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Equivariant KK-theory for
semimultiplicative sets

Bernhard Burgstaller

Abstract. A semimultiplicative set G is a set which has a partially
defined associative multiplication. We associate a reduced C∗-algebra
C∗

r (G) to G and define reduced crossed products A � G. Moreover,
we introduce a G-equivariant KK-theory and show the existence of a
Kasparov product.
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1. Introduction

In this work we introduce and analyze some rudiments of semimultiplica-
tive sets in connection with C∗-algebras. Semimultiplicative sets appear
in [1], and the somewhat stronger notion of a semigroupoid is due to Exel
[3]. A semimultiplicative set G is a set which is endowed with a partially
defined associative multiplication (Definition 1). That means we allow, as
in groupoids, that a product xy may or may not be defined. When G is a
group then there exists a left regular representation λ : G → B(�2(G)). In
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a similar way we define a left regular representations for semimultiplicative
sets G (Definition 2), thereby canceling all invalid multiplications in G. This
concept can also be used to define a reduced product A �α G for any left
G-C∗-algebra A, that is, a C∗-algebra A which is endowed with a morphism
α : G → End(A). (Technically, one uses the right regular representation in
this case.)

In the second and final part of this work we focus on the K-theory of G-
C∗-algebras. We introduce a G-equivariant KK-theory KKG(A,B) (Defi-
nitions 16, 17 and 22) for Hilbert C∗-algebras A,B and discrete countable
semimultiplicative sets G. A Hilbert C∗-algebra A is a C∗-algebra which is
endowed with a left action G → End(A) and a right action G → End(A)
under which A becomes a G-Hilbert A-module in the natural way. When
G happens to be a group, then any G-C∗-algebra is a Hilbert C∗-algebra
and our equivariant KK-theory has a similarity to Kasparov’s equivariant
KK-theory for discrete groups G, the difference being that the underly-
ing G-actions on Hilbert modules need not be full but degenerate (a “unit
problem” so to say). See Lemma 7 and its preceding paragraph for the de-
tails. Our main work is to prove the existence of a Kasparov product for
KKG (Theorems 2 and 3), and to show its functoriality and associativity
(Section 7).

An ongoing study of continuous semimultiplicative sets and their crossed
products seems to be necessary to find the right continuity assumptions
in KKG, and actually we aim to continue our investigation in this direc-
tion. Kasparov’s equivariant KK-theory [7] was generalized by Le Gall for
groupoids G in [11] and [12], see also Tu [15] for an overview. Since discrete
semimultiplicative sets generalize discrete groupoids it is tempting to com-
pare Le Gall’s theory with ours when G is a groupoid (though there seems
to be an obvious difference already in the group case), but we will not go
into that in this paper.

We give a brief overview of this paper. The Sections 2 and 3 are dedicated
to semimultiplicative sets, some of their basic examples, and their crossed
products. In Sections 4–6 we introduce K̃KG(A,B) (cycles divided out by
operator equivalence) for left G-C∗-algebras A,B and prove the existence of

a Kasparov product for K̃KG. By definition we require a left and a right G-
action for Hilbert modules, though, we are only provided with a left action
for the C∗-algebras. This anomaly turns out to be a weak point in the theory,
with bad functorial properties, whence in the last Section 7 we consider
KKG(A,B) exclusively for Hilbert C∗-algebras A and B. Comparing the
category of G-C∗-algebras and Hilbert C∗-algebras, the latter one seems
be the “smooth” one when working in KKG (at least in the approaches
presented here). In the KK-theory part of this paper we closely follow
Kasparov’s exposition in [8] and Skandalis’ paper [14]. This sometimes goes
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without saying. Influencing in general was also Valette’s book [16], which is
also recommendable as an introduction to KK-theory.

2. Semimultiplicative sets

Definition 1. A semimultiplicative set G is a set which is endowed with
a partially defined associative multiplication, that is, there exists a subset
G(2) ⊆ G×G and a multiplication G(2) → G, (a, b) �→ ab such that whenever
(ab)c or a(bc) is defined then both (ab)c and a(bc) are defined and are equal.

If one also requires in the last definition that (ab)c is defined whenever
both ab and bc are defined then one would speak of a semigroupoid, see Exel
[3]. Let Lg denote the left multiplication operator on G, that is, Lg(h) = gh
for g, h ∈ G. Its domain is {h | gh is defined}. Write Rg for the right
multiplication operator. We say that G has injective left (resp. right) multi-
plication if Lg (resp. Rg) is injective for all g ∈ G. We write (eg)g∈G for the
canonical base in �2(G).

Definition 2. Assume that G has injective left multiplication. The left
regular representation of G is the map λ : G→ B(�2(G)) given by

λg

(∑
h∈G

αheh

)
=

∑
h∈G, gh is defined

αhegh,

where αh are scalars in C. The C∗-subalgebra of B(�2(G)) generated by
λ(G) is called the reduced C∗-algebra of G and denoted by C∗

r (G).

Analogously, for G with injective right multiplication we can define a right
regular representation ρ : G→ B(�2(G)) in the obvious way.

We are going to give some simple examples of semimultiplicative sets.
Clearly, groups, groupoids, semigroups, semigroupoids and multiplicative
sets are semimultiplicative sets. If R is a ring then R\{0} is a semimulti-
plicative set under multiplication (however not a semigroupoid in general).
The set of natural numbers under addition is a semimultiplicative set (and
semigroup), and its reduced C∗-algebra is the Toeplitz algebra.

If Λ is a higher rank graph [9], that is one has a degree map d mapping
Λ in Nk, then the truncated graph Λ(≤N) = {a ∈ S | d(a) ≤ N} is a
semimultiplicative set (that is, a product ab is defined if and only if d(ab) ≤
N) which has injective left multiplication. This is not a semigroupoid.

For N ≥ 0, the real interval [0, N ] is a semimultiplicative set (but not a
semigroupoid) under addition. That means, we let the composition a ◦ b be
defined if and only if a + b ∈ [0, N ], and in this case we put a ◦ b = a + b.
More generally, the interval [0, N · 1] in a C∗-algebra is a semimultiplicative
set.

Take the nonnegative reals R+ and the compact interval [0, N ] of reals
whose elements are formally written as tμ for t ∈ [0, N ]. Then R+ 	 [0, N ]
is a semimultiplicative set (but not a semigroupoid) under the composition
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a◦b = a+b if both a and b are in R+, and a◦bμ = (a+b)μ if a ∈ R+, b ∈ [0, N ]
and a+ b ≤ N . Other compositions are not allowed.

If G is a semimultiplicative set with injective multiplication, and λ is
the left regular representation, then the set of nonzero words in the letters
λ(G) ∪ λ(G)∗ is a semimultiplicative set G(∗). Though one is now provided
with a left inverse λ(s)∗ for λ(s), in general G(∗) need not to be a groupoid,
see the next examples.

Consider the two graphs

•a
g

��

•b
g

��

•a
h

���
��

��
��

�

•c •d
h

��

•b �� •c
h

�� •d

Assume the left graph is realized in a C∗-algebra where a, b, c, d are mutually
orthogonal projections, and g, h are partial isometries with source and range
projections as indicated in the diagram (s(g) = a+ b, r(g) = c + d). Let G
be the semimultiplicative set which consists of all nonzero products in the
letters {a, b, s, r, g, h}. ThenG is not a semigroupoid since ga �= 0 and hg �= 0
but hga = 0. The semimultiplicative set G associated to the right graph
has injective left multiplication and is a semigroupoid but not a groupoid,
as naturally choosing the source and range maps causes a problem: the
composition ha exists but s(h) = a+ c �= a = r(a).

Take a semimultiplicative set G and a family (Gi)i∈I of copies of G. Set
H =

⊔
i∈I Gi and write πi : G → Gi for the canonical bijection. We define

a multiplication on H by πi(x)πj(y) = πj(xy) for all x, y ∈ G, i, j ∈ I
and whenever xy is defined. Then H is a semimultiplicative set which has
injective left multiplication if G does so. The left regular representation λ,
however, is not injective, as Lπi(x) = Lπj(x) for all x ∈ G, i, j ∈ I.

Though the emphasis of this paper lies on discrete semimultiplicative
sets, we will give one continuous example. Take the real interval [0, N ] as
our semimultiplicative set G as described above. The formal convolution

a ∗ b = “
∫

[0,N ]
a(s)δsds

∫
[0,N ]

b(t)δtdt”

leads us to the convolution product

(a ∗ b)(t) =
∫ t

0
a(s)b(t− s)ds.

It is straightforward to check that this convolution product is associative.
So the continuous left regular representation λ : C(G) → B(L2[0, N ]) given
by λ(f) = f ∗ g for g ∈ L2[0, N ] yields a reduced C∗-algebra C∗

r (G) =
C∗(λ(C(G))) associated to the continuous semimultiplicative set G.
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3. Crossed products

For the rest of this paper G denotes a semimultiplicative set, which is
occasionally regarded as a discrete topological set.

Definition 3. A morphism (resp. antimorphism) σ : G → H between two
semimultiplicative sets G and H is a map satisfying σ(gh) = σ(g)σ(h) (resp.
σ(gh) = σ(h)σ(g)) for all (g, h) ∈ G(2).

Definition 4. If X is a linear space then a left (resp. right) linear action
α on X is a morphism (resp. antimorphism) α : G → L(X), where L(X)
denotes the set of linear maps on X. If X is a C∗-algebra then an action
α on X is a linear action on X such that α(g) is a ∗-homomorphism for all
g ∈ G. In this case we call X a left (resp. right) G-C∗-algebra.

Definition 5. A left action of a semimultiplicative set G on a set X is
given by a subset (G×X)(2) ⊆ G×X and a multiplication (G×X)(2) → X,
(g, x) �→ gx such that (gh)x is defined if and only if g(hx) and gh is defined,
and then (gh)x = g(hx), for all g, h ∈ G,x ∈ X.

