Ang’F), As to be the C*-algebra (without G-
action) generated by AéTl’F) U Ang’F) U{F — F'}; A = ATLE) gy ATLE),
and & = T8 || o(T0.L") | Applying Theorem 1 with these parameters we

obtain operators Mj, My, and we set F" = M11/2(T1 ®1)+ M21/2F. One
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has F” € E¢(A, B), and a[F, F"]a* > 0 and a[F’, F"]a* > 0 in L(E)/K(E).
(Confer the proof in Skandalis [14], Theorem 12.) The conclusion follows by
Lemma 12.

Passage to KKS. 1f (£1,T1) or (&, Ts) is degenerate then so is their
Kasparov product. (See the proof in Skandalis [14], Theorem 12.) We
have to show that the Kasparov product respects operator homotopies. Let
(£1,T}) € E9(A, By) and (&,T%) € E¢(By, By) (t € [0,1]) be two opera-
torial homotopies. Choose a norm continuous path T4 € £(&12) (t € [0,1])

~ 70
such that each T} is a Ti-connection. Define J = K(&12), A1 = AgThT?),
Aj to be the C*-algebra (without G-action) generated by e 1 Angt’TQt);
A = Upepg AT, @ = G x [0,1), ea(g,t) = g(T4) — 997 (T3) for al
(g,t) € Q, and similarly @9, 3,171,102 (see above). Entering these parame-
ters in Theorem 1 yields operators M;, My and a desired operatorial homo-

topy (E12, M} (T} ® 1) + My"*Th). 0

7. The Kasparov cup-cap product

In this section all C*-algebras are assumed to be Hilbert C*-algebras.
We define a slightly modified K K-theory for Hilbert C*-algebras in that
we redefine Hilbert modules and equivariant maps, taking into account the
structure of Hilbert C*-algebras. We denote the actions on a Hilbert C*-
algebra B by g + g(b) and g — g 1(b) for all b € B,g € G. All %
homomorphisms between Hilbert C*-algebras are assumed to be equivariant
with respect to both actions g and g~! (that is, we require that mg = gm
and 7g~! = g7 !7 for all g € G).

Definition 20. A G-Hilbert B-module € over a Hilbert C*-algebra B is a
G-Hilbert B-module in the sense of Definition 11 satisfying

(Uyz,y) = g~ x,Ugy), Uy(ab) = Uy (x)g™ ' (b)
forall z,y € £,b € B,g € G.

With respect to the last definition: The injectivity of g on B, implies
that UjUy is self-adjoint by Lemma 3. This implication can be reversed, as
(UrUgz,y) = g ' gla, UsUgy) = g~ g(UUga, y).

If A is a Hilbert C*-algebra then P = ¢~ !¢ is idempotent and self-adjoint,
and thus the range of P is an ideal in A. This shows, for instance, that
A = C[0,1] with P(f) = g(f) = ¢ '(f) = f()1 for all f € A,g € G is
not a Hilbert C*-algebra.! Actually,? the elements gg~' and g~—'g for any
Hilbert C*-algebra are elements of the center of the multiplier algebra by
identifying M(A) with £(A); [gg~!, A] = 0 is proven in Lemma 13.

T thank Christian Voigt for this “P is idempotent implies range(P) is an ideal?”—
counterexample.
2Remarked by the referee.
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Definition 21. If A is a Hilbert C*-algebra and £ is a G-Hilbert B-module,
then a x-homomorphism 7 : A — £(&) is called equivariant if it is equivariant
in the sense of Definition 15 and

U; U9~ (@) = Ugn()U,
holds for all a € A, g € G.

Though we have now redefined G-Hilbert modules and equivariant repre-
sentations for Hilbert C*-algebras, we can more or less continue with Sec-
tions 4-6 without change. Indeed, we only have to ensure that all construc-
tions related to Hilbert modules and equivariant representations enjoy the
above redefinitions, and these are only the tensor product constructions and
direct sums of Hilbert modules.

Lemma 13. If A, B are Hilbert C*-algebras and 7 : A — B is a homomor-
phism then 7™ : A — L(B), 7(a)(b) = w(a)b (a € A,b € B) is an equivariant
homomorphism. In particular, B is a Hilbert (B, B)-bimodule.

