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Isoperimetric problems on the sphere and
on surfaces with density

Max Engelstein, Anthony Marcuccio, Quinn
Maurmann and Taryn Pritchard

Abstract. We discuss partitions of the sphere and other ellipsoids into
equal areas and isoperimetric problems on surfaces with density. We
prove that the least-perimeter partition of any ellipsoid into two equal
areas is by division along the shortest equator. We extend the work
of C. Quinn, 2007, and give a new sufficient condition for a perimeter-
minimizing partition of S2 into four regions of equal area to be the
tetrahedral arrangement of geodesic triangles. We solve the isoperimet-
ric problem on the plane with density |y|α for α > 0 and solve the
double bubble problem when α is a positive integer. We also identify
isoperimetric regions on cylinders with densities ez and |θ|α. Next, we
investigate stable curves on surfaces of revolution with radially symmet-
ric densities. Finally, we give an asymptotic estimate for the minimal
perimeter of a partition of any smooth, compact surface with density
into n regions of equal area, generalizing the previous work of Maur-
mann et al. (to appear).
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1. Introduction

The spherical partition problem asks for the least-perimeter way to par-
tition a sphere into n regions of equal area. The solution is known only
in three cases. When n = 2, any great circle partitions the sphere with
least perimeter (for example, see Section 2: Proposition 2.3 states that the
shortest curve partitioning the ellipsoid into two regions of equal area is the
shortest equator). For n = 3, three meridinal arcs meeting at 120 degrees
at the poles are best (Masters [Ma96]). Finally for n = 12, a dodecahedral
arrangement is minimizing (Hales [H02]). All three solutions are geodesic
and are pictured in Figure 2. Section 3 extends the work of C. Quinn [Q07]
on the n = 4 case, where the tetrahedral partition is conjectured to be min-
imizing. Proposition 3.6 proves this conjecture under the assumption that
some component of the minimizing partition is geodesic.

The isoperimetric problem in a Riemannian surface asks for the shortest
curve enclosing a given area; we investigate this problem in surfaces with
density. A density is a smooth positive function which weights perimeter
and area equally. Note that giving a surface a density is not the same
as scaling its metric, which scales area and perimeter by different factors.
By standard geometric measure theory, on a smooth surface with density
and finite weighted area, isoperimetric regions exist and are bounded by
smooth curves of constant generalized curvature (see Morgan [M08] and
[M03], Section 3.10). The generalized curvature κψ at a point on a curve in
a surface with density eψ is defined as κψ = κ − n̂ · ∇ψ, where n̂ is a unit
normal.

Proposition 4.6 and Corollary 4.9 use Steiner symmetrization to show that
isoperimetric regions in the plane with density |y|α for α > 0 are semicircles
perpendicular to the x-axis. An essential step is Lemma 4.7, which gives a
sufficient condition for Steiner symmetrization (in a fairly general setting)
to give isoperimetric results with uniqueness. Proposition 4.3 finds that
half of the standard double bubble is the least-perimeter way to enclose
two areas in the plane with density |y|n, where n ∈ N. Proposition 5.1
uses a novel projection argument to prove that isoperimetric regions on
the cylinder Sn × R with density ez are half-cylinders bounded above by
horizontal spherical slices. Finally, Proposition 5.2 shows that for small
area on the cylinder with density |θ|α, semicircles on the line θ = 0 solve the
isoperimetric problem.

Section 6 examines stable curves in surfaces of revolution. Theorem 6.3
gives necessary and sufficient conditions for circles of revolution to be stable:
for a surface of revolution with metric ds2 = dr2+f(r)2dθ2 and radial density
eψ(r), a circle of revolution is stable if and only if

f ′2 − ff ′′ − f2ψ′′ ≤ 1

on that circle. An intriguing consequence, Corollary 6.4, finds that in a disk
of revolution with radial density eψ, decreasing Gauss curvature and ψ′′
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nonnegative imply circles are stable, while increasing Gauss curvature and
stable circles imply ψ′′ nonnegative. In the constant-curvature spaces R2,
S2, and H2, circles of revolution are stable if and only if ψ′′ is nonnegative.
(In R2, this result was known by Rosales et al. ([RCB08], Theorem 3.10).)
However, we dismiss the possibility that the equivalence holds in general
surfaces of revolution. Corollary 6.6 finds it to be impossible for spaces with
strictly monotone curvature, and Corollary 6.7 finds there is no condition on
the density which is sufficient for circles of revolution to be stable in every
surface of revolution. Given any radial density function, Proposition 6.8
constructs an annulus in which all circles of revolution are stable, though
this surface turns out to be fairly tame: it is just the cylinder S1 × R with
area density (weights area but not length).

Section 7 generalizes previous work on the asymptotic estimates of peri-
meter-minimizing partitions of surfaces into n regions of equal area. Maur-
mann et al. [MEM08] found that the least perimeter P (n) of partitions of a
compact surface M with area |M | into n regions of area |M |/n is asymptotic
to half the perimeter of n regular planar hexagons of area |M |/n (this is re-
lated to the fact that regular hexagons partition the plane most efficiently
[H01]). That is, P (n) is asymptotic to 121/4

√|M |n. In the present paper,
Theorem 7.5 and Corollary 7.6 generalize the result to surfaces with density
and again find that P (n) is asymptotic to C

√
n for some constant C given

explicitly in terms of the surface and its density.
This paper represents continuing work of the 2007 SMALL undergraduate

research Geometry Group. We would like to thank Williams College and the
National Science Foundation Research Experiences for Undergraduates for
funding SMALL. We would also like to thank the Canadian Undergraduate
Mathematics Conference and MAA MathFest for supporting our travels and
giving us the opportunity to present our research. Finally we thank Professor
Frank Morgan, whose guidance and patience have been invaluable in writing
this paper.

2. Partitions of the ellipsoid into two equal areas

Proposition 2.3 shows that the short equator provides the least-perimeter
partition of an ellipsoid into two regions of equal area. For ellipsoids of
revolution, a stronger result is known: that any isoperimetric region is a
disk centered at a pole of revolution ([R01], Theorem 3.5). We begin with
two lemmas governing the regularity of minimizing partitions.

Lemma 2.1. An isoperimetric curve which partitions an ellipsoid into two
regions must be connected.

Proof. Suppose not. Then there exists some minimizing curve C that parti-
tions the ellipsoid into two regions R1 and R2 and is disconnected. Examine
two components of the curve, C1 and C2 with lengths L1 and L2 respectively.
Deform C1 toward R1 with unit rate 1/L1 and deform C2 toward R2 with
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unit rate 1/L2. This deformation initially preserves area and is nontrivial if
C1 �= C2. Let u be the normal component of this deformation and examine
the second variation: − ∫ κ2u2 − ∫ Gu2 < 0 because the Gauss curvature G
is positive. Negative second variation shows that C is unstable and therefore
not minimizing. �
Lemma 2.2. Any isoperimetric curve which divides an ellipsoid into two
regions of equal area must contain a pair of antipodal points.

Proof. Consider an isoperimetric curve γ which bounds two regions of equal
area (γ is connected by Lemma 2.1). Define a map φ which maps each point
p to its antipodal point −p, and let −γ be the image of γ under φ. Then
−γ also bounds two regions of equal area. If the intersection of γ and −γ is
empty, then one of the regions bounded by γ must be entirely contained in
one of the regions bounded by −γ, a contradiction since all of the bounded
regions are of equal area. Thus the intersection of γ and −γ contains at
least one point, so γ contains a pair of antipodal points. �

We now prove the main result.