Example 1. (a) Suppose G has injective left multiplication, and X is
a discrete set endowed with a left action by G. We obtain a right
G-action on the C∗-algebra C0(X) by letting

(fg)(x) = 1{gx is defined}f(gx)

for f ∈ C0(X) and g, x ∈ G. Similarly, a left action on C0(X) is given
by

(gf)(gx) = f(x), (gf)(y) = 0 if y �= gx.

(b) Analogously, if G has injective right multiplication and X has a right
G-action then C0(X) is a left and right G-C∗-algebra by

(gf)(x) = 1{xg is defined}f(xg),

(fg)(xg) = f(x), (fg)(y) = 0 if y �= xg.

Definition 6. Assume that G has injective left multiplication. Suppose
that A is a C∗-algebra which is endowed with a right G-action and which is
essentially represented on a Hilbert space H. Let U : G→ B(�2(G,H)) and
the C∗-representation π : A→ B(�2(G,H)) be given by

π(a)(ξeh) = ((ah)ξ)eh, Ug(ξeh) = 1{gh is defined}ξegh,

where ξeg stands for the function h �→ 1{h=g}ξ (g, h ∈ G, ξ ∈ H,a ∈ A).
Then the reduced crossed product G�r A is defined as the C∗-subalgebra of
B(�2(G,H)) generated by UGπ(A) = {Ugπ(a) | a ∈ A, g ∈ G}.
Definition 7. Assume that G has injective right multiplication. Suppose
that A is a left G-C∗-algebra essentially represented on H. Let V,U : G →
B(�2(G,H)) and π : A→ B(�2(G,H)) be given by

π(a)(ξeh) = ((ha)ξ)eh, Vg(ξeh) = 1{hg is defined}ξehg, Ug = V ∗
g ,
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(g, h ∈ G, ξ ∈ H,a ∈ A). Then the reduced crossed product A�rG is defined
as the C∗-subalgebra of B(�2(G,H)) generated by

π(A)UG = {π(a)Ug | a ∈ A, g ∈ G}.
If A = C and the action of G on C is trivial, that is, ag = a for all

a ∈ A, g ∈ G, then the reduced C∗-algebra C∗
r (G) coincides with the reduced

crossed productG�rC. If π′ : A→ B(H ′) is another essential representation
then a canonical unitary W : �2(G,H) → �2(G,H ′) shows that the definition
of the reduced product does not depend on the representation π up to ∗-
isomorphism.

Definition 8. A left action of G on a Hilbert space H is a morphism U :
G → B(H) such that each Ug is a partial isometry (g ∈ G). We call H
with such an action U a (left) G-Hilbert space. The action is called strong
if UgUh = 0 for all undefined compositions gh.

Definition 9. If A is a right G-C∗-algebra and H a left G-Hilbert space,
then a ∗-homomorphism π : A→ B(H) is called equivariant if

U∗
gUgπ(ag) = U∗

g π(a)Ug, π(a)UgU
∗
g = UgU

∗
g π(a), π(a)U∗

gUg = U∗
gUgπ(a)

for all a ∈ A, g ∈ G. If the action on A is from the left then the first identity
has to be replaced by UgU

∗
gπ(ga) = Ugπ(a)U∗

g .

It is easily verified that π of Definition 6 is an equivariant representation,
and the action U on �2(G,H) is strong. If the action on A satisfies (ag)h = 0
for all a ∈ A whenever gh is not defined (g, h ∈ G) then one would have
U∗

gπ(a)Ug = π(ag) for all a ∈ A, g ∈ G for the representation of Definition 6.
However, this requirement is too restrictive for us as we also want to consider
the trivial action on C.

The next lemma links convolution algebras and equivariant representa-
tions.

Lemma 1. Endowing Cc(G,A) with the convolution product given by

(g · a)(h · b) = gh · ((ah)b)1{gh is defined},

where a, b ∈ A, g, h ∈ G, and g · a denotes the map h �→ 1{h=g}a, the map
σ(g · a) = Ugπ(a) extends to an algebra homomorphism from Cc(G,A) to
span(UGπ(A)) for any equivariant representation (π,U) with strong action
U .

Proof. Straightforward. �

Definition 10. A right (resp. left) G-action α : G → End(A) on a C∗-
algebra A is called left-invertible (resp. right-invertible) if for all g ∈ G there
is a Tg ∈ End(A) such that α(h)α(g)Tg = α(h) for all h ∈ G for which gh
(resp. hg) exists.
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If G has injective right multiplication then we may introduce a virtual
inverse g−1 for each g ∈ G, and write xg−1 = h if x = hg, and let xg−1

otherwise undefined. (In general one does not obtain a semimultiplicative
set in this way; take for example [0, N ] as a counterexample: [−N,N ] is not
a semimultiplicative set.) If we suggestively write Tg = α(g−1) in the last
definition then it becomes clear that invertibility of a left G-action α is the
counterpart to injective right multiplication in G.

Lemma 2. Assume that G has injective left (resp. right) multiplication
and A is a right (resp. left) G-C∗-algebra whose G-action is left-invertible
(resp. right-invertible). (We will write g−1 := Tg for any choice Tg as in
Definition 10.) Then the representation of Definition 6 (resp. 7) satisfies

Ugπ(a)U∗
g = π(g−1(a))UgU

∗
g

(resp. U∗
gπ(a)Ug = π(g−1(a))U∗

gUg) for all a ∈ A, g ∈ G.

Proof. Straightforward. �

4. Equivariant KK-theory

In the rest of this paper all C∗-algebras are supposed to be graded. A
C∗-algebra B is graded if there is a grading automorphism ε : B → B,
ε2 = 1. The grading is called trivial if ε = 1. An element a ∈ B has
degree i = 0, 1 if ε(b) = (−1)ib. (Notation: ∂b = i.) All homomorphisms
in the category of graded C∗-algebras are graded, i.e., commute with ε. All
commutators are graded, that is, [a, b] = ab − (−1)∂a·∂bab for homogenous
elements a, b, and the commutator is extended by linearity to all a, b. A
Hilbert module E over a C∗-algebra B is always supposed to be graded,
that is, there is a grading linear map ε : E → E , ε2 = 1, which is compatible
with the grading of B, i.e., ε(xb) = ε(x)ε(b) and ε(〈x, y〉) = 〈ε(x), ε(y)〉, for
all x, y ∈ E , b ∈ B. The space of linear maps L(E) on E is graded by the
grading operator ε(T ) = εTε, T ∈ L(E). We write L(E) for the C∗-algebra
of adjointable operators T : E → E , and K(E) ⊆ L(E) for the C∗-algebra of
compact operators, that is, K(E) is generated by the elements θξ,η ∈ L(E),
θξ,η(x) = ξ〈η, x〉, for all ξ, η ∈ E , see Kasparov [6] or the books [10], [5].
We write M(A) for the multiplier algebra of a C∗-algebra A, see also [6],
Theorem 1, for an isomorphism M(K(E)) ∼= L(E).

For the rest of this paper we (may) drop the associativity requirement
on G, that is, G is only a set together with a subset G(2) ⊆ G × G and
a function G(2) → G. However, we still call G a semimultiplicative set.
All semimultiplicative sets G are supposed to be discrete and countable
(thus locally compact, σ-compact Hausdorff spaces). All algebras and C∗-
algebras are left G-C∗-algebras (if nothing else is said). All homomorphisms
σ : A→ B between C∗-algebras A,B are supposed to be ∗-homomorphisms
which are graded (i.e., commute with ε) and equivariant (i.e., σ(ga) = gσ(a)
for all g ∈ G, a ∈ A).



512 Bernhard Burgstaller

Definition 11. Let B be a G-C∗-algebra. An action of G on a Hilbert
B-module E consists of a left linear G-action U : G → L(E) on E , and a
right linear G-action V : G→ L(E), which we denote by U∗ = V , satisfying

UgU
∗
gUg = Ug, U∗

gUgU
∗
g = U∗

g ,

〈Ugx, y〉 = g〈x,U∗
g y〉, Ug(xb) = (Ugx)(gb)

for all x, y ∈ E , b ∈ B, g ∈ G. Ug and U∗
g must respect the grading (i.e.,

commute with ε) for each g ∈ G. Further we require g to be isometric on

Bg = span{〈U∗
gUgx, y〉 ∈ B | x, y ∈ E}

for all g ∈ G. Given such maps U and V we call E a G-Hilbert B-module.

One may observe that Bg is a two-sided closed ideal (without G-action)
in B, see Lemma 3 below. Notice that Definition 11 consistently redefines
G-Hilbert spaces when B = C with the trivial action and grading.

Lemma 3. Let E be a G-Hilbert module with action U . Then each Ug is
a partial isometry on E with self-adjoint source and range projections U∗

gUg

and UgU
∗
g respectively in L(E), and inverse partial isometry U∗

g . Moreover,
〈x,Ugy〉 = g〈U∗

g x, y〉 and U∗
g (xg(b)) = U∗

g (x)b for all x, y ∈ E , g ∈ G, b ∈ B.

Proof. Let us begin with proving the following claim:

〈x,Ugy〉 = 〈Ugy, x〉∗ = (g〈y, U∗
g x〉)∗ = g〈U∗

g x, y〉.
Then one has g〈U∗

gUgU
∗
gUgx, y〉 = g〈U∗

gUgx,U
∗
gUgy〉, and by injectivity of g

on Bg this shows that 〈U∗
gUgx, y〉 = 〈U∗

gUgx,U
∗
gUgy〉. This shows that U∗

gUg

is selfadjoint and hence in L(E). Each Ug is a partial isometry, that means,
‖Ug(U∗

gUgx)‖ = ‖U∗
gUgx‖ and Ug(1 − U∗

gUg) = 0. The last claim follows
from U∗

gUgU
∗
g (xg(b)) = U∗

g (UgU
∗
g (x)g(b)) = U∗

g (Ug(U∗
g (x)b)). �

Definition 12. A Hilbert C∗-algebra A is a G-C∗-algebra which is also a G-
Hilbert module over A with inner product 〈x, y〉 = x∗y and action Ug(x) =
g(x) for all x ∈ A, g ∈ G. We also require that U∗

g is a ∗-homomorphism for
all g ∈ G.