Proof. For instance, by Lemma 3 U,U,; is selfadjoint and thus
U,U;7(a) (0) =U, U (w(a)b) = (U, U (w(a")) Uy Ug () = m(@)U, U3 (3). O

By Lemmas 13 and 4 we may form the tensor product £ ®p, By if £ is
a Hilbert Bi-module and ¢ : By — By a homomorphism between Hilbert
(C*-algebras By and Bs.

Lemma 14. If & is a Hilbert (A, By)-bimodule, £ a Hilbert (Bs, Bs)-
bimodule and f : By — Bs is a homomorphism then

T 51 KB, By X By 52 — 51 KBy 52, 7T(1‘1 X b2 ®1‘2) =11 ® f(bQ)l‘Q

is an isomorphism of Hilbert (A, Bs)-bimodules.
If A is unital then 0 : A®4E — &, o(a® x) = ax is an isomorphism of
Hilbert (A, By)-bimodules.

Proof. Without the G-structure this is well established. It is straightfor-
ward to compute that 7 and ¢ intertwine the G-actions. U

Definition 22. An element (£,T) € E¢(A, B[0,1]) generates a path t —
(&, T;) € E(A, B) (t € [0,1]) obtained by evaluation at each ¢ € [0, 1], that
is, & = € ®@pgep1 B, Tt = T ® 1, where B ® C[0,1] — B is evaluation
at time ¢. This path and the pair (£,7T) itself will be called a homotopy
between (£, Tp) and (£1,T1). The set K KY(A, B) is defined as the quotient
of EG(A, B) by the equivalence relation given by homotopy.

Proposition 2. KK%(A, B) is a quotient of KK (A, B). KKY%(A, B) and
KKGC(A, B) are abelian groups with addition given by direct sum.

Proof. One proves this along the lines of [7], Section 4, Theorem 1, or [14],
Proposition 4. O
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Definition 23. Let Ay, Ao, B be Hilbert C*-algebras, and f : A7 — As
a homomorphism. Then f induces a map f* : E¢(Ay, B) — E%(Ay, B) by
(&, T)) = (f*€),T), where f*(€) is the Hilbert (A;, B)-bimodule £ with

Aj-action Ay EN Ay — L(E). The map f* passes to the quotients K K and
KKG&, and we keep the notation f* for these maps.
Definition 24. Let A, By, Bo be Hilbert C*-algebras and g : By — By a

homomorphism. Then g induces a map g, : E“(A, B;) — E%(A, By) given
by g«((€,T)) = (E®p, B2, T®1). The map g, passes to the quotients K K¢

—_—

and K K¢, and we keep the notation g, for these maps.

For Definition 24 one needs:

Lemma 15. Let £ be a Hilbert Bi-module, By a Hilbert C*-algebra, and
TeK(E). ThenT®1, T@UU;, T@U;Uy € K(E @p, Ba) forallg € G.

Proof. The proof is the same as in [7], page 523, or [5], Lemma 1.2.8, taking
UgUy, UsUg rather than 1. O

Definition 25. Let D be a o-unital Hilbert C*-algebra. Define
7p: EY(A,B) - E¢(A® D,B® D)
by 7p(E,T) = (E® D, T®1) (where £ D denotes the skew tensor product).

The map 7p passes to the quotients KK and KK, and these homomor-
phisms are also denoted by 7p.

Theorem 3. There is a Kasparov product as stated in Theorem 2, and this
product also induces a bilinear map

@p, : KKY(A,B)) ® KK (B, By) — KKY(A, By).

Proof. That the Kasparov product respects homotopy may be proved in
the same way as in Skandalis [14], Theorem 12. O

Proposition 3. Let Ay, Ay be separable Hilbert C*-algebras, and f : A1 —
Ay and g : By — By homomorphisms.

Ifx € KK Ay, B) and y € KKY(B, By) (or KKGC) then
[f@)epy = f(z®pBYy).