Proposition 2.3. Consider the ellipsoid

x2

a2
+
y2

b2
+
z2

c2
= 1

where a ≥ b ≥ c. Then the short equator, the ellipse {x = 0}, gives a least-
perimeter partition of the ellipsoid into two regions of equal area, and does
so uniquely if a > b.

Proof. First consider the oblate spheroid a = b > c, on which the boundary
of any partition into two equal areas must contain a pair of antipodal points
by Lemma 2.2. Geodesics on the oblate spheroid are either (i) intersections
of the spheroid with vertical and horizontal planes through the origin, the
shortest of which are the vertical meridinal ellipses or (ii) undulating curves
which oscillate between two parallels equidistant from the equator, as cited
by A. Cayley ([C1894], page 15). On these undulating geodesics, Δθ < π/2
between a minimum and a maximum vertex, so such geodesics could only
connect a pair of antipodal points after one and a half cycles of undulation.
Such curves are unstable on the spheroid. Thus on the oblate spheroid, the
shortest path between any two antipodal points is a meridinal half-ellipse
through a pole, and hence any pair of antipodal points is the same distance
apart, as illustrated in Figure 1.

Now consider the original ellipsoid a ≥ b ≥ c. Let γ be an isoperimetric
curve partitioning the ellipsoid into two regions of equal area. Then γ is
connected (by regularity, it is homeomorphic to a circle) and contains a
pair of antipodal points, so can be decomposed into two curves C1 and C2

running between those antipodal points. Let L be half the length of the
ellipsoid’s short equator; we claim that neither C1 nor C2 can have length
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less than L. To see this, scale the ellipsoid down in the x-direction by a
factor of b/a ≤ 1. This deformation leaves fixed the short equator {x = 0}
without increasing the length of C1. Moreover, this deformation turns the
given ellipsoid into an oblate spheroid, where no curve between antipodal
points has length less than L. That is, if L1 is the length of C1, we have
just shown that L ≤ L1b/a ≤ L1. Similarly, the length of C2 is no less than
L, so γ has length at least 2L. But there certainly exists a curve of length
2L which partitions the ellipsoid into two regions of equal area: the short
equator {x = 0}. For uniqueness when a > b, we simply note that scaling
by b/a < 1 in the x-direction strictly decreases the lengths of C1 and C2

unless they are arcs of the short equator. �

a

-a

-b

-c c

b

Figure 1. On an oblate spheroid (like the earth) all pairs
of antipodal points are the same distance apart

3. Geodesics in partitions of S2

We make some progress on proving the conjecture that a perimeter-
minimizing partition of the sphere S2 into four equal areas is the tetrahedral
partition, seen in the center of the top row in Figure 2. Proposition 3.6 finds
that if a minimizing partition contains any geodesic component, then it is
tetrahedral. The following theorem due to C. Quinn [Q07] identifies several
other conditions which are sufficient to show that a minimizing partition
is tetrahedral. We follow Quinn’s notation, labeling the region of highest
pressure R1, the region of second-highest pressure R2, and so on.

Theorem 3.1 ([Q07], Theorem 5.2). A perimeter-minimizing partition of
the sphere into four equal areas is tetrahedral if any of these five conditions
is met:

(i) The high-pressure region R1 is connected.
(ii) The low-pressure region R4 contains a triangle.
(iii) The partition contains a geodesic m-gon with m odd.
(iv) The high-pressure region R1 has the same pressure as some other re-

gion.
(v) The partition is geodesic.
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Figure 2. The ten partitions of the sphere by geodesics
meeting in threes at 120 degrees (picture originally from Alm-
gren and Taylor [AT76], c©1976 Scientific American).

The proof of Proposition 3.6 will require several lemmas restricting the
components of R1 and the components of the lower pressure regions.

Lemma 3.2. No perimeter-minimizing partition into four equal areas can
contain a geodesic m-gon with m ≥ 6.

Proof. Suppose a geodesic m-gon exists for m ≥ 6 and apply Gauss–
Bonnet. Each edge has curvature κ = 0, and S2 has Gauss curvature G = 1,
so

A+
m∑
i=1

(π − αi) = 2π,

where A is the area enclosed by the m-gon and α1, . . . , αm are its angles.
By regularity, each αi = 2π/3, so A = 2π −mπ/3 ≤ 0, a contradiction. �
Lemma 3.3. If a perimeter-minimizing partition into four equal areas con-
tains a geodesic polygon, then R1 has at most two components.

Proof. Every component of R1 is convex, as every edge has nonnegative
curvature. Quinn ([Q07], Corollary 2.22) proves that the partition can have
at most three convex components total, or else the partition is geodesic. If
R1 contains any geodesic edge, it must have the same pressure as another
region, and by Theorem 3.1 the partition must be tetrahedral (in which case
R1 is connected). Otherwise, the geodesic polygon is a convex component
of another region, which together with R1 can have at most three convex
components, so R1 can have no more than two components. �

We cite two more results of C. Quinn, and then prove the main result of
this section.

Lemma 3.4 (C. Quinn [Q07], Lemma 5.11). In a perimeter-minimizing
partition of S2 into four equal areas, the lowest pressure region R4 satisfies:

(i) If R4 contains a 3-gon, then R4 is a geodesic 3-gon.
(ii) R4 cannot contain more than one 4-gon.
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(iii) R4 cannot contain more than three 5-gons, and if it contains three
5-gons, then these are its only components and they are geodesic.

(iv) If R4 contains a 4-gon and a 5-gon, then these are its only components
and they are geodesic.

The second result of Quinn’s is a summary of several propositions, in
which all the possible configurations for R1 are listed, then a few are shown
to be impossible. Those remaining which are relevant to the proof of Propo-
sition 3.6 share one important characteristic:

Lemma 3.5 (C. Quinn [Q07], Proposition 5.9, Lemma 5.14, Lemma 5.15).
In a perimeter-minimizing partition of S2 into four equal areas, if the highest
pressure region R1 has exactly two connected components, then R1 has a total
of either 7 or 8 edges.

This leads to the main result of the section:

Proposition 3.6. In a least-perimeter partition of S2 into four equal areas,
if any region contains a geodesic polygon, then the partition is tetrahedral.

Proof. By Lemma 3.2, any geodesic m-gon has at most 5 sides. If m = 3
or 5, then the partition is tetrahedral by Theorem 3.1. If m = 2, then the
polygon can be slid (preserving area and perimeter) until it touches another
component, contradicting regularity, so the only case to consider is when
m = 4. If R1 contains or is adjacent to the geodesic polygon, then R1

has the same pressure as another region, and the partition is tetrahedral
by 3.1. Then we can safely assume that the geodesic quadrilateral is in
a lower-pressure region and is surrounded only by components of lower-
pressure regions. When this is the case, all three lower pressure regions
must have the same pressure; by relabeling, we assume R2 contains the
geodesic quadrilateral.

Let l be the total length of the perimeter of R1, and let κ be the curvature
of the edges of R1 (the curvature is the same for all edges since R2 through
R4 have equal pressure). By Lemma 3.3, R1 has at most two components.
If R1 has just one component, then Theorem 3.1 proves the partition to be
tetrahedral, so we treat the case where R1 has two components. Then by
Lemma 3.5, R1 has either 7 or 8 edges. By Gauss–Bonnet, π+κl+8π/3 ≥ 4π
and π + κl + 7π/3 ≤ 4π, so that 2π/3 ≥ κl ≥ π/3.