The algebra C0(X) of Example 1 is a Hilbert C∗-algebra. Any C∗-algebra
A with trivial action g(a) = a, a ∈ A, g ∈ G, is a Hilbert C∗-algebra.

Definition 13. Given a G-Hilbert module E , we endow L(E) with the left
linear action g(T ) = UgTU

∗
g and the right linear action g−1(T ) = U∗

gTUg

for g ∈ G,T ∈ L(E).

L(E) and subalgebras of it are usually not regarded as G-algebras, as the
action is not a C∗-action. Note that g−1(T ) is indeed adjointable: from
g〈U∗

g TUgx, y〉 = g〈x,U∗
g T

∗Ugy〉 for all x, y ∈ E , g ∈ G, the injectivity of g
on Bg and self-adjointness of U∗

gUg it follows 〈U∗
g TUgx, y〉 = 〈x,U∗

g T
∗Ugy〉.

With Lemma 3 one checks that g(T ), g−1(T ) ∈ K(E) for all g ∈ G and
compact operators T ∈ K(E).
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Definition 14. A subalgebra A of L(E) is called G-invariant if for all g ∈ G
the sets g(A), g−1(A), UgU

∗
gA,AUgU

∗
g , U

∗
gUgA,AU

∗
gUg are subsets of A.

Definition 15. If A is a left G-C∗-algebra and E is a G-Hilbert B-module,
then a ∗-homomorphism π : A→ L(E) is called equivariant if

UgU
∗
g π(ga) = Ugπ(a)U∗

g ,

UgU
∗
g π(a) = π(a)UgU

∗
g , U∗

gUgπ(a) = π(a)U∗
gUg

for all a ∈ A, g ∈ G. Moreover, we require that U∗
gπ(A)Ug ⊆ U∗

gUgπ(A) for
all g ∈ G (‘G−1-invariance’).

In the rest of this article all Hilbert modules are supposed to be G-Hilbert
modules, and all homomorphisms from C∗-algebras into L(E) are supposed
to be equivariant. We call a HilbertB-module E together with an equivariant
∗-homomorphism ϕ : A → L(E) a Hilbert (A,B)-bimodule. (Notice that
a · x := ϕ(a)(x) makes E a left A-module.) With some abuse of notation we
shall often identify elements of A with operators on E .

Example 2. If C is endowed with the trivial action and E is a G-Hilbert
B-module then E is a G-Hilbert (C, B)-bimodule.

Any C∗-algebra A with the trivial action is a Hilbert (A,A)-bimodule.
Consider C∗-algebras A,B (without G-action) and a homomorphism σ :

A → B. Let X and G be as in Example 1. Then A1 = C0(X,A) ∼=
C0(X) ⊗ A and B1 = C0(X,B) are Hilbert C∗-algebras, and C0(X,B)
is a Hilbert (A1, B1)-bimodule with A1-action (ab)(x) = σ(a(x))b(x) (a ∈
A1, b ∈ B1, x ∈ X).

Somewhat more generally, one may consider a family B = (Bx)x∈X of
C∗-algebras with a family of isomorphisms φgx,x : Bx → Bgx whenever
gx is defined (g ∈ G) such that φhgx,gx ◦ φgx,x = φhgx,x whenever (hg)x is
defined. Then the (continuous) sections Γ0(B) of B vanishing at infinity are a
Hilbert C∗-algebra under the G-action βg(bxδx) = 1{gx is defined}φgx,x(bx)δgx.
One may also consider another C∗-family A = (Ax;ψx)x∈X and a family of
homomorphisms σx : Ax → Bx (x ∈ X) satisfying φgx,xσx = σgxψgx,x to
obtain a G-Hilbert (Γ0(A),Γ0(B))-bimodule Γ0(B).

IfG has injective right multiplication and A is a C∗-algebra with invertible
left G-action then the representation (π,U) of Definition 7 is equivariant in
the sense of Definition 15 by Lemma 2.

Let S be an inverse semigroup and α an S-action on a C∗-algebra A in
the sense of Sieben [13], i.e., a morphism of S into the partial actions on
A. Assume there exist commuting Hilbert-module-self-adjoint projections
Qss∗, Qs∗s ∈ End(A) projecting onto the range and source, respectively, of
αs (s ∈ S). Then βs = αsQs∗s ∈ End(A) is a S-Hilbert C∗-action on
A. Indeed, note that (αt ◦ αs)Qs∗t∗ts = αtQt∗tαsQs∗t∗ts (s, t ∈ S), and
so Qs∗t∗ts = αs∗Qt∗tαsQs∗t∗ts. Hence αtQt∗tαsQs∗s = αtQt∗tQss∗αsQs∗s =
αtαsαs∗Qt∗tαsQs∗s = αtsQs∗t∗ts.
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For the definitions of the internal and skew tensor products of Hilbert
modules see Kasparov [7], Section 2. The grading operator for tensor prod-
ucts of Hilbert modules or C∗-algebras is the diagonal grading operator
ε ⊗ ε. We denote the skew commutative (minimal) tensor product be-
tween C∗-algebras A,B (see Kasparov [7], Section 2) by A ⊗ B (that is
(a1 ⊗ b1)(a2 ⊗ b2) = (−1)∂b1·∂a2(a1a2 ⊗ b1b2), (a ⊗ b)∗ = (−1)∂a·∂b(a∗ ⊗ b∗)
for a, ai ∈ A, b, bi ∈ B). We endow A ⊗ B with the diagonal action
g(a⊗ b) = g(a) ⊗ g(b) for all g ∈ G, a ∈ A, b ∈ B.

Lemma 4. If Ei are G-Hilbert Bi-modules (i = 1, 2) and ϕ : B1 → L(E2) is
an equivariant ∗-homomorphism (not necessarily satisfying the G−1-invari-
ance) then the internal tensor product E1 ⊗B1 E2 is a G-Hilbert B2-module
under the diagonal-action U (1)⊗U (2). If E1 is a G-Hilbert (A,B1)-bimodule,
then E1 ⊗B1 E2 is a G-Hilbert (A,B2)-bimodule (under the A-action π : A→
L(E1 ⊗B1 E2), π(a) = a⊗ 1).

Proof. Consider the algebraic tensor product E1�E2 with its natural struc-
ture of a B2-module and with the B2-scalar product given by the formula

〈x1 � x2, y1 � y2〉 = 〈x2, ϕ(〈x1, y1〉)y2〉
for all x1, y1 ∈ E1, x2, y2 ∈ E2. Factoring out the B2-submodule

N = {z ∈ E1 � E2 | 〈z, z〉 = 0}
and then completing the factor module in the norm ‖z‖ = ‖〈z, z〉‖1/2 we
obtain a Hilbert B2-module which is denoted by E1 ⊗B1 E2. This tensor
product will be endowed with a G-action that comes from the diagonal
action (U (1)

g � U
(2)
g )(x1 � x2) = U

(1)
g (x1) � U

(2)
g (x2) on E1 � E2, where the

“adjoint” operator to Wg = U
(1)
g �U

(2)
g is given by W ∗

g = (U (1)
g )

∗ � (U (2)
g )

∗
.

Indeed, it is straightforward to compute that

〈(U (1)
g � U (2)

g )(x1 � x2), y1 � y2〉 = g〈x1 � x2, (U (1)
g

∗ � U (2)
g

∗
)(y1 � y2)〉

for all x1, y1 ∈ E1, x2, y2 ∈ E2, g ∈ G. It is also straightforward to check
that (U (1)

g � U
(2)
g )

∗
(U (1)

g � U
(2)
g ) is self-adjoint, idempotent and seminorm-

contractive on E1 � E2 by a similar argument usually used to show that
L(E1) ⊗ 1 ⊆ L(E1 ⊗ E2) (see for instance Lance [10], Section 4). Hence for
x, y ∈ E1 � E2 one has

〈Wgx,Wgy〉 = g〈x,W ∗
g Wgy〉 = g〈W ∗

gWgx,W
∗
gWgy〉,

and since g is isometric on 〈W ∗
gWgx, y〉 ∈ spana,b〈U (2)

g
∗
U

(2)
g a, b〉, one gets

‖Wgx‖ = ‖W ∗
gWgx‖ ≤ ‖x‖, and consequently also ‖W ∗

g x‖ = ‖WgW
∗
g x‖ ≤

‖x‖ byW ∗
gWgW

∗
g = W ∗

g . ThusWg andW ∗
g leave N invariant and their linear

quotient maps extend by continuity to linear maps on E1 ⊗B1 E2 denoted by
U

(1)
g ⊗U (2)

g and U (1)
g

∗⊗U (2)
g

∗
which make E1⊗B1 E2 a G-Hilbert module. �
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Lemma 5. If Ei are G-Hilbert Bi-modules (i = 1, 2) then the skew tensor
product E1 ⊗ E2 is a G-Hilbert (B1 ⊗B2)-module under the diagonal action
of G. If Ei are G-Hilbert (Ai, Bi)-bimodules (i = 1, 2), then E1 ⊗ E2 is a
G-Hilbert (A1 ⊗A2, B1 ⊗B2)-bimodule.