Ifv € KKY%Ay,By) and y € KKY(Bg, Bs) (or KKC) then
9+(z) @B, y =2 @B, 9" ()

Ifr € KK9Ay,B) and y € KK%(B, By) (or KKC) then
9«(x ®p Y) = T B g«(y)-

Proof. The proof is the same as [14], Proposition 13. For the second identity
one uses Lemma 14. O
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Definition 26. Let Ay, By be o-unital Hilbert C*-algebras and A;, As be
separable. The cup-cap product
®p: KK%(A;,B; ® D) ® KK®(D ® As, By) — KK%(A; @ As, By @ B)

is defined by the formula z1®@pze = 74, (21)®B,9DoA, 7B, (z2). The cup-cap

product for KKGC is defined in the same way.

Lemma 16. If z € KKY%(A,B) (or KKG(A,B)) and f : A’ — A and
g : B — B’ are homomorphisms, then p(f*(x)) = (f ® 1)*(mp(z)) and
™0(g+(x)) = (9 @ 1)«(mD(2)).

Proof. Let x = (£,T). For the second claim we use
(E® D) @pgp (B'®@ D)= (£ @p B')® (D ®p D)
(see Kasparov [7], Section 2, page 523). O

Lemma 17. Ifx € KKY%(A, B) and f : D1 — Dy is a homomorphism then
(1@ f)*(p,(2)) = (L@ f)u(7D, (2)).

Proof. One checks that the proof of Skandalis [14], Lemma 7, works also
in our setting. U

Proposition 4. Let By, B, B}, D' be o-unital Hilbert C*-algebras and Ay,
A, Ag, Al be separable. Let f1 : Ay — Ay, fa: Ay — As, ¢1 : By — Bj,
g2 : By — Bl, h: D — D' be homomorphisms. Then the cup-cap product of
Definition 26 satisfies

f1(g1®1)u(z1) @p (1 ® f2) g2, (x2) = (f1 ® f2)" (91 ® g2)«(21 @D 22),
(h®@1)s(x1) ®pr w2 = 21 @p (h ® 1) (x2),

with the restriction that if fo or g1 are not trivial (i.e., are not the identity
map) then this only holds in KKC.

Proof. This is some computation by applying the formulas of Proposition 3
and Lemmas 16 and 17. U

Let 1 € KKG(C,C) (or KK%(C,C)) be given by the Hilbert (C,C)-
bimodule C with trivial grading and action, and the zero operator.

Proposition 5. Let A be separable and v € KK%(A, B) (or KKCG(A, B)).
Then x®@cl = x. If A is unital and g(14) = 14 for all g € G then 1®cx = x.

Proof. One proves this along the lines of [14], Proposition 17. O

Theorem 4. Suppose that A is a separable and B a o-unital Hilbert C*-
algebra. Then the map KKG(A, B) — KK%(A, B) is an isomorphism.

Proof. The proof is the same as Theorem 19 of Skandalis [14]. O
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Theorem 5. Assume that By, By are o-unital Hilbert C*-algebras, A1, As,

A?n

D1 are separable Hilbert C*-algebras, and
z1 € KK9(A), By ® Dy),
29 € KKY(Dy ® As, By ® Dy),
z3 € KK%(Dy ® A3, Bs).

Then

(1 ®p, ¥2) ®p, T3 = 11 @p, (T2 Rp, T3).

Proof. One proves this along the lines of [14], Theorem 21. O

Acknowledgement. I thank Radu Purice and Florin Radulescu for their
invitation and hospitality at the Institute of Mathematics of the Romanian
Academy (IMAR) in Bucharest, where the main part of this work was de-
veloped.

References

(1]

BURGSTALLER, B. Amenable Cuntz—Krieger systems and semigraph C*-algebras.
Preprint.

CONNES, A.; SKANDALIS, G. The longitudinal index theorem for foliations. Publ.
Res. Inst. Math. Sci. 20 (1984) 1139-1183. MRO775126 (87h:58209), Zbl 0575.58030.
EXEL, R. Semigroupoid C*-algebras. Preprint.

HiGsoN, NIGEL. On a technical theorem of Kasparov. J. Funct. Anal. 73 (1987)
107-112. MR0890657 (88g:46064), Zbl 0623.46035.

JENSEN, KJELD KNUDSEN; THOMSEN, KLAUS. Elements of K K-theory. Mathematics:
Theory & Applications. Birkduser, Boston, 1991. viii+202 pp. ISBN: 0-8176-3496-7.
MR1124848 (94b:19008), Zbl 1155.19300.