We turn our attention to R3 and R4. Let C be their total number of
components and n their total number of edges (count an edge twice if it
borders both regions). Let l′ be the perimeter of their edges incident with R1.
Then 2π−κl′+nπ/3 = 2Cπ, which implies 2π(1−C)+nπ/3 = κl′. Because
the geodesic quadrilateral has area less than π, there must be at least one
other component of R2. Any such component must touch R1, otherwise
it would be convex and R2 and R1 would have more than three convex
components between them, contradicting Quinn [Q07], Corollary 2.22. Since
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R2 borders R1, we have l′ < l, hence 2π(1 − C) + nπ/3 < κl ≤ 2π/3. Then
6π(1 − C) + nπ < 2π, so n− 6C < −4. We analyze three final cases.

Case 1. R3 and R4 each contain a 4-gon. By Lemma 3.4, every other
component of R3 and R4 must have at least six edges (or else the partition
contains a geodesic 5-gon and the partition must be tetrahedral). When this
is the case, n− 6C ≥ −4, a contradiction.

Case 2. Exactly one of R3 or R4 contains a 4-gon, say R3. By Lemma 3.4,
every other component in R3 has at least six edges, and R4 contains one or
two 5-gons, the rest of its components also having at least six edges each.
Then n− 6C ≥ −4, a contradiction.

Case 3. Neither R3 nor R4 contains a 4-gon. Then each region can have
at most two 5-gons, and the rest of their components must have at least six
edges each. Again, n− 6C ≥ −4, a contradiction.

Having shown that every possible case either implies the partition is tetra-
hedral or leads to a contradiction, it follows that the partition is tetrahe-
dral. �

4. The plane with density |y|α
Section 4 examines isoperimetric regions in the plane with density |y|α

with α > 0. We start with the simplifying Lemma 4.1 which allows us to
work in just the upper half-plane. Proposition 4.6 and Corollary 4.9 then
prove that isoperimetric regions are semicircular half-disks centered on the
x-axis. In proving the solution is unique, Lemma 4.7 gives a rather general
result about Steiner symmetrization.

Along the way, Proposition 4.2 solves the problem in the much easier case
α ∈ N, where the problem has an interpretation in terms of hypersurfaces
of revolution in Rα+2. Proposition 4.3 uses this same interpretation and
recent work by Ben Reichardt [Re08] to prove that the least-perimeter way
to enclose and separate two areas is half of the standard double bubble
perpendicular to the x-axis as in Figure 3.

We define a cluster in a Riemannian surface as a collection of disjoint
open sets (regions) of prescribed areas and its perimeter as the length of the
union of its regions’ boundaries.

Lemma 4.1. Let ψ be a nonnegative continuous function on [0,∞) which
vanishes precisely at 0. Suppose that for any prescribed areas a1, . . . , am ≥ 0
there is a bounded minimizing cluster in the half-plane {y > 0} with density
ψ(y). Then every minimizer in the half-plane is minimizing in the whole
plane with density ψ(|y|), and uniqueness in the half-plane implies unique-
ness in the whole plane (up to horizontal translation and reflection across
the x-axis of components of clusters).

Proof. Let C be any cluster enclosing areas a1, . . . , am in the whole plane
with density ψ(|y|). Let C+ be the cluster of m regions in the upper half-
plane whose regions are the intersections of the regions of C with the upper
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Figure 3. In the upper half-plane with density yn, half of
the standard double bubble encloses and separates two areas
with least perimeter. Illustration modified from Reichardt
([Re08], Figure 1).

half-plane, and let C− be the analogous cluster in the lower half-plane. By
hypothesis, C+ and C− may be replaced by bounded minimizing clusters Γ+

and Γ− enclosing the same areas. Reflect Γ− across the x-axis and translate
it horizontally until the regions of Γ+ and Γ− are disjoint (this is possible,
since each is bounded). Then Γ+ ∪ Γ− is a cluster in the upper half-plane
enclosing areas a1, . . . , am with perimeter no greater than C. Thus every
minimizer in the half-plane is minimizing in the whole plane.

Now assume uniqueness in the half-plane. Supposing there is another
minimizer in the whole plane, the construction above yields a minimizer
in the half-plane of the form Γ+ ∪ Γ− with Γ+ and Γ− nonempty. Now
translating Γ+ horizontally while leaving Γ− fixed contradicts uniqueness in
the half-plane. �

Figure 4. Lemma 4.1 shows that if semicircles on the x-axis
are minimizing in the upper half-plane with density yα for
α > 0, then they are minimizing in the plane with density
|y|α.

Proposition 4.2. Given a natural number n, on the plane with density
|y|n, semicircles on the x-axis uniquely solve the isoperimetric problem up
to horizontal translation and reflection across the x-axis.
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Proof. By Lemma 4.1, it suffices to prove the result in the half-plane
with density yn (see Figure 4). Given a closed curve C in the half-plane
bounding a region R, the surface area of and the volume enclosed by its
(n+1)-dimensional surface of revolution around the x-axis are proportional
to
∫
C y

n ds and
∫
R y

n dA respectively. These integrals give the weighted
perimeter and weighted area of the curve in the half-plane with density yn.
So minimizing weighted perimeter given a weighted area is equivalent to
finding the least-area (n + 1)-dimensional surface of revolution enclosing a
given volume. Since the round (n + 1)-dimensional sphere Sn+1 uniquely
minimizes surface area for such surfaces of revolution, a curve will be isoperi-
metric if and only if the curve is a semicircle on the x-axis. �

Before treating the general case where α is any positive real number, we
can use the techniques in Proposition 4.2 to solve the double bubble problem
in the plane with density |y|n.
Proposition 4.3. In the plane with density |y|n, the least-perimeter way
to enclose two regions of prescribed area is half the standard double bubble;
namely three circular arcs perpendicular to the x-axis and meeting one an-
other at 120 degrees as in Figure 3 above. This shape is uniquely minimizing
up to horizontal translation and reflection across the x-axis.

Proof. By Lemma 4.1, it suffices to prove the result in the upper half-plane
with density yn. Let C be a graph which encloses two regions, R1 and R2.
The area of the (n + 1)-dimensional surface of revolution generated by C
is proportional to the weighted length of C, and the volumes enclosed by
this surface of revolution are proportional to the weighted areas of R1 and
R2, so the proposition follows from Reichardt’s result ([Re08], Theorem 1.1)
that the standard double bubble in Rn+2 uniquely minimizes surface area
among all surfaces enclosing two prescribed volumes. �

We now move to the general case where α is any positive real number.
The most important technique used in the proofs that follow is Steiner sym-
metrization. Classical Steiner symmetrization says a region R in Rn can
be symmetrized over an (n − 1)-dimensional hyperplane H by replacing
each 1-dimensional slice of R perpendicular to H by a line segment of the
same length centered on H. This process preserves the volume of R with-
out increasing its surface area. For product manifolds with density, [Ro05],
Proposition 8 guarantees that slices of a region in the product may be re-
placed by minimizers in one of the factors, provided these minimizers grow
by uniform enlargement. This new region will have no greater perimeter, but
a characterization of equality is not given; hence the need for Lemma 4.7.