Proof. This may be proved similarly as Lemma 4. We only discuss the G−1-
invariance of Definition 15: Let U denote the diagonal action on E1⊗E2 and
π : A1 ⊗ A2 → L(E1 ⊗ E2) the canonical homomorphism. It is clear that
U∗

gπ(A1 � A2)Ug ⊆ U∗
gUgπ(A1 ⊗ A2) =: X for all g ∈ G. But then also

U∗
gπ(A1 ⊗A2)Ug ⊆ X, as X is the closed image of the ∗-homomorphism σ,

where σ(x) = U∗
gUgπ(x). �

For a Hilbert (A,B)-bimodule E and a subset C ⊆ L(E), we denote

QC(E) = {T ∈ L(E) | [T, c] ∈ K(E), ∀c ∈ C},
IC(E) = {T ∈ L(E) | Tc and cT in K(E), ∀c ∈ C}.

Definition 16. Let A and B be G-C∗-algebras. A cycle over (A,B) is a
pair (E , T ), where E is a countably generated G-Hilbert (A,B)-bimodule,
and T is an operator in QA(E) of degree 1 such that

T − T ∗, T 2 − 1, ϕ1(g) = UgTU
∗
g − UgU

∗
gTUgU

∗
g = g(T ) − gg−1(T ),

ϕ2(g) = UgU
∗
gT − TUgU

∗
g , ϕ3(g) = U∗

gUgT − TU∗
gUg

belong to IA(E) for all g ∈ G. We shall not distinguish between cycles
(E1, T1) and (E2, T2) if there is an isometric, grading preserving isomorphism
u : E1 → E2 of G-Hilbert (A,B)-bimodules with T2 = uT1u

−1. The set of all
cycles will be denoted by EG(A,B). A cycle (E , T ) will be called degenerate
if the elements

[a, T ], a(T − T ∗), a(T 2 − 1), aϕ1(g), aϕ2(g), aϕ3(g)

are 0 for all a ∈ A, g ∈ G. The set of degenerate cycles is denoted by
DG(A,B).

Lemma 6. If (E , T ) ∈ EG(A,B) then U∗
gTUg −U∗

gUgTU
∗
gUg ∈ IA(E) for all

a ∈ A.

Proof. By the rules of Definition 15 it is straightforward to check that
ag−1(T ) − ag−1g(T ) = g−1(g(a)gg−1(T ) − g(a)g(T )) ∈ K(E). �

We define an addition of cycles (E1, T1), (E2, T2) ∈ EG(A,B) by taking the
direct sum: (E1, T1) ⊕ (E2, T2) = (E1 ⊕ E2, T1 ⊕ T2).

Definition 17. Two cycles (E0, T0) and (E1, T1) over (A,B) are operatorially
homotopic if E0 = E1 and there exists a norm continuous path t �→ Tt ∈
L(E0) (t ∈ [0, 1]) such that for each t ∈ [0, 1] the pair (E0, Tt) is a cycle
over (A,B). Two cycles (E0, T0) and (E1, T1) in EG(A,B) are operatorially
equivalent if there are degenerate cycles (F0, S0), (F1, S1) ∈ DG(A,B) such
that (E0, T0)⊕(F0, S0) is operatorially homotopic to (E1, T1)⊕(F1, S1). The
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set K̃KG(A,B) is defined as the quotient of EG(A,B) by the equivalence
relation given by operatorial equivalence.

Proposition 1. K̃KG(A,B) is an abelian group with addition given by
direct sum.

Proof. One proves this along the lines of [7], Section 4, Theorem 1, or [14],
Proposition 4. �

We remark that the G-action of a Hilbert module can be completely
degenerate to zero, and cycles of such Hilbert modules in the sense of Def-
inition 16 coincide with cycles in the sense of Kasparov [8] for the trivial
group. One may circumvent this difference by restricting to unital semi-
multiplicative sets G (possibly by adjoining a unit) and requiring that the
unit of G always acts as the identity on C∗-algebras and Hilbert modules.
Otherwise we have the following elementary observation.

Lemma 7. If G is a group and E is a G-Hilbert module then UgU
∗
g = UeU

∗
e

and U∗
gUg = U∗

eUe for all g ∈ G, and U∗
e is the adjoint of Ue ∈ L(E). If

ker(Ue) = 0 then U∗
gUg = UgU

∗
g = 1 and U∗

g = Ug−1 for all g ∈ E (and thus
E is a G-Hilbert module in the sense of [7]).

Proof. The first claim follows from UhU
∗
h = Ugg−1hU

∗
h = UgU

∗
gUgUg−1hU

∗
h =

UgU
∗
gUhU

∗
h and similarly UgU

∗
g = UgU

∗
gUhU

∗
h for all g, h ∈ G. Further,

Ue = (UeU
∗
e )(U∗

eUe) ∈ L(E) and its adjoint is (U∗
eUe)(UeU

∗
e ) = U∗

e . For
the last claim, P = U∗

eUe = U∗
gUg is a full selfadjoint projection and hence

P = 1. Moreover, by Lemma 3 all Ug are bijective and consequently U∗
g =

U−1
g = Ug−1 . �

5. Kasparov’s technical theorem

If nothing else is said, approximate units are supposed to be positive,
increasing and all their elements having degree 0. If A is a subalgebra and
Δ a subset of an algebra B then Δ derives A if [a, d] ∈ A for all a ∈ A, d ∈ Δ.
(All commutators are graded.) In this section we prove a modification of the
so-called Kasparov technical theorem, see Kasparov [7], Section 3. We follow
closely Kasparov [8], Section 1.4, a simplification of Kasparov’s original proof
due to Higson [4]. If X is a locally compact Hausdorff space and A a C∗-
algebra then we also write A(X) for the C∗-algebra C0(X,A).

Lemma 8. Let E be a G-Hilbert module with G-action U , A a G-invariant
σ-unital subalgebra of L(E), Y a σ-compact locally compact Hausdorff space,
and ϕ : Y → L(E) a function such that [ϕ(y), a] ∈ A for all a ∈ A, y ∈ Y ,
and y �→ [ϕ(y), a] is a continuous function on Y (norm topology in L(E))
for all a ∈ A. Then there is a countable approximate unit (ui) ⊆ A for A
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such that the limits

lim
i→∞

‖[ui, ϕ(y)]‖,
lim
i→∞

‖UguiU
∗
g − uiUgU

∗
g ‖, lim

i→∞
‖uiUgU

∗
g − UgU

∗
gui‖,

lim
i→∞

‖U∗
g uiUg − uiU

∗
gUg‖, lim

i→∞
‖uiU

∗
gUg − U∗

gUgui‖,
are 0 for all y ∈ Y, g ∈ G. These limits are uniform on compact subsets of
Y and G respectively.

Proof. Let X1 ⊆ X2 ⊆ · · · be an increasing sequence of open sets in G,
with compact closures and

⋃
nXn = G. Let also Y1 ⊆ Y2 ⊆ · · · be a similar

sequence in Y and (vi) ⊆ A a (positive increasing) countable approximate
unit for A. Using induction, suppose that we have already constructed
u1 ≤ u2 ≤ · · · ≤ un out of finite convex linear combinations of elements of
vi, and the following conditions are fulfilled:

‖ukvj − vj‖ ≤ 1/k, ‖[uk, ϕ(y)]‖ ≤ 1/k, ‖ukUgU
∗
g − UgU

∗
guk‖ ≤ 1/k,

‖ukU
∗
gUg − U∗

gUguk‖ ≤ 1/k, ‖g(uk) − gg−1(uk)‖ ≤ 1/k

for all j ≤ k, y ∈ Y k, g ∈ Xk, k ≤ n. To construct un+1, note that vi ≥ un

for all i ≥ m for some m ≥ 1. Let Λ be the convex hull of {vm, vm+1, . . . }.
Denote by Z the disjoint union of {v1, . . . , vn+1}, Y n+1 and three copies
X

(1)
n+1,X

(2)
n+1,X

(3)
n+1 of Xn+1. For any v ∈ Λ let av ∈ A(Z) be the function

defined by

av(vj) = vvj − vj , av(y) = [v, ϕ(y)], av(g) = UgU
∗
g v − vUgU

∗
g ,

av(h) = U∗
hUhv − vU∗

hUh, av(l) = l(v) − ll−1(v)

for all 1 ≤ j ≤ n + 1, y ∈ Y n+1, g ∈ X
(1)
n+1, h ∈ X

(2)
n+1, l ∈ X

(3)
n+1. Suppose

that there is no element un+1 ∈ Λ with the required properties. Since the set
of functions {av | v ∈ Λ} is convex, the separation theorem gives a bounded
linear functional f on A(Z) with |f(av)| ≥ 1 for all v ∈ Λ. This leads to a
contradiction in the following way.

Write B = L(E), and denote by B(Z)′′ and A(Z)′′ the universal envelop-
ing von Neumann algebras of B(Z) and A(Z), respectively, and identify
A(Z)′′ as a subset of B(Z)′′. Regarding vi as an element in B(Z) (constant
function with value vi), we have vi ↑ p in the weak operator topology for
some element p ∈ B(Z)′′. Since Z is compact, by a simple compactness
argument we see that vi is an approximate unit for A(Z), and so p is a
unit for A(Z)′′. Write ϕ′ ∈ B(Z) for the function ϕ′|

Y n+1
= ϕ|

Y n+1
and

ϕ′|
Z\Y n+1

= 0. Since [p, ϕ′] ∈ A(Z)′′,

[p, ϕ′] = [p2, ϕ′] = p[p, ϕ′] + [p, ϕ′]p = 2[p, ϕ′],

which implies that [p, ϕ′] = 0. Define ψ(z) = UzU
∗
z for z ∈ X

(1)
n+1 ⊆ G and

ψ(z) = 0 for other z. By the G-invariance of A, [p, ψ] ∈ A(Z)′′, and by the
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same argument as before we thus obtain [p, ψ] = 0. For a ∈ A(Z), write
σ(a), σ−1(a) ∈ A(Z) for the functions

σ(a)(z) = z(a(z)) = Uza(z)U∗
z ,

σ−1(a)(z) = z−1(a(z)) = U∗
z a(z)Uz ,

for z ∈ X
(3)
n+1 ⊆ G, and σ(a)(z) = σ−1(a)(z) = 0 for other z. As

‖σ(vi)σσ−1(a) − σσ−1(a)‖ ≤ ‖viσ
−1(a) − σ−1(a)‖,

‖σσ−1(vi)σσ−1(a) − σσ−1(a)‖ ≤ ‖viσ
−1(1)a − σ−1(1)a‖

for all a ∈ A(Z), and since σ−1(a), σ−1(1)a ∈ A(Z), the sequences σ(vi) =
σσ−1σ(vi) and σσ−1(vi) are (not necessarily increasing and positive) ap-
proximate units for the C∗-subalgebra Aσ = σσ−1(A(Z)) ⊆ A(Z). Hence
the weak operator topology limits α, β of σ(vi) and σσ−1(vi) in B(Z)′′ (if the
sequence σ(vi) does not converge, we go over to a weak operator topology
convergent subsequence σ(vki

)) are units of A′′
σ, and so α = β.