Kasparov, G. G. Hilbert C*-modules: Theorems of Stinespring and Voiculescu. J.
Oper. Theory 4 (1980) 133-150. MR0587371 (82b:46074), Zbl 0456.46059.
Kasparov, G. G. The operator K-functor and extensions of C*-algebras. Math.
USSR, Izv. 16 (1981) 513-572. MR0582160 (81m:58075), Zbl 0464.46054.
Kasparov, G. G. Equivariant K K-theory and the Novikov conjecture. Invent. Math.
91 (1988) 147-201. MR0918241 (88j:58123), Zbl 0647.46053.

KuMiiaN, ALEX; Pask, DAviD. Higher rank graph C*-algebras. New York J. Math.
6 (2000) 1-20. MR1745529 (2001b:46102), Zbl 0946.46044.

LANCE, E. CHRISTOPHER. Hilbert C*-modules. A toolkit for operator algebra-
ists. London Mathematical Society Lecture Note Series. 210. Cambridge Univ.
Press, Cambridge, 1995. x+130 pp. ISBN 0-521-47910-X. MR1325694 (96k:46100),
Zbl 0822.46080.

LE GALL, PIERRE-YVES. Kasparov’s equivariant theory and groupoids. (Théorie de
Kasparov équivariante et groupoides.). C. R. Acad. Sci., Paris, Sr. I 324 (1997)
695-698. MR 1447045 (98c:46150), Zbl 0883.46041.

LE GALL, PIERRE-YVES. Equivariant Kasparov theory and groupoids. 1. (Théorie de
Kasparov équivariante et groupoides. I.). K-Theory 16 (1999) 361-390. MR 1686846
(2000£:19006), Zbl 0932.19004.

SIEBEN, NANDOR. C*-crossed products by partial actions and actions of inverse semi-
groups. J. Aust. Math. Soc., Ser. A 63 (1997) 32-46. MR1456588 (2000b:46124),
Zbl 0892.46071.


http://www.emis.de/cgi-bin/MATH-item?0892.46071
http://www.ams.org/mathscinet-getitem?mr=1456588
http://www.emis.de/cgi-bin/MATH-item?0932.19004
http://www.ams.org/mathscinet-getitem?mr=1686846
http://www.emis.de/cgi-bin/MATH-item?0883.46041
http://www.ams.org/mathscinet-getitem?mr=1447045
http://www.emis.de/cgi-bin/MATH-item?0822.46080
http://www.ams.org/mathscinet-getitem?mr=1325694
http://www.emis.de/cgi-bin/MATH-item?0946.46044
http://www.ams.org/mathscinet-getitem?mr=1745529
http://nyjm.albany.edu/j/2000/6-1.html
http://nyjm.albany.edu/j/2000/6-1.html
http://www.emis.de/cgi-bin/MATH-item?0647.46053
http://www.ams.org/mathscinet-getitem?mr=0918241
http://www.emis.de/cgi-bin/MATH-item?0464.46054
http://www.ams.org/mathscinet-getitem?mr=0582160
http://www.emis.de/cgi-bin/MATH-item?0456.46059
http://www.ams.org/mathscinet-getitem?mr=0587371
http://www.emis.de/cgi-bin/MATH-item?1155.19300
http://www.ams.org/mathscinet-getitem?mr=1124848
http://www.emis.de/cgi-bin/MATH-item?0623.46035
http://www.ams.org/mathscinet-getitem?mr=0890657
http://www.emis.de/cgi-bin/MATH-item?0575.58030
http://www.ams.org/mathscinet-getitem?mr=0775126

EQUIVARIANT K K-THEORY FOR SEMIMULTIPLICATIVE SETS 531

[14] SKANDALIS, GEORGES. Some remarks on Kasparov theory. J. Funct. Anal. 56 (1984)
337-347. MR0743845 (86¢:46085), Zbl 0561.46035.

[15] Tu, JEAN-Louis. The Baum—Connes conjecture for groupoids. C*-algebras (Mnster,
1999), 227-242. Springer, Berlin, 2000. MR1798599 (2001j:46109), Zbl 0973.46065.