Lemma 4.4. On the half-plane {(x, y) : y > 0} with density yα, α > 0, for
every region R with finite area, there exists an f : R → [0,+∞] satisfying:

(i) The region R′ = {(x, y) : 0 < y < f(x)} has the same weighted area as
R.
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(ii) R′ is symmetric with respect to the y-axis.
(iii) f(x) is monotonic in |x|.
(iv) lim|x|→∞ f(x) = 0.
(v) The perimeter of R′ is no greater than the perimeter of R.

Proof. We use a Steiner symmetrization argument. Slice the half-plane
with vertical half-lines, and replace each vertical slice of R with an initial
interval (0, a) of the same weighted length, preserving the weighted area
of R. Since initial intervals solve the isoperimetric problem in the half-line
with density yα and grow by uniform enlargement, this symmetrization does
not increase perimeter. Similarly replace horizontal slices of R with intervals
centered on the y-axis, still preserving area. By the classical symmetrization,
this does not increase unweighted perimeter; since density is constant along
horizontal slices, the symmetrization does not increase weighted perimeter
either. Call the new region R′, and conditions (i), (ii), (iii) and (v) follow
directly from the symmetrization (see Figure 5), while condition (iv) follows
from the requirement that R has finite area. �

Figure 5. By replacing vertical slices with initial intervals
and horizontal slices with centered intervals, perimeter is re-
duced while area is maintained.

Lemma 4.5 (F. Morgan). On the half-plane {(x, y) : y > 0} with density
yα, α > 0, for any given area, there exists an isoperimetric region.

Proof. Consider a sequence of regions of area A with perimeter approaching
the infimum. By Lemma 4.4 we may assume that each region is bounded
by the x-axis and the graph of a symmetric function f monotone in |x|,
approaching zero as |x| → ∞. The perimeter P and area A satisfy

P ≥
∫ ∞

−∞
fα dx,(1)

A =
∫ ∞

−∞

∫ f(x)

0
yα dy dx =

1
1 + α

∫ ∞

−∞
fα+1 dx ≤ f(0)

P

1 + α
.(2)

By standard compactness arguments of geometric measure theory (see
Morgan [M08]) we may assume that these regions converge weakly without
perimeter cancelation to a perimeter-minimizing region of area A0 ≤ A. By
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(2) and P bounded we have f(0) bounded below, which gives A0 > 0. By
scaling, minimizers exist for all areas. �

With these first two lemmas, we prove that semicircles are minimizing,
though we are not yet ready to prove uniqueness.

Proposition 4.6. On the half-plane with density yα, α > 0, the verti-
cal Steiner symmetrization of any isoperimetric curve is a semicircle per-
pendicular to the x-axis. In particular, the semicircle is a solution to the
isoperimetric problem.

Proof. Suppose that C is the boundary of a Steiner-symmetrized isoperi-
metric region in the half-plane (isoperimetric regions exist for all areas by
Lemma 4.5). Let C(s) = (x(s), y(s)) be a parameterization by unweighted
arc length so that C has curvature κ = x′′y′ − x′y′′ and outward normal
n̂ = (y′,−x′). Then C must have constant generalized curvature (see Intro-
duction)

κϕ = κ− n̂ · ∇(log yα) = x′′y′ − x′y′′ +
x′α
y
.

We set up a model used in a paper by Hsiang [H82] on surfaces of Delaunay.
Since C is isoperimetric, it is smooth, so we can define θ at every s as
the angle clockwise from vertically upward to the unit tangent. Taking
derivatives with respect to s then gives y′ = cos θ and x′ = sin θ, hence

κϕ = θ′(cos2 θ + sin2 θ) +
α sin θ
y

= θ′ +
α sin θ
y

.

Recall that κϕ must be constant. Put

F (s) = yα sin(θ) − κϕ
yα+1

α+ 1
,

so that

F ′(s) = αyα−1y′ sin θ + yαθ′ cos θ − κϕy
αy′

= αyα−1 cos θ sin θ + yαθ′ cos θ −
(
θ′ +

α sin θ
y

)
yα cos θ

= 0.

Then in fact

F = yα
(

sin θ − y
κϕ
α+ 1

)
is constant. Since C has finite weighted length, there exists a sequence of
points C(sn) on C such that the y-coordinate y(sn) → 0 as n → ∞. Then
F (sn) → 0, and because F is constant, F = 0. Putting c = κϕ/(α + 1), the
identity F = 0 gives the last equality in the string below:√

1 − (y′)2 = x′ = sin θ = cy,
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from which it follows that y′ = ±
√

1 − c2y2. Then every component of C
is a semicircle on the x-axis of radius 1/c. Since two semicircles may be
replaced by a single larger semicircle with less perimeter, C must consist of
a single semicircle. �

We need a final tool to conclude that the above solution is unique.

Lemma 4.7. Let ψ be a smooth density on I = (0,∞), and suppose that
initial intervals uniquely minimize perimeter for every prescribed volume.
Let M be a smooth n-dimensional Riemannian manifold with density ϕ, and
consider the product M × I with density ϕ × ψ. Let R be an isoperimetric
region in M × I, and let R′ denote its Steiner symmetrization. Suppose that
at every point R′ is smooth with a nonvertical tangent plane. Then R = R′.

Proof. The crux of this argument follows Rosales et al. ([RCB08], proof of
Theorem 5.2). By the near-smoothness of minimizers (the set of singularities
is closed, with dimension no greater than n− 7 by [M03], Section 3.10) and
by Sard’s theorem, the set of all x ∈ M such that R has any nonsmooth
points or any vertical tangent planes above x has Lebesgue measure 0. (This
does not imply that R has nonvertical tangent planes a.e., but only that the
irregular points project to a null set in M .) Then over almost all points
in M , R can be written as the region between the graphs of some number
(depending on the point) of smooth positive functions h1, . . . , hm : M → I,
and the surface area of R is at least∫

M

∑
i

ϕψ(hi)
√

1 + |∇hi|2 dA.

On the other hand, its symmetrization R′ is the region under the graph of
a smooth function f , and by the hypothesis of nonvertical tangent planes,
all of its surface area is captured by the integral∫

M
ϕψ(f)

√
1 + |∇f |2 dA.

Since R and R′ must have the same surface area (they are both isoperi-
metric), the desired result will follow by proving that the inequality for
integrands

(3) ψ(f)
√

1 + |∇f |2 ≤
∑
i

ψ(hi)
√

1 + |∇hi|2

holds pointwise (a.e., where quantities are defined), with equality only when
the sum on the right consists of a single term with h1 = f , as this will show
R = R′.

The symmetrization gives relations between f and the hi. First, since
vertical slices of R′ have the same weighted length as vertical slices of R, we
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have for a.e. point in M that∫ f

0
ψ(z) dz =

∫ hm

hm−1

ψ(z) dz +
∫ hm−2

hm−3

ψ(z) dz + · · · ,

formally taking h0 = 0 if m is odd. Differentiating this equality gives

ψ(f)∇f =
∑
i

±ψ(hi)∇hi,

so by the triangle inequality,

(4) |∇f | ≤
∑
i

ψ(hi)
ψ(f)

|∇hi|.