The above calculations show that the weak operator topology limit of avi

vanishes in A(Z)′′. Hence limi f(avi) = 0 (by a well-known linear topological
identification of A(Z)′′ with the bidual space A(Z)∗∗), which is a contradic-
tion. Obviously, the constructed sequence uk satisfies the claim. �

In the next theorem we regard M(J) as a subalgebra of L(E), see [10],
Proposition 2.1.

Theorem 1. Let E be a Hilbert module, J a nondegenerate σ-unital G-
invariant subalgebra of L(E), A1 a σ-unital G-invariant subalgebra of M(J),
and A2 a σ-unital subalgebra (without G-action) of M(J). Let Δ be a
norm-separable subset of M(J) which derives A1. Let Ω be a σ-compact
locally compact Hausdorff space, and ϕ,ψ : Ω → M(J) be bounded functions.
Assume that

A1A2, A1ϕ(Ω), ψ(Ω)A1 ⊆ J,

and the functions

ω �→ aϕ(ω), ω �→ ϕ(ω)a, ω �→ aψ(ω), ω �→ ψ(ω)a

are continuous on Ω, with respect to the norm topology in M(J), for all
a ∈ A1 + J . Then there are positive elements M1,M2 ∈ M(J) of degree 0
such that M1 +M2 = 1,

Miai, [Mi, d], M2ϕ(ω), ψ(ω)M2 ⊆ J,

g(Mi) − gg−1(Mi), [g(1),Mi], [g−1(1),Mi] ⊆ J

for all ai ∈ Ai, d ∈ Δ, g ∈ G,ω ∈ Ω (i = 1, 2), and the functions

ω �→M2ϕ(ω), ω �→ ψ(ω)M2

are norm continuous on Ω.
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Proof. The proof is similar to the proof of the Theorem of Subsection 1.4
on page 151 of Kasparov’s paper [8], with some adaption we discuss now. In
Kasparov’s paper G is a group, and somewhere in the proof of the theorem
one chooses approximate units (ui) ⊆ A1 for A1 and (vi) ⊆ J for J according
to the lemma on page 152 in Kasparov’s paper satisfying (among other
things)

‖g(un) − un‖ ≤ 2−n, ∀n,∀g ∈ Xn, and(3)

‖g(bn) − bn‖ ≤ 2−n, ∀n,∀g ∈ Xn,(6)

where bn is defined by bn = (vn − vn−1)1/2. The sought element M2 ∈ L(E)
is defined as the series

∑
n≥1 bnunbn which converges in the strict topology.

By the estimates (3) and (6) one gets the estimate

‖g(bnunbn) − bnunbn‖ ≤ 3 · 2−n

for all n ≥ 1 (see the bottom of page 153 in Kasparov’s paper).
We modify Kasparov’s proof as follows. At first, Kasparov’s stated theo-

rem deals only with one function ϕ. But it is quite obvious how to modify
the proof that one can handle both functions ϕ and ψ. Next, Kasparov’s
function ϕ has domain G. At the beginning of the proof he writes G as
G =

⋃
n∈N

Xn with open subsets Xn ⊆ G with compact closures. We mod-
ify the proof in that we also choose a union Ω =

⋃
n∈N

Ωn of open subsets
Ωn ⊆ Ω with compact closures, and substitute Xn by Ωn everywhere there
where Xn acts as a domain of ϕ or ψ. Instead of the subset Wn ⊆ J defined
under point (4) in Kasparov’s proof, we take

Wn = {k, unh2, un+1h2}∪unϕ(Ωn)∪un+1ϕ(Ωn+1)∪ψ(Ωn)un∪ψ(Ωn+1)un+1.

Next, we choose the mentioned approximate units (ui) and (vi) by Lemma 8
in such a way that we have the estimates

‖g(un) − gg−1(un)‖ + ‖UgU
∗
gun − unUgU

∗
g ‖ + ‖U∗

gUgun − unU
∗
gUg‖(3)

≤ 2−n, ∀n,∀g ∈ Xn, and

‖g(cn) − gg−1(cn)‖ + ‖UgU
∗
g cn − cnUgU

∗
g ‖ + ‖U∗

gUgcn − cnU
∗
gUg‖(6′)

≤ (1/100)2−n/N2
n, ∀n,∀g ∈ Xn,

rather than the estimates (3) and (6) in Kasparov’s paper. Thereby denote
cn = b2n, let

∑∞
k=0 αk(x − 1)k = x1/2 be the power series of x1/2 at 1, and

choose Nn such that
∑∞

k=Nn+1 |αk| ≤ (1/100)2−n for all n ∈ N. Note that
‖bn − ∑Nn

k=0 αk(cn − 1)k‖ ≤ (1/100)2−n for all n ∈ N. From (6′) we thus
deduce

‖g(bn) − gg−1(bn)‖ + ‖UgU
∗
g bn − bnUgU

∗
g ‖ + ‖U∗

gUgbn − bnU
∗
gUg‖(6)

≤ 2−n, ∀n,∀g ∈ Xn
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(mainly by similar estimates we show next). This leads one to the following
estimate.

‖UgbnunbnU
∗
g − UgbnU

∗
gUgunU

∗
gUgbnU

∗
g ‖

≤ ‖Ug(U∗
gUgbn − bnU

∗
gUg)unbnU

∗
g ‖

+ ‖UgbnU
∗
gUg(U∗

gUgun − unU
∗
gUg)bnU∗

g ‖
+ ‖UgbnU

∗
gUgunU

∗
gUg(U∗

gUgbn − bnU
∗
gUg)U∗

g ‖ ≤ 3 · 2−n.

for all g ∈ G,n ∈ N. A similar estimate yields

‖gg−1(bnunbn) − gg−1(bn)gg−1(un)gg−1(bn)‖ ≤ 3 · 2−n.

Hence

‖g(bnunbn) − gg−1(bnunbn)‖
≤ 6 · 2−n + ‖g(bn)g(un)g(bn) − gg−1(bn)gg−1(un)gg−1(bn)‖
≤ 6 · 2−n + ‖(g(bn) − gg−1(bn))g(un)g(bn)‖

+ ‖gg−1(bn)(g(un) − gg−1(un))g(bn)‖
+ ‖gg−1(bn)gg−1(un)(g(bn) − gg−1(bn))‖ ≤ 9 · 2−n.

Also,

‖UgU
∗
g bnunbn − bnunbnUgU

∗
g ‖ ≤ 3 · 2−n,

‖U∗
gUgbnunbn − bnunbnU

∗
gUg‖ ≤ 3 · 2−n.

Other things of Kasparov’s proof need not to be changed. �
Corollary 1. Let M1 and M2 be the operators of Theorem 1, and assume
that J = K(E). Then all claims of Theorem 1 (excepting M1 +M2 = 1) hold
also for M1/2

i rather than Mi (i = 1, 2).

Proof. As g(Mn
i ) ≡ g(Mi)n and g(1)Mn

i ≡ (g(1)Mi)n modulo J , writing
M

1/2
i as a power series shows that g(M1/2

i ) − g(Mi)1/2 ∈ J , g(1)M1/2
i −

(g(1)Mi)1/2 ∈ J and [d,M1/2
i ] ∈ J for all d ∈ Δ. Hence, modulo J we get

g(M1/2
i ) − gg−1(M1/2

i ) ≡ g(Mi)1/2 − gg−1(Mi)1/2

= (g(Mi) − gg−1(Mi))(g(Mi)1/2 + gg−1(Mi)1/2)−1

≡ 0.

Next, M1/2
i ai = M

−1/2
i Miai ∈ J , and similarly we treat the remaining

cases. �

6. The Kasparov cap product

Given a G-Hilbert module E , we define A(E) as the smallest G-invariant
C∗-subalgebra of L(E) generated by 1. Note that ∂Ug = ∂U∗

g = 0 for all
g ∈ G, whence all elements of A(E) are zero graded.
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Lemma 9. If π : A → L(E) is an equivariant representation then π(A)
commutes with A(E).

If (E , T ) ∈ EG(A,B) then a[x, T ] ∈ K(E) for all a ∈ A,x ∈ A(E).

Proof. Let W be the smallest set in L(E) which is closed under taking
products, is invariant under G and G−1, and contains 1. Since W is self-
adjoint, A(E) = spanW . That π(A) commutes with W can be proved by
induction for expressions in W . Suppose that x ∈W and π(a)x = xπ(a) for
all a ∈ A. Fix a ∈ A, g ∈ G. Then U∗

gπ(a)Ug = U∗
gUgπ(b) for some b ∈ A

by Definition 15, and thus π(a)Ug = Ugπ(b) and π(b)U∗
g = U∗

gπ(a). Hence,
π(a)UgxU

∗
g = UgxU

∗
g π(a). This proves the first claim of the lemma.