[16] VALETTE, ALAIN. Introduction to the Baum—Connes conjecture. With notes taken by
Indira Chatterji. With an appendix by Guido Mislin. Lectures in Mathematics, ETH
Ziirich. Birkhduser Verlag, Basel, 2002. x+104 pp. ISBN: 3-7643-6706-7. MR1907596
(2003£:58047), Zbl 1136.58013.

DOPPLER INSTITUTE FOR MATHEMATICAL PHYSICS, TROJANOVA 13, 12000 PRAGUE,
CZECH REPUBLIC

This paper is available via http://nyjm.albany.edu/j/2009/15-28. html.


http://nyjm.albany.edu/j/2009/15-28.html
http://www.emis.de/cgi-bin/MATH-item?1136.58013
http://www.ams.org/mathscinet-getitem?mr=1907596
http://www.emis.de/cgi-bin/MATH-item?0973.46065
http://www.ams.org/mathscinet-getitem?mr=1798599
http://www.emis.de/cgi-bin/MATH-item?0561.46035
http://www.ams.org/mathscinet-getitem?mr=0743845


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.6
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue true
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /CMB10
    /CMBSY10
    /CMBSY5
    /CMBSY7
    /CMBX10
    /CMBX12
    /CMBX5
    /CMBX6
    /CMBX7
    /CMBX8
    /CMBX9
    /CMBXSL10
    /CMBXTI10
    /CMCSC10
    /CMDUNH10
    /CMEX10
    /CMFF10
    /CMFI10
    /CMFIB8
    /CMINCH
    /CMITT10
    /CMMI10
    /CMMI12
    /CMMI5
    /CMMI6
    /CMMI7
    /CMMI8
    /CMMI9
    /CMMIB10
    /CMMIB5
    /CMMIB7
    /CMR10
    /CMR12
    /CMR17
    /CMR5
    /CMR6
    /CMR7
    /CMR8
    /CMR9
    /CMSL10
    /CMSL12
    /CMSL8
    /CMSL9
    /CMSLTT10
    /CMSS10
    /CMSS12
    /CMSS17
    /CMSS8
    /CMSS9
    /CMSSBX10
    /CMSSDC10
    /CMSSI10
    /CMSSI12
    /CMSSI17
    /CMSSI8
    /CMSSI9
    /CMSSQ8
    /CMSSQI8
    /CMSY10
    /CMSY5
    /CMSY6
    /CMSY7
    /CMSY8
    /CMSY9
    /CMTCSC10
    /CMTEX10
    /CMTEX8
    /CMTEX9
    /CMTI10
    /CMTI12
    /CMTI7
    /CMTI8
    /CMTI9
    /CMTT10
    /CMTT12
    /CMTT8
    /CMTT9
    /CMU10
    /CMVTT10
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /EUEX10
    /EUFB10
    /EUFB5
    /EUFB7
    /EUFM10
    /EUFM5
    /EUFM7
    /EURB10
    /EURB5
    /EURB7
    /EURM10
    /EURM5
    /EURM7
    /EUSB10
    /EUSB5
    /EUSB7
    /EUSM10
    /EUSM5
    /EUSM7
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /LASY10
    /LASY5
    /LASY6
    /LASY7
    /LASY8
    /LASY9
    /LASYB10
    /LCIRCLE10
    /LCIRCLEW10
    /LCMSS8
    /LCMSSB8
    /LCMSSI8
    /LINE10
    /LINEW10
    /LOGO10
    /LOGO8
    /LOGO9
    /LOGOBF10
    /LOGOSL10
    /MSAM10
    /MSAM5
    /MSAM7
    /MSBM10
    /MSBM5
    /MSBM7
    /MTEX
    /MTMI
    /MTSY
    /MTSYN
    /RMTMI
    /Symbol
    /Times-Bold
    /Times-BoldItalic
    /Times-BoldOblique
    /Times-Italic
    /Times-Oblique
    /Times-Roman
    /WNCYB10
    /WNCYI10
    /WNCYR10
    /WNCYSC10
    /WNCYSS10
    /XYATIP10
    /XYBSQL10
    /XYBTIP10
    /XYCIRC10
    /XYCMAT10
    /XYCMBT10
    /XYDASH10
    /XYEUAT10
    /XYEUBT10
    /ZapfDingbats
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 2000
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