By the assumption that intervals (0, f) are uniquely minimizing in I, we
have

(5) ψ(f) ≤
∑
i

ψ(hi)

with equality only if the sum on the right consists of h1 = f alone. Put
λ =

∑
i ψ(hi)/ψ(f) ≥ 1, and define F (t) =

√
1 + t2, so that F is strictly

convex and is monotone in |t|. By this monotonicity and then by convexity,
we calculate

F (|∇f |) ≤ F

(∑
i

ψ(hi)
ψ(f)

|∇hi|
)

= F

(∑
i

ψ(hi)
λψ(f)

λ|∇hi|
)

≤
∑
i

ψ(hi)
λψ(f)

F (λ|∇hi|) =
1

ψ(f)

∑
i

ψ(hi)
√
λ−2 + |∇hi|2

≤ 1
ψ(f)

∑
i

ψ(hi)
√

1 + |∇hi|2,

which proves (3) with the desired characterization of equality in the last
line. �
Remark 4.8. We note that trivial modifications of the proof show that
Lemma 4.7 can also be applied where I is the real line with density such
that either:

(i) symmetric intervals are uniquely minimizing for all volumes, or
(ii) initial intervals (−∞, a) are uniquely minimizing for all volumes.

Such a lemma simplifies the proof of Rosales et al. ([RCB08], Proposition
5.2) that balls about the origin are uniquely isoperimetric in Rn with density
exp(r2).

Corollary 4.9. On the half-plane with density yα, α > 0, a semicircle
perpendicular to the x-axis uniquely solves the isoperimetric problem.

Proof. The vertical Steiner symmetrization of any isoperimetric region is
exactly such a semicircle (Proposition 4.6), whose tangent is everywhere
nonvertical, satisfying the conditions of Lemma 4.7. �
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5. Densities on the cylinder

This Section 5 first considers the isoperimetric problem on the (n + 1)-
dimensional cylinder Sn×R with density ez. We also examine isoperimetric
curves on the 2-dimensional cylinder S1 × R with density |θ|α.

Proposition 5.1. On the (n+1)-dimensional cylinder, Sn×R, with density
ez a horizontal n-sphere, Sn×{z}, uniquely solves the isoperimetric problem
among smooth hypersurfaces.

Proof. We will prove both that a horizontal n-sphere has weighted surface
area equal to the weighted volume it bounds below and that any other
surface has weighted surface area strictly greater than the weighted volume
it bounds.

Given any smooth closed hypersurface S ⊂ Sn ×R, the weighted surface
area of S is given by the equation P =

∫
S e

z dA. If α(p) ∈ [0, π/2] is the
angle between S and the horizontal then

(6) P =
∫
S
ez dA ≥

∫
S
ez cos(α(p)) dA =

∫
Sn

( ∑
{z:(Θ,z)∈S}

ez

)
dA

by the co-area formula (Morgan [M08]). Let

(7) z0(Θ) = sup{z : (Θ, z) ∈ S},
adopting the convention sup ∅ = −∞. Then

(8) P ≥
∫
Sn

ez0 dA =
∫
Sn

∫ z0

−∞
ez dz dA ≥ V.

Since equality holds throughout for a horizontal sphere, horizontal spheres
minimize perimeter for given volume. Conversely, suppose equality holds
throughout. By (6), α(p) = 0 and S consists of horizontal spheres. By
(8), S is a single sphere. This process is illustrated for S1 × R in Figure 6
below. �

α

0 0 02π2π 2π

Figure 6. Any curve which is not a horizontal circle has
perimeter strictly greater than area enclosed.

Finally, we examine the cylinder with density |θ|α and find that semicircles
on the line θ = 0 are minimizing for small areas.
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Proposition 5.2. Let α > 0 be given, and consider the cylinder S1 × R
with density |θ|α for θ ∈ (−π, π]. For small areas, semicircles on the line
θ = 0 solve the isoperimetric problem, and do so uniquely up to translation
along and reflection across the line θ = 0.

Proof. Consider a curve γ enclosing area no greater than the area enclosed
by a semicircle on the line θ = 0 and tangent to the line θ = π. First suppose
no component of γ crosses the line θ = π. By the assumption on the area
enclosed by γ, semicircles on θ = 0 enclosing no greater area fit inside the
strips [0, π]×R and [−π, 0]×R, so we can apply Proposition 4.6, to replace
the parts of γ both above and below the line θ = 0 with such semicircles,
reducing perimeter. Reflect one of these semicircles over the line θ = 0, and
then Proposition 4.6 can be applied again to recombine the two semicircles
into one larger semicircle with less perimeter, again fitting inside one of the
half cylinders. Then we see that a semicircle encloses area more efficiently
than any curve not crossing θ = π.

It now suffices to show for small areas that semicircles on θ = 0 are more
efficient than curves crossing θ = π. First let σ be the semicircle of radius
R, σ(t) = (R sin t, R cos t) for t ∈ [0, π], which will be considered a curve on
the strip [0, π] × R for 0 < R ≤ π. Calculate the length of σ as

L(σ) =
∫
σ
θα ds =

∫ π

0
(R sin t)αRdt = Rα+1

∫ π

0
(sin t)α dt

and the area enclosed by σ as

A(σ) =
∫
θα dA =

∫ R

0

∫ π

0
(r sin t)αr dt dr =

Rα+2

α+ 2

∫ π

0
(sin t)α dt.

In particular, L(σ) is proportional to A(σ)(α+1)/(α+2) . Now suppose ζ is a
component of an area-enclosing curve which intersects the line θ = π. For
small area, we will see that ζ must stay close to θ = π, say, ζ must stay in
the strips where θ > π/2 or θ < −π/2, or else a semicircle on θ = 0 would
enclose that area more efficiently. If ζ did not stay close to θ = π, its length
would satisfy

L(ζ) =
∫
ζ
|θ|α ds ≥ 2

∫ π

π/2
θα dθ,

which is constant and positive. Yet we just calculated that a semicircle on
θ = 0 has perimeter proportional to a positive power of the area enclosed,
so that the perimeter approaches to zero as area goes to zero. Thus we
may suppose that ζ stays in the region with density between (π/2)α and
πα. Let L0 and A0 denote unweighted perimeter and area respectively, and
then by the planar isoperimetric inequality, L0(ζ) ≥

√
4πA0(ζ). This gives

for weighted perimeter and area

L(ζ) >
(π

2

)α√
4πA0(ζ) ≥

(π
2

)α√
4π1−αA(ζ).
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That is, L(ζ) is bounded below by a constant multiple of A(ζ)1/2. Then
semicircles on θ = 0 are more efficient for small areas, because they have
length proportional to a higher power of area enclosed, so their lengths
shrink to 0 more rapidly as area goes to 0. �

6. Stability of circles in surfaces of revolution with
density

We turn to the problem of determining when a circle in a surface of
revolution with radial density is stable, that is, when its second variation of
weighted perimeter for fixed weighted area is nonnegative. We will say that
a curve is stable if it locally minimizes perimeter for given area. We begin
by stating Wirtinger’s inequality in Lemma 6.1 and use it to generalize a
proposition of Rosales et al. ([RCB08], Theorem 3.10), that spheres about
the origin in Euclidean space with radial density are stable if and only if the
density is log convex. That is, Theorem 6.3 finds necessary and sufficient
conditions in disks, spheres, and annuli of revolution with radial density
for the stability of its circles of revolution. An immediate corollary (6.4)
demonstrates the symmetry of the condition in disks with increasing or
decreasing Gauss curvature. In the borderline cases S2 and H2 where Gauss
curvature is constant, Rosales’ observation for Euclidean space still holds:
circles about the origin are stable if and only if the radial density is log convex
(Corollary 6.5). The constructions of 6.6 and 6.7 show that the equivalence
does not hold in all surfaces of revolution. Proposition 6.8 then finds that
for any positive density, there exists a Riemannian annulus of revolution
where circles of revolution are trivially stable. We end with two conjectures
as to when isoperimetric regions are bounded by circles of revolution.