Let (E , T ) ∈ EG(A,B). Take x ∈W and assume that a(xT −Tx) ∈ K(E)
for all a ∈ A. Fix a ∈ A, g ∈ G, and write b = U∗

g aUg = U∗
gUgb

′ for some
b′ ∈ A by Definition 15. Multiplying

a(UgTU
∗
g − TUgU

∗
g ) = UgU

∗
gUgb

′TU∗
g − aTUgU

∗
g ∈ K(E)

from the right with Ug (thereby noticing that b′TU∗
gUg ≡ b′U∗

gUgT modulo
K(E)), one gets a(UgT − TUg) ∈ (K(E)Ug + UgK(E)). In a similar way, by
multiplying a(U∗

gTUg − TU∗
gUg) ∈ K(E) (see Lemma 6) from the right with

U∗
g , one obtains a(U∗

g T −TU∗
g ) ∈ (K(E)U∗

g +U∗
gK(E)). With these formulas,

the formulas aUg = Ugb, U
∗
g a = bU∗

g , ax = xa, bx = xb, b = U∗
gUgb

′, and the
invariance of K(E) under G and G−1, it is straightforward to compute that
a(g(x)T−Tg(x)) ≡ g(b′(xT−Tx)) ≡ 0 modulo K(E). A similar computation
shows that a(g−1(x)T − Tg−1(x)) ∈ K(E). �

Definition 18. Let E1 be a Hilbert B1-module, E2 a Hilbert (B1, B2)-
bimodule, and E12 = E1 ⊗B1 E2. For any ξ ∈ E1, define θξ ∈ L(E2, E12)
by θξ(η) = ξ ⊗ η (with an adjoint given by θ∗ξ (ξ1 ⊗ η) = 〈ξ, ξ1〉 · η). Let
T2 ∈ L(E2). An element T12 ∈ L(E12) will be called a T2-connection on E12

if for any ξ ∈ E1 both

θξT2 − (−1)∂ξ·∂T2T12θξ,

θξT
∗
2 − (−1)∂ξ·∂T2T ∗

12θξ

are in K(E2, E12). (Adjoining the last element gives T2θ
∗
ξ − (−1)∂ξ·∂T2θ∗ξT12.)

Note that the definition of T2-connections does not involve a G-structure.
Connections were introduced by Connes and Skandalis in [2]. By Lemma 9,
1 ⊗ T is a well-defined operator in L(E12) for T ∈ A(E2).

Lemma 10. With the notation from the previous definition, let T12 be a
T2-connection.

If T2 ∈ IB1(E2) then T12 ∈ IK(E1)⊗1(E12).
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If (E2, T2) ∈ EG(B1, B2) then

T12 ∈ QK(E1)⊗A(E2)(E12),(1)

g(T12) − gg−1(T12) ∈ IK(E1)⊗1(E12),(2)

(K(E1) ⊗ 1)(g(1)T μ
12 − gg−1(T μ

12)) ∈ K(E12),(3)

(K(E1) ⊗ 1)(g−1(1)T μ
12 − g−1g(T μ

12)) ∈ K(E12)(4)

for all μ ∈ {1, ∗}.
If T1 ∈ L(E1) then (K(E1) ⊗ 1)[T12, T1 ⊗ 1] ∈ K(E12).

Proof. First notice that θξ,η ⊗ 1 = θξθ
∗
η for all ξ, η ∈ E1. Take ξ ∈

E1 and write bi = 〈ξ, ξ〉(〈ξ, ξ〉 + 1/i)−1. Then θξ = limi→∞ θξbi
, and so

θξT2 = limi θξbiT2. Thus, if T2 ∈ IB1(E2), then θξT2, θξT
∗
2 ∈ K(E12, E2),

and consequently T12θξθ
∗
η and T ∗

12θξθ
∗
η are in K(E12, E2), which proves that

T12 ∈ IK(E1)⊗1(E12).
If T2 ∈ EG(B1, B2), then by Lemma 9 one has θξT2x = limi θξbiT2x ≡

limi θξbixT2 = θξxT2 modulo K(E2, E12) for all x ∈ A(E2). Hence

θξxT2 − (−1)∂ξ·∂T2T12θξx ∈ K(E2, E12)

for all x ∈ A(E2). Modulo K(E12), this gives

θξxθ
∗
ηT12 ≡ θξxT2θ

∗
η(−1)∂η·∂T2 ≡ T12θξxθ

∗
η(−1)∂ξ·∂T2(−1)∂η·∂T2

≡ T12θξxθ
∗
η(−1)∂(θξxθη)·∂T2

for all x ∈ A(E2), for the last identity noticing that ∂(θξ) = ∂ξ and ∂(x) = 0.
If ∂(T12) = ∂(T2), this proves that [θξxθ

∗
η, T12] ∈ K(E12). If ∂(T12) �= ∂(T2)

then ∂(θξT2) �= ∂(T12θξ), which shows that T12 is a 0-connection, and in
this case [θξxθ

∗
η, T12] ∈ K(E12) is obvious. Noticing θξxθ

∗
η = (1⊗x)θξθ

∗
η, this

shows (1).
If T2 ∈ EG(B1, B2), and Sg = g(T2) − gg−1(T2), then B1Sg ⊆ K(E2). By

θξ = limi θξbi
we get θξSg, θξS

∗
g ∈ K(E2, E12). Denote the G-action on E1 and

E2 by U and V , respectively. Fix g ∈ G, ξ ∈ E1 and assume that ξ = UgU
∗
g ξ.

Then

θξg(T2) − (−1)∂(ξ)·∂(T2)g(T12)θξ

= (Ug ⊗ Vg)(θU∗
g ξT2 − (−1)∂(ξ)·∂(T2)T12θU∗

g ξ)V ∗
g ∈ K(E2, E12).

Similarly, θξgg
−1(T2) − (−1)∂(ξ)·∂(T2)gg−1(T12)θξ ∈ K(E2, E12). Hence,

(g(T12) − gg−1(T12))θξθ
∗
η ∈ K(E12).

This identity holds even for any ξ ∈ E1, since

(g(T12) − gg−1(T12))θξ = (g(T12) − gg−1(T12))θUgU∗
g ξ

for all ξ ∈ E1. The identity also holds for T12 replaced by T ∗
12, and hence we

checked (2). The claims (3) and (4) are proved similarly. (Recall Lemma 6
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when checking (4).) For the last claim, it is straightforward to compute that
[T ∗

12, T
∗
1 ⊗ 1]θξθ

∗
η ∈ K(E12). �

The following lemma is Lemma 2.7 of Kasparov’s paper [8].

Lemma 11. If E1 is countably generated and T2 ∈ QB1(E2) then there exists
a T2-connection T12 on E12.

Definition 19. Let A,B1, B2 be G-C∗-algebras. An element (E12, T12) ∈
EG(A,B2) is called a Kasparov (or cap) product of (E1, T1) ∈ EG(A,B1) and
(E2, T2) ∈ EG(B1, B2), if E12 = E1 ⊗B1 E2, T12 is a T2-connection on E12, and
a[T1 ⊗ 1, T12]a∗ ≥ 0 in the quotient L(E12)/K(E12) for all a ∈ A.

Lemma 12. Let E be a Hilbert (A,B)-bimodule, (E , F ), (E , F ′) ∈ EG(A,B),
and assume that a[F,F ′]a∗ ≥ 0 in L(E)/K(E) for all a ∈ A. Then (E , F )
and (E , F ′) are operatorially homotopic.

Proof. The proof is the same as in [14], Lemma 11, and we shall only check
the aspects involving G. As in Skandalis’ paper the operatorial homotopy is
given by the path Ft = (1 + (cos t)(sin t)P )−1/2((cos t)F + (sin t)F ′) ∈ L(E)
(t ∈ [0, π/2]) for some operator P ≥ 0 satisfying [F,F ′] − P ∈ IA(E). By
Skandalis’ proof, (E , Ft) ∈ E(A,B). Given F1, . . . , Fn ∈ {F,F ′}, a ∈ A, and
b ∈ A such that U∗

g aUg = U∗
gUgb, one has

ag(F1 . . . Fn) = g(bU∗
gUgF1 . . . Fn) ≡ g(bU∗

gUgF1U
∗
gUg . . . U

∗
gUgFn)

= ag(F1) . . . g(Fn)

modulo K(E), as bFi ≡ (−1)∂bFib. By induction on n one gets

ag(F1 . . . Fn) − agg−1(F1 . . . Fn)

≡ ag(F1) . . . g(Fn) − agg−1(F1) . . . gg−1(Fn) ≡ 0

modulo K(E). Using power series, there are fixed scalars αn, βn, γn, δn ∈ C

(n ≥ 0) such that for any c ∈ A there exist Kn ∈ K(E) (n ≥ 0) such that

cFt =
∑
n≥0

αnc(FF ′)nF + βnc(F ′F )nF + γnc(FF ′)nF ′ + δnc(FF ′)nF ′ +Kn.