Lemma 6.1 (Wirtinger’s inequality [RW08]). If f : R → R is C1 and peri-
odic with period 2π, and if

∫ 2π
0 f(t) dt = 0, then

∫ 2π
0 f ′(t)2 dt ≥ ∫ 2π

0 f(t)2 dt.
Equality holds if and only if f(t) = a sin t+ b cos t for some constants a and
b.

Lemma 6.2. Let S be a smooth Riemannian disk, sphere, or annulus of
revolution with metric ds2 = dr2 + f(r)2dθ2, where r is the Riemannian
distance from the pole of revolution, or in the case of the annulus, r is
the signed distance from some chosen circle of revolution. Then a circle of
revolution (r constant) has classical geodesic curvature κ = f ′(r)/f(r), and
the Gauss curvature of S along the circle is given by G = −f ′′(r)/f(r).

Proof. Set P (r) = 2πf(r), the unweighted perimeter of a centered circle
with radius r, and set A(r) =

∫ r
0 P (t) dt, the [signed] unweighted area of a

disk [annulus] bounded by that circle. Then

κ =
dP

dA
=
P ′(r)
A′(r)

=
P ′(r)
P (r)

=
f ′(r)
f(r)

.
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To calculate G, we observe that

P ′(r) =
dP

dA
A′(r) = κP (r) = 2π −

∫ r

0
GP (t) dt

by Gauss–Bonnet. Thus P ′′(r) = −GP (r), and G = −f ′′(r)/f(r). �

Theorem 6.3. Let S be a smooth Riemannian disk, sphere, or annulus of
revolution with metric ds2 = dr2 + f(r)2dθ2 and density eψ(r). Set

Q(r) = f ′(r)2 − f(r)f ′′(r) − f(r)2ψ′′(r).

Then the circle of revolution at distance r is stable if and only if Q(r) ≤ 1.
Additionally, that circle has strictly positive second variation of weighted
perimeter for fixed weighted area (P − κψA)′′(0) for all such (nontrivial)
variation vector fields if and only if Q(r) < 1.

In the borderline case that Q(r) = 1, the second variation for the circle is
positive for all area-preserving u except u = a sin θ+ b cos θ, in which case it
vanishes.

Proof. As given in Rosales et al. ([RCB08], Proposition 3.6), the second
variation of such a circle of revolution γ centered at the pole is

(P − κψA)′′(0) =
∫
γ

((
du

ds

)2

− u2
(
κ2 +G− ψ′′)) eψ ds,

where κ is the classical geodesic curvature of γ, G is the classical Gauss
curvature of S along γ, and u is the normal component of a smooth variation
vector field with

∫
γ u ds = 0. For such circles, u can be reparameterized in

terms of θ with ds
dθ = f(r), so du

ds = 1
f(r)

du
dθ . Now by Lemma 6.2, our second

variation becomes

eψ

f

∫ 2π

0

((
du

dθ

)2

− u2(f ′2 − ff ′′ − f2ψ′′)

)
dθ

=
eψ

f

∫ 2π

0

((
du

dθ

)2

−Qu2

)
dθ.

Now if Q < 1, we have

(P − κψA)′′(0) >
eψ

f

∫ 2π

0

((
du

dθ

)2

− u2

)
dθ,

which is nonnegative by Wirtinger’s inequality (Lemma 6.1), since∫ 2π

0
u dθ =

1
f

∫
γ
u ds = 0.

In the case that Q = 1, Wirtinger’s inequality tells us the second variation
is nonnegative for all appropriate u, vanishing only for u = a sin θ + b cos θ.
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When Q > 1, we take u = sin θ and now find that the second variation is
negative.

Conversely, if (P −κψA)′′(0) ≥ 0 for all smooth area-preserving variation

vector fields u, then
∫ 2π
0

((
du
dθ

)2 −Qu2
)
dθ ≥ 0 so that Q ≤ 1, else the choice

u = sin θ gives a negative second variation, a contradiction. Similarly, if
(P − κψA)′′(0) > 0 for all such u, then Q < 1. �

Corollary 6.4. Let S be a smooth Riemannian disk of revolution with den-
sity eψ(r) and monotone Gauss curvature G(r). If G is nonincreasing and
ψ′′(r) ≥ 0, then the circle of revolution with radius r is stable. If either G is
strictly increasing or ψ′′(r) > 0, then that circle has strictly positive second
variation. On the other hand, if G is nondecreasing and the circle at radius
r is stable, then ψ′′(r) ≥ 0. Similarly, if either G is strictly increasing or
that circle has strictly positive second variation, then ψ′′(r) > 0.

Proof. As in Ritoré ([R01], Section 1), write the metric of S as ds2 =
dr2 + f(r)2dθ2, and put H = f ′2 − ff ′′. For a smooth disk of revolution,
f(0) = 0 and f ′(0) = 1, so that H(0) = 1. By Lemma 6.2, we have
G = −f ′′/f , so that G′ = (f ′f ′′− ff ′′′)/f2. Observe that H ′ = f ′f ′′− ff ′′′,
so that G and H increase or decrease together, and they have the same
critical points. Thus when G is nonincreasing and ψ′′(r) ≥ 0, we have
H(r) ≤ H(0) = 1, so that H(r) − f(r)2ψ′′(r) ≤ 1 and the circle at r is
stable by Theorem 6.3. When G is nondecreasing and the circle at r is
stable, we have H(r) ≥ 1 and H(r) − f(r)2ψ′′(r) ≤ 1, so that ψ′′(r) ≥ 0.
The corresponding statements about strict inequalities follow by the same
brand of reasoning. �

Corollary 6.5. In R2, S2, or H2 with radially symmetric density eψ(r),
a circle about the origin (about the pole for S2) is stable [respectively has
positive second variation] if and only if ψ′′ is nonnegative [positive] on that
circle.

Proof. All three surfaces have constant Gauss curvature, and any circle
of revolution lies in an open disk, so the result follows from Corollary 6.4.
Alternatively, the result can seen by the identity f ′2S −fSf ′′S−f2

Sψ
′′ = 1−f2

Sψ
′′

for each surface, where fR2(r) = r, fS2(r) = sin r, and fH2(r) = sinh r. �

For general surfaces of revolution, it is not true that the stability of circles
of revolution is equivalent to the log convexity of a radial density. In the
next corollary, we split hairs in our inequalities to show that the converses
to both halves of Corollary 6.4 are false when Gauss curvature is strictly
monotone. The following corollaries give more intuitive constructions: we
see that for any radial density function, there exists a complete surface of
revolution with that density where some circle of revolution is unstable, and
there exists an annulus where every circle of revolution is trivially stable.
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Corollary 6.6. Let S be a smooth Riemannian disk of revolution with met-
ric ds2 = dr2 +f(r)2dθ2, and strictly increasing or strictly decreasing Gauss
curvature G(r). Set H = f ′2 − ff ′′, and define the function ψ up to a
first-degree polynomial in r by taking ψ′′ = (H − 1)/2f2. Endow S with
density eψ, which is smooth except possibly at the pole of revolution. If G
is decreasing, then ψ′′ < 0, and all circles of revolution have positive second
variation. If G is increasing, then ψ′′ > 0, and all circles of revolution are
unstable.

Proof. Recall that G and H have the same derivative up to multiplication
by the positive function 1/f2, so they increase and decrease simultaneously.
Recall also that for a smooth disk, we have H(0) = 1. If G is decreasing,
then H decreases from 1 so that ψ′′ = (H − 1)/2f2 < 0 for all r > 0, yet
H − f2ψ′′ = (H + 1)/2 < 1, so circles of revolution have positive second
variation. Symmetrically, if G is increasing, then H increases from 1, and
ψ′′ = (H − 1)/2f2 > 0 although H − f2ψ′′ = (H + 1)/2 > 1, so that circles
of revolution are unstable. �
Corollary 6.7. For any smooth real-valued function ψ, defined on R, [0,∞),
or some subinterval [0, a], there exists a complete surface of revolution em-
bedded in R3 with density eψ(r) such that some circle of revolution is unsta-
ble.

Proof. As in Figure 7, the idea is to take a surface with a highly curved lip,
along which a circle will not be stable. In the case that ψ is defined on R or
[0,∞), fix some r0 > 1. Pick a generatrix in the plane to be rotated about the
y-axis, γ(r) = (x(r), y(r)), parameterized by arc length, such that x(r0) = 1,
x′(r0) = 0, x′′(r0) < −ψ′′(r0) − 1, and x > 0 except when ψ is defined on
[0,∞], when we ask x(0) = 0. The surface has metric ds2 = dr2 + x(r)2dθ2,
and we see that x′(r0)2 − x(r0)x′′(r0)− x(r0)2ψ′′(r0) > 1, so the circle at r0
is not stable.

In the case that ψ is only defined on [0, a], we assume without loss of
generality that a > 2 so that the generatrix can be constructed as claimed
with 1 < r0 < a − 1. Then the same construction goes forward, except we
require that x(0) = x(a) = 0, and the surface is a sphere of revolution with
an unstable circle. �

Proposition 6.8. For any smooth real-valued function ψ, defined on R or
some subinterval, the annulus of revolution S with metric dr2 +e−2ψdθ2 and
density eψ has the property that all of its circles of revolution have length 2π
and are (uniquely) the shortest noncontractible curves (in particular, they
have positive second variation). In this sense, S is essentially a cylinder
with weighted area but unweighted perimeter.

Proof. Note the surface is an annulus since e−ψ > 0. We have weighted
length ds2ψ = e2ψ(dr2 +e−2ψdθ2) = e2ψdr2 +dθ2. Any noncontractible curve
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Figure 7. Even with favorable density, on a surface with a
highly curved lip, a circle along the lip is unstable.

must sweep out at least angle 2π, hence have weighted length at least 2π,
with equality holding if and only if the curve has no dr component in its
arc length and hence is a circle of revolution. Also for f = e−ψ, we have
f ′2 − ff ′′ − f2ψ′′ = 0, so circles of revolution have positive second variation
as expected.

The relationship between S and the cylinder S1 × R (or a truncation of
the cylinder) is made clear by reparameterization. Setting dt = eψdr, we
have length ds2ψ = dt2 + dθ2 and area dAψ = eψdr e−ψdθ = e−ψdt dθ. �

With the notation of Theorem 6.3, a direct calculation shows that Q(r)
is identically 0 in the above example, giving another proof that the circles
of revolution have positive second variation. We note that actually the
minimality of circles in Proposition 6.8 is an example of a more general
principle ([MM08], Proposition 2.1), by comparison with constant-density
cylinders with no curvature. (When f ≤ 1 or more generally is bounded,
we may apply [MM08], Proposition 2.1 directly; if f is unbounded, we make
the comparison on every compact truncation of the cylinder.)

We end this section with two conjectures as to when circles of revolution
may be isoperimetric.

Conjecture 6.9. On a complete, smooth Riemannian plane or sphere of
revolution with nonincreasing Gauss curvature and increasing, log convex
radial density, isoperimetric regions exist and are bounded by circles of rev-
olution.

We have reason to believe such a conjecture: in the classical case where
the surface has constant density, decreasing Gauss curvature implies that
isoperimetric regions exist and are bounded by such circles ([MHH00], [R01]),
though the regions needn’t be disks. By Corollary 6.4, we know at least that
such circles are stable and hence local minima. Appealing to the common
wisdom that isoperimetric curves prefer low-density regions, it seems there
is no other place for an isoperimetric curve to be. To make a comparison, it
was conjectured by Rosales ([RCB08], Conjecture 3.12) that isoperimetric
regions in Rn with log convex radial density are balls centered at the origin.
We provide an alternate, logically independent conjecture from Frank Mor-
gan, motivated by the observation ([R01], Section 1) that Gauss curvature
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and f ′2 − ff ′′ (the constant-density version of Q(r)) increase and decrease
together.

Conjecture 6.10 (F. Morgan). Consider a smooth Riemannian plane or
sphere of revolution with radial density eψ and metric ds2 = dr2 + f(r)2dθ2.
If Q(r) = f ′2 − ff ′′ − f2ψ′′ not only is less than or equal to 1 but also is
nonincreasing, then isoperimetric regions exist and are bounded by circles of
revolution.

To see the logical independence, we start with any example surface satis-
fying the hypotheses of Conjecture 6.9 with ψ′′ strictly positive, then intro-
duce a small, sharp decrease in ψ′′ so that the hypothesis of Q(r) decreasing
in Conjecture 6.10 is not met. Conversely, we can start with an example
satisfying the hypotheses of Conjecture 6.10 with constant density 1 and
f ′2 − ff ′′ strictly decreasing, then introduce a nearly constant density with
ψ′′ small enough to maintain the hypotheses of Conjecture 6.10 but some-
where negative.

The question arises whether either conjecture might also apply in some
capacity to cylinders R × S1 with density. We first acknowledge that even
the constant-density versions of the above conjectures (and even after some
necessary restatement) would amount to new results. For work on this
constant-density analogue, see [R01], Section 5, which treats the case where
the end of maximal curvature has finite area but shows that circles can
be unstable without this hypothesis (in contrast with planes and spheres,
decreasing Gauss curvature does not imply stability of circles of revolution on
cylinders). Of course, no such instability can occur in any generalization of
Conjecture 6.10, but an additional hypothesis guaranteeing stability would
be necessary to apply Conjecture 6.9 to cylinders.

For those cylinders whose ends both have infinite weighted area, we should
often expect small areas to be more efficiently enclosed as nearly round
disks than as annuli of revolution, so a more sensible restatement of the two
conjectures would ask for curves of minimal weighted length among those
enclosing a given (net) weighted area with some fixed circle of revolution.
Moreover, such a restatement can apply just as well to truncated cylinders
with no cause for concerns about the boundary. In any case, an appropriate
generalization of Conjecture 6.10 would correctly predict the minimality of
circles where the density is 1/f (as in Proposition 6.8), by the observation
that Q(r) vanishes in this scenario.