Note that the series is (still) absolutely convergent. In order to show that
ag(Ft) − agg−1(Ft) ∈ K(E), it is enough to show that ag((FF ′)nF ) −
agg−1((FF ′)nF ) ∈ K(E) for all n ≥ 0 (and similarly for the other terms).
But we have checked this. �

Theorem 2. If A is separable then the Kasparov product of (E1, T1) ∈
EG(A,B1) and (E2, T2) ∈ EG(B1, B2) exists and is unique up to operato-
rial homotopy. The Kasparov product induces a bilinear map

⊗B1 : K̃KG(A,B1) ⊗ K̃KG(B1, B2) → K̃KG(A,B2)

denoted by x⊗ y �→ x⊗B1 y.
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Proof. Existence. By Lemma 11 there is a T2-connection T̃2 of degree 1
on E12. Put J = K(E12), and A1 = J + K(E1) ⊗A(E2). A1 is closed and
σ-unital by [7], Section 3, Lemma 2. Note that A1 is G-invariant. Denote
by A2 the C∗-subalgebra (without G-action) of L(E12) generated by the
elements

T̃2 − T̃ ∗
2 , T̃

2
2 − 1, [T̃2, T1 ⊗ 1], [T̃2, a]

for all a ∈ A. Let

Δ = {T1 ⊗ 1, T̃2} ∪A.
It is clear that Δ derives A1, see Lemma 10. Of course, T̃2−T̃ ∗

2 is a (T2−T ∗
2 )-

connection, and T̃ 2
2 − 1 is a (T 2

2 − 1)-connection. Noting T2 − T ∗
2 ∈ IB1(E2),

and writing

K(E1) ⊗A(E2) = (1 ⊗A(E2))(K(E1) ⊗ 1),

we get A1(T̃2 − T̃ ∗
2 ) ⊆ J by Lemma 10. Similarly, A1(T̃ 2

2 − 1) ⊆ J . By
Lemma 10, one has A1[T̃2, T1 ⊗ 1] ⊆ J and A1[T̃2, a] ⊆ J for all a ∈ A. It
thus follows that A1A2 ⊆ J . Define

ϕ1(g) = g(T̃2) − gg−1(T̃2), ϕ2(g) = g(1)T̃2 − gg−1(T̃2),

ϕ3(g) = g−1(1)T̃2 − g−1g(T̃2), ψ1(g) = T̃2g(1) − gg−1(T̃2),

ψ2(g) = T̃2g
−1(1) − g−1g(T̃2)

for all g ∈ G. We may combine ϕ1, ϕ2, ϕ3 and ψ1, ψ2, 0 to one function ϕ
and ψ, respectively, with domain Ω being a threefold disjoint copy of G. We
apply Theorem 1 to obtain M1,M2 ∈ L(E12) and set

T12 = M
1/2
1 (T1 ⊗ 1) +M

1/2
2 T̃2.

It is well established (and straightforward to check) that (E12, T12) is in
E(A,B2) (without the set G), which is why will focus on those additional
relations showing even (E12, T12) ∈ EG(A,B2). The other properties which
show that T12 is a Kasparov product are deduced as in Skandalis [14], The-
orem 12. Denote the G-action on E1 and E2 by U and V , respectively, and
the diagonal action U ⊗ V on E12 by W . Write M̂i = M

1/2
i (i = 1, 2). Since

[M̂i, A] ⊆ J by Corollary 1, and for any a ∈ A, WgW
∗
g a = aWgW

∗
g and there

is a b ∈ A such that W ∗
g aWg = W ∗

gWgb by Definition 15,

aWgM̂iW
∗
g = WgW

∗
g aWgM̂iW

∗
g = WgbM̂iW

∗
g ≡WgM̂iW

∗
g a

modulo J for all i = 1, 2. Similarly, agg−1(M̂i) ≡ gg−1(M̂i)a modulo J for
all a ∈ A, i = 1, 2. Since [M̂i,W

∗
gWg] ∈ J , one has g(M̂iT ) ≡ g(M̂i)g(T )
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modulo J for any operator T ∈ L(E12). Thus

ag(M̂1(T1 ⊗ 1)) − agg−1(M̂1(T1 ⊗ 1))

≡ ag(M̂1)g(T1 ⊗ 1) − agg−1(M̂1)gg−1(T1 ⊗ 1)

≡ g(M̂1)ag(T1 ⊗ 1) − gg−1(M̂1)agg−1(T1 ⊗ 1)

≡ (g(M̂1) − gg−1(M̂1))ag(T1 ⊗ 1)+

+ gg−1(M̂1)a(g(T1 ⊗ 1) − gg−1(T1 ⊗ 1))

≡ gg−1(M̂1)gg−1(a)gg−1(g(T1 ⊗ 1) − gg−1(T1 ⊗ 1))

≡ gg−1(M̂1a(g(T1 ⊗ 1) − gg−1(T1 ⊗ 1))) ≡ 0

modulo J , since M̂1A1 ⊆ J , for all a ∈ A, g ∈ G. A similar computation
yields

ag(M̂2T̃2) − agg−1(M̂2T̃2) ≡ agg−1(M̂2(g(T̃2) − gg−1(T̃2))) ≡ 0

modulo J , since M̂2ϕ1(g) ∈ J , for all a ∈ A, g ∈ G. Thus we have proved
that a(g(T12) − gg−1(T12)) ∈ J . Similar calculations show that also

(g(T12) − gg−1(T12))a ∈ J.

Next,

ag(1)M̂1(T1 ⊗ 1) − aM̂1(T1 ⊗ 1)g(1) ≡ M̂1(ag(1)(T1 ⊗ 1) − a(T1 ⊗ 1)g(1))
≡ 0

modulo J , since M̂1A1 ⊆ J , for all a ∈ A, g ∈ G. Note that M̂2gg
−1(T̃2) =

M̂2WgW
∗
g T̃2WgW

∗
g ≡ WgW

∗
g T̃2WgW

∗
g M̂2 = gg−1(T̃2)M̂2 modulo J for all

g ∈ G. Since M̂2ϕ2(g) ⊆ J and ψ1(g)M̂2 ⊆ J , one gets

ag(1)M̂2T̃2 − aM̂2T̃2g(1) ≡ aM̂2(g(1)T̃2 − gg−1(T̃2))

+ aM̂2(gg−1(T̃2) − T̃2g(1))

≡ a(gg−1(T̃2) − T̃2g(1))M̂2 ≡ 0

modulo J for all a ∈ A, g ∈ G. It is thus evident that a(g(1)T12 −T12g(1)) ∈
J , and by a quite similar computation, that a(g−1(1)T12 − T12g

−1(1)) ∈ J
for all a ∈ A, g ∈ G. We have checked that (E12, T12) ∈ EG(A,B2).

Uniqueness. Consider two Kasparov products (E12, F ), (E12, F
′). In the

above existence proof we defined sets A1, A2,Δ and Φ = {ϕ1, ϕ2, ϕ3, ψ1, ψ2}
with respect to a given T2-connection T̃2. To express dependence on T1 and

T̃2, let us rename this sets as A(T1, eT2)
1 , A

(T1, eT2)
2 ,Δ(T1, eT2) and Φ(T1, eT2). Now

define J = K(E12), A1 = A
(T1,F )
1 , A2 to be the C∗-algebra (without G-

action) generated by A(T1,F )
2 ∪ A(T1,F ′)

2 ∪ {F − F ′}; Δ = Δ(T1,F ) ∪ Δ(T1,F ′),
and Φ = Φ(T1,F ) 	 Φ(T1,F ′). Applying Theorem 1 with these parameters we
obtain operators M1,M2, and we set F ′′ = M

1/2
1 (T1 ⊗ 1) + M

1/2
2 F . One
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has F ′′ ∈ EG(A,B), and a[F,F ′′]a∗ ≥ 0 and a[F ′, F ′′]a∗ ≥ 0 in L(E)/K(E).
(Confer the proof in Skandalis [14], Theorem 12.) The conclusion follows by
Lemma 12.

Passage to K̃KG. If (E1, T1) or (E2, T2) is degenerate then so is their
Kasparov product. (See the proof in Skandalis [14], Theorem 12.) We
have to show that the Kasparov product respects operator homotopies. Let
(E1, T

t
1) ∈ EG(A,B1) and (E2, T

t
2) ∈ EG(B1, B2) (t ∈ [0, 1]) be two opera-

torial homotopies. Choose a norm continuous path T̃ t
2 ∈ L(E12) (t ∈ [0, 1])

such that each T̃ t
2 is a T t

2-connection. Define J = K(E12), A1 = A
(T1, eT 0

2 )
1 ,

A2 to be the C∗-algebra (without G-action) generated by
⋃

t∈[0,1]A
(T t

1 , eT t
2)

2 ;

Δ =
⋃

t∈[0,1] Δ
(T t

1 , eT t
2), Ω = G × [0, 1], ϕ1(g, t) = g(T̃ t

2) − gg−1(T̃ t
2) for all

(g, t) ∈ Ω, and similarly ϕ2, ϕ3, ψ1, ψ2 (see above). Entering these parame-
ters in Theorem 1 yields operators M1,M2 and a desired operatorial homo-
topy (E12,M

1/2
1 (T t

1 ⊗ 1) +M
1/2
2 T̃ t

2). �

7. The Kasparov cup-cap product

In this section all C∗-algebras are assumed to be Hilbert C∗-algebras.
We define a slightly modified KK-theory for Hilbert C∗-algebras in that
we redefine Hilbert modules and equivariant maps, taking into account the
structure of Hilbert C∗-algebras. We denote the actions on a Hilbert C∗-
algebra B by g �→ g(b) and g �→ g−1(b) for all b ∈ B, g ∈ G. All ∗-
homomorphisms between Hilbert C∗-algebras are assumed to be equivariant
with respect to both actions g and g−1 (that is, we require that πg = gπ
and πg−1 = g−1π for all g ∈ G).

Definition 20. A G-Hilbert B-module E over a Hilbert C∗-algebra B is a
G-Hilbert B-module in the sense of Definition 11 satisfying

〈U∗
g x, y〉 = g−1〈x,Ugy〉, U∗

g (xb) = U∗
g (x)g−1(b)

for all x, y ∈ E , b ∈ B, g ∈ G.

With respect to the last definition: The injectivity of g on Bg implies
that U∗

gUg is self-adjoint by Lemma 3. This implication can be reversed, as
〈U∗

gUgx, y〉 = g−1g〈x,U∗
gUgy〉 = g−1g〈U∗

gUgx, y〉.
If A is a Hilbert C∗-algebra then P = g−1g is idempotent and self-adjoint,

and thus the range of P is an ideal in A. This shows, for instance, that
A = C[0, 1] with P (f) = g(f) = g−1(f) = f(1)1 for all f ∈ A, g ∈ G is
not a Hilbert C∗-algebra.1 Actually,2 the elements gg−1 and g−1g for any
Hilbert C∗-algebra are elements of the center of the multiplier algebra by
identifying M(A) with L(A); [gg−1, A] = 0 is proven in Lemma 13.