7. Asymptotic estimates

In this section we generalize to surfaces with density the main result of
Maurmann et al. [MEM08] that the minimum perimeter P (n) to partition
a compact surface M with surface area |M | into n regions of equal area is
asymptotic to half the perimeter of n planar hexagons of area |M |/n. That
is, P (n) is asymptotic to 121/4

√|M |n, which we abbreviate by defining a
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constant, H = 121/4
√|M |. The proof used area-preserving near-isometries

between small regions in M and in the plane to exploit the fact that regular
hexagons partition the plane most efficiently into unit areas (Hales [H01]).
This argument gave the asymptotic lower bound; the upper bound followed
by constructing a partition of M into n regions of equal area by mapping
clusters of planar hexagons into M and patching up the interstices with
asymptotically negligible cost. We begin by stating a fundamental inequality
from Hales and the relevant results of Maurmann et al. Let M be a smooth,
compact Riemannian surface throughout, possibly with boundary, and recall
from Section 4 that a cluster is a collection of disjoint open sets of prescribed
areas.

Theorem 7.1 (Hales, Theorem 2 [H01], Proposition 15.6 [M08]). Any clus-
ter of planar regions with areas a1, . . . , an such that 0 < ai ≤ 1 has perimeter
greater than 121/4

∑n
i=1 ai.

Lemma 7.2 allows for the partitioning of M into a finite number of regions
which can be made as nearly planar as we wish, almost reducing the problem
to the known planar case.

Lemma 7.2 ([MEM08], Lemma 7). For any ε > 0, there exists a parti-
tion of M into a finite number of disjoint regions E1, . . . , En with piecewise
smooth boundaries such that on each Ei there exists an area-preserving dif-
feomorphism Φi mapping Ei to a region in R2 while distorting length by no
more than a factor of 1 + ε. Moreover, the Ei may be taken so that each
consists of finitely many disks.

In constructing an upper bound for P (n), small regular hexagons can be
mapped by Lemma 7.2 into the regions Ei. The purpose of Lemma 7.3 is
then to partition the remaining area into k regions at cost O(

√
k), which will

be asysmptotically insignificant compared to
√
n because k will be O(

√
n),

as in [MEM08], Lemma 4.

Lemma 7.3 ([MEM08], Lemma 8). Let M be a smooth, compact Riemann-
ian surface. Then there exist constants c1 and c2 such that for any integer
k and any measurable subset A ⊂ M , there exists a partition of M into k
regions R1, . . . , Rk with total perimeter less than c1

√
k + c2 such that the

area of each A ∩Ri equals |A|/k.
These lemmas imply the main theorem:

Theorem 7.4 ([MEM08], Theorem 9). The least perimeter P (n) to parti-
tion M into n regions of equal area is asymptotic to n/2 times the perimeter
of a planar regular hexagon of area |M |/n:

lim
n→∞

P (n)√
n

= 121/4
√

|M |.
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To generalize the result, we first consider surfaces with length density, in
which length is weighted, but not area. A conformal change of metric will
yield the analogous result for surfaces with density.

Theorem 7.5. Let M be a smooth, compact Riemannian surface with length
density ϕ. Now let P (n) denote the minimum (weighted) perimeter of a
partition of M into n regions of equal area. Then P (n) is asymptotic to

121/4

√
n

|M |
∫
M
ϕdA.

That is, as n→ ∞, P (n)/
√
n approaches H = 121/4

√|M | times the expected
value of ϕ on M .

Proof. For the upper bound, we retrace our steps through the construction
in Theorem 7.4. Let ε > 0 be given. Use Lemma 7.2 to partition M into
regions E1, . . . , Em on which area-preserving diffeomorphisms Φ1, . . . ,Φm

distort length by no more than a factor of 1 + ε. By the uniform continuity
of ϕ on M , it is clear that we can also require the regions Ei to be sufficiently
small that ϕ varies by less than ε on each Ei. That is, Ji − ji < ε, where
Ji = sup{ϕ(x) : x ∈ Ei} and ji = inf{ϕ(x) : x ∈ Ei}. At this point, exactly
the same construction given in Theorem 7.4 gives the desired upper bound:
each Φ−1

i maps clusters of regular planar hexagons of size |M |/n into Ei,
and the partition is finished by an application of Lemma 7.3. As before,
all lower error terms in the estimate will simply drop out in the limit; they
are increased at most by a constant factor of sup{ϕ(x) : x ∈ M}. That is,
we need only explicitly treat the term corresponding to half the perimeter
of the hexagons mapped in, and the rest will be carried as an o(

√
n) error

term.
We focus our attention on each Ei individually. Since the hexagons have

size |M |/n, it is clear that no more than |Ei|n/|M | hexagons are mapped
into Ei. Half the perimeter of so many planar hexagons is no more than
121/4|Ei|

√
n/|M |. Accounting for stretching and weighting, these hexagons

are mapped into Ei to contribute less than (1+ ε)121/4Ji|Ei|
√
n/|M | to the

weighted perimeter of our partition. Summing over i, we find

P (n)√
n

<
(1 + ε)121/4√|M |

m∑
i=1

Ji|Ei| + o(
√
n)√
n

<
(1 + ε)121/4√|M |

(∫
M
ϕdA+ ε|M |

)
+
o(
√
n)√
n

.

Taking the lim sup as n → ∞ and then the limit as ε → 0 gives the upper
bound.

For the lower bound, we let ε > 0 and take Ei, Φi, Ji, and ji as above,
though we may assume each Φi maps each Ei into a different region of
the plane. Let Xn be a graph which partitions M into n regions of equal
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area and minimizes weighted perimeter (minimizing graphs exist and satisfy
the conditions of smoothness and finiteness, just as they do in the classical
case when ϕ = 1). Let Q denote the total weighted perimeter of the ∂Ei.
We first find a lower bound on the unweighted perimeter of Xn in each
Ei. Let Yi = ∂Φi(Ei) ∪ Φi(Xn ∩ Ei). Then Yi defines a cluster of planar
regions with area no greater than |M |/n by considering the connected open
sets it encloses as its regions. Dilate by

√
n/|M | so that the regions have

area at most 1, and a quick application of Hales’ Theorem 1 guarantees the
perimeter of Yi is greater than 121/4|Ei|

√
n/|M |. Accounting for stretching

by Φ and weighting by ϕ, the weighted length of ∂Ei ∪ (Xn ∩Ei) must then
be greater than

121/4

1 + ε
ji|Ei|

√
n

|M | .
To get a lower bound on P (n), the weighted length of Xn, we take a union
of the graphs ∂Ei ∪ (Xn ∩Ei) and remove all the twice-counted curves ∂Ei.
Let Q denote the total weighted length of the ∂Ei, and we have

P (n)√
n

>
121/4

(1 + ε)
√|M |

m∑
i=1

ji|Ei| − 2Q√
n

>
121/4

(1 + ε)
√|M |

(∫
M
ϕdA− ε|M |

)
− 2Q√

n
,

from which the result follows easily. �
The theorem can be easily modified to treat surfaces with density:

Corollary 7.6. If M is a smooth, compact Riemannian surface with density
ϕ, then the minimum weighted length of a partition of M into n regions of
equal weighted area is asymptotic to

121/4
√

n

|M |ϕ

∫
M
ϕ3/2 dA,

where |M |ϕ =
∫
M ϕdA, the weighted area of M .

Proof. With a conformal change of metric ds to ϕ1/2ds, M can be thought
of as a surface with length density ϕ1/2. �
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