1I thank Christian Voigt for this “P is idempotent implies range(P ) is an ideal?”—
counterexample.

2Remarked by the referee.
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Definition 21. If A is a Hilbert C∗-algebra and E is a G-Hilbert B-module,
then a ∗-homomorphism π : A→ L(E) is called equivariant if it is equivariant
in the sense of Definition 15 and

U∗
gUgπ(g−1(a)) = U∗

g π(a)Ug

holds for all a ∈ A, g ∈ G.

Though we have now redefined G-Hilbert modules and equivariant repre-
sentations for Hilbert C∗-algebras, we can more or less continue with Sec-
tions 4–6 without change. Indeed, we only have to ensure that all construc-
tions related to Hilbert modules and equivariant representations enjoy the
above redefinitions, and these are only the tensor product constructions and
direct sums of Hilbert modules.

Lemma 13. If A,B are Hilbert C∗-algebras and π : A→ B is a homomor-
phism then π̃ : A→ L(B), π̃(a)(b) = π(a)b (a ∈ A, b ∈ B) is an equivariant
homomorphism. In particular, B is a Hilbert (B,B)-bimodule.

Proof. For instance, by Lemma 3 UgU
∗
g is selfadjoint and thus

UgU
∗
g π̃(a)(b)=UgU

∗
g (π(a)b)=(UgU

∗
g (π(a∗)))∗UgU

∗
g (b)=π(a)UgU

∗
g (b). �

By Lemmas 13 and 4 we may form the tensor product E ⊗B1 B2 if E is
a Hilbert B1-module and ϕ : B1 → B2 a homomorphism between Hilbert
C∗-algebras B1 and B2.

Lemma 14. If E1 is a Hilbert (A,B1)-bimodule, E2 a Hilbert (B2, B3)-
bimodule and f : B1 → B2 is a homomorphism then

π : E1 ⊗B1 B2 ⊗B2 E2 → E1 ⊗B1 E2, π(x1 ⊗ b2 ⊗ x2) = x1 ⊗ f(b2)x2

is an isomorphism of Hilbert (A,B3)-bimodules.
If A is unital then σ : A⊗A E → E, σ(a ⊗ x) = ax is an isomorphism of

Hilbert (A,B1)-bimodules.

Proof. Without the G-structure this is well established. It is straightfor-
ward to compute that π and σ intertwine the G-actions. �
Definition 22. An element (E , T ) ∈ EG(A,B[0, 1]) generates a path t �→
(Et, Tt) ∈ EG(A,B) (t ∈ [0, 1]) obtained by evaluation at each t ∈ [0, 1], that
is, Et = E ⊗B⊗C[0,1] B,Tt = T ⊗ 1, where B ⊗ C[0, 1] → B is evaluation
at time t. This path and the pair (E , T ) itself will be called a homotopy
between (E0, T0) and (E1, T1). The set KKG(A,B) is defined as the quotient
of EG(A,B) by the equivalence relation given by homotopy.

Proposition 2. KKG(A,B) is a quotient of K̃KG(A,B). KKG(A,B) and

K̃KG(A,B) are abelian groups with addition given by direct sum.

Proof. One proves this along the lines of [7], Section 4, Theorem 1, or [14],
Proposition 4. �
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Definition 23. Let A1, A2, B be Hilbert C∗-algebras, and f : A1 → A2

a homomorphism. Then f induces a map f∗ : EG(A2, B) → EG(A1, B) by
f∗((E , T )) = (f∗(E), T ), where f∗(E) is the Hilbert (A1, B)-bimodule E with

A1-action A1
f→ A2 → L(E). The map f∗ passes to the quotients KKG and

K̃KG, and we keep the notation f∗ for these maps.

Definition 24. Let A,B1, B2 be Hilbert C∗-algebras and g : B1 → B2 a
homomorphism. Then g induces a map g∗ : EG(A,B1) → EG(A,B2) given
by g∗((E , T )) = (E ⊗B1B2, T ⊗1). The map g∗ passes to the quotients KKG

and K̃KG, and we keep the notation g∗ for these maps.

For Definition 24 one needs:

Lemma 15. Let E be a Hilbert B1-module, B2 a Hilbert C∗-algebra, and
T ∈ K(E). Then T ⊗ 1, T ⊗ UgU

∗
g , T ⊗ U∗

gUg ∈ K(E ⊗B1 B2) for all g ∈ G.

Proof. The proof is the same as in [7], page 523, or [5], Lemma 1.2.8, taking
UgU

∗
g , U∗

gUg rather than 1. �
Definition 25. Let D be a σ-unital Hilbert C∗-algebra. Define

τD : EG(A,B) → EG(A⊗D,B ⊗D)

by τD(E , T ) = (E⊗D,T⊗1) (where E⊗D denotes the skew tensor product).

The map τD passes to the quotients KKG and K̃KG, and these homomor-
phisms are also denoted by τD.

Theorem 3. There is a Kasparov product as stated in Theorem 2, and this
product also induces a bilinear map

⊗B1 : KKG(A,B1) ⊗KKG(B1, B2) → KKG(A,B2).

Proof. That the Kasparov product respects homotopy may be proved in
the same way as in Skandalis [14], Theorem 12. �
Proposition 3. Let A1, A2 be separable Hilbert C∗-algebras, and f : A1 →
A2 and g : B1 → B2 homomorphisms.

If x ∈ KKG(A2, B) and y ∈ KKG(B,B1) (or K̃KG) then

f∗(x) ⊗B y = f∗(x⊗B y).

If x ∈ KKG(A1, B1) and y ∈ KKG(B2, B3) (or K̃KG) then

g∗(x) ⊗B2 y = x⊗B1 g
∗(y).

If x ∈ KKG(A1, B) and y ∈ KKG(B,B1) (or K̃KG) then

g∗(x⊗B y) = x⊗B g∗(y).

Proof. The proof is the same as [14], Proposition 13. For the second identity
one uses Lemma 14. �



Equivariant KK-theory for semimultiplicative sets 529

Definition 26. Let A2, B1 be σ-unital Hilbert C∗-algebras and A1, A2 be
separable. The cup-cap product

⊗D : KKG(A1, B1 ⊗D) ⊗KKG(D ⊗A2, B2) → KKG(A1 ⊗A2, B1 ⊗B2)

is defined by the formula x1⊗Dx2 = τA2(x1)⊗B1⊗D⊗A2τB1(x2). The cup-cap

product for K̃KG is defined in the same way.

Lemma 16. If x ∈ KKG(A,B) (or K̃KG(A,B)) and f : A′ → A and
g : B → B′ are homomorphisms, then τD(f∗(x)) = (f ⊗ 1)∗(τD(x)) and
τD(g∗(x)) = (g ⊗ 1)∗(τD(x)).

Proof. Let x = (E , T ). For the second claim we use

(E ⊗D) ⊗B⊗D (B′ ⊗D) ∼= (E ⊗B B′) ⊗ (D ⊗D D)

(see Kasparov [7], Section 2, page 523). �

Lemma 17. If x ∈ KKG(A,B) and f : D1 → D2 is a homomorphism then
(1 ⊗ f)∗(τD2(x)) = (1 ⊗ f)∗(τD1(x)).

Proof. One checks that the proof of Skandalis [14], Lemma 7, works also
in our setting. �

Proposition 4. Let B1, B′
1, B

′
2, D

′ be σ-unital Hilbert C∗-algebras and A1,
A′

1, A2, A′
2 be separable. Let f1 : A′

1 → A1, f2 : A′
2 → A2, g1 : B1 → B′

1,
g2 : B2 → B′

2, h : D → D′ be homomorphisms. Then the cup-cap product of
Definition 26 satisfies

f∗1 (g1 ⊗ 1)∗(x1) ⊗D (1 ⊗ f2)∗g2∗(x2) = (f1 ⊗ f2)∗(g1 ⊗ g2)∗(x1 ⊗D x2),

(h⊗ 1)∗(x1) ⊗D′ x2 = x1 ⊗D (h⊗ 1)∗(x2),

with the restriction that if f2 or g1 are not trivial (i.e., are not the identity
map) then this only holds in KKG.

Proof. This is some computation by applying the formulas of Proposition 3
and Lemmas 16 and 17. �

Let 1 ∈ K̃KG(C,C) (or KKG(C,C)) be given by the Hilbert (C,C)-
bimodule C with trivial grading and action, and the zero operator.

Proposition 5. Let A be separable and x ∈ KKG(A,B) (or K̃KG(A,B)).
Then x⊗C1 = x. If A is unital and g(1A) = 1A for all g ∈ G then 1⊗Cx = x.

Proof. One proves this along the lines of [14], Proposition 17. �

Theorem 4. Suppose that A is a separable and B a σ-unital Hilbert C∗-
algebra. Then the map K̃KG(A,B) → KKG(A,B) is an isomorphism.

Proof. The proof is the same as Theorem 19 of Skandalis [14]. �
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Theorem 5. Assume that B1, B2 are σ-unital Hilbert C∗-algebras, A1, A2,
A3, D1 are separable Hilbert C∗-algebras, and

x1 ∈ KKG(A1, B1 ⊗D1),

x2 ∈ KKG(D1 ⊗A2, B2 ⊗D2),

x3 ∈ KKG(D2 ⊗A3, B3).

Then
(x1 ⊗D1 x2) ⊗D2 x3 = x1 ⊗D1 (x2 ⊗D2 x3).

Proof. One proves this along the lines of [14], Theorem 21. �
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