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C∗-algebras generated by spherical
hyperexpansions

Sameer Chavan

Abstract. Let T be a spherical completely hyperexpansive m-variable
weighted shift on a complex, separable Hilbert space H and let T s de-
note its spherical Cauchy dual. We obtain the hyperexpansivity analog
of the structure theorem of Olin–Thomson for the C∗-algebra C∗(T )
generated by T, under the natural assumption that T s is commuting.
If, in addition, the defect operator I − T1T

∗
1 − · · · − TmT ∗m is compact

then we ensure exactness of the sequence of C∗-algebras

0 7−→ C(H) ↪→ C∗(T )
π7−→ C(σap(T )) 7−→ 0,

where C(H) stands for the ideal of compact operators on H, and

π : C∗(T )→ C(σap(T ))

is the unital ∗-homomorphism defined by π(Ti) = zi (i = 1, . . . ,m).
This unifies and generalizes the results of Coburn, 1973/74 and Arveson,
1998. We further illustrate our results by exhibiting a one parameter
family F of spherical completely hyperexpansive 2-tuples Tνλ acting on
P 2(µλ) (1 ≤ λ ≤ 2), where dµλ := dνλdσ, νλ is a probability measure on
[0, 1], and σ is the normalized surface area measure on the unit sphere
∂B. Interestingly, within the family F , the Szegö 2-shift Tν1 and the
Drury–Arveson 2-shift Tν2 occupy the extreme positions. We would
like to emphasize that Tνλ is unitarily equivalent to the multiplication
operator tuples in P 2(µλ) if and only if λ = 1.
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1. Introduction

Needless to say, the present paper has roots in [12]. This work may also be
regarded as a sequel to [14], where the first author and R. Curto initiated the
study of spherical Cauchy dual tuples. In the present paper, we continue our
study of the spherical Cauchy dual tuples and use it to reveal the structure
of the C∗-algebras generated by spherical hyperexpansive multi-shifts. Our
work relies heavily on the results of Bunce [10], Olin–Thomson [27], and
Athavale [7], [8].

There is voluminous material on the C∗-algebras of multiplication opera-
tor tuples (see, for instance, [15], [19], [4], [11], [24]). We would first like to
mention here the work [19] on the C∗-algebra generated by multi-variable
weighted shifts. It turns out that the spherical completely hyperexpansive
m-variable weighted shifts with well-behaved weight functions (not exactly
in the sense of Curto and Muhly but quite close to it) are in abundance. We
would also wish to mention the work [11, Section 5] on the C∗-algebras gener-
ated by the multiplication operator tuples Mz in P 2(dµ) where dµ := dνdσ,
ν is a probability measure on [0, 1] with the point 1 in the support of ν, and σ
is the normalized surface area measure on the unit sphere ∂B. The operator
tuple Tν , as discussed in Example 2.4 below, is precisely the spherical Cauchy
dual of Mz, and provides many interesting examples of spherical complete
hyperexpansions including the Szegö m-shift and the Drury–Arveson 2-shift.
One of the main results, the hyperexpansivity analog of [27, Theorem 1], is
new even for the Drury–Arveson 2-shift. In the proof of the main results,
we implicitly employ the methods from the harmonic analysis of the com-
pletely alternating functions on the semigroup Nm. This is why these results
are not applicable to the Drury–Arveson m-shift if m ≥ 3 [14, Example 6.3].
However, in the last section, we show that our methods can be modified
to obtain the conclusions of Theorems 2.2 and 2.3 for the Drury–Arveson
m-shift for any m ≥ 1.

For a complex, infinite-dimensional, separable Hilbert space H, let B(H)
denote the Banach algebra of bounded linear operators on H. By a commut-
ing m-tuple T on H, we mean a tuple (T1, . . . , Tm) of commuting bounded
linear operators T1, . . . , Tm on H. For T ∈ B(H), we interpret T ∗ to be
(T ∗1 , . . . , T

∗
m), and T p to be T p11 · · ·T

pm
m for p = (p1, . . . , pm) ∈ Nm, where N

stands for the set of nonnegative integers.
The reader is referred to [14] for the basics of the theory of generating

m-tuples. In this paper, we are mainly interested in the spherical generating
1-tuples: Given a commuting m-tuple T = (T1, . . . , Tm) on H, the spherical
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generating 1-tuple associated with T is given by

Qs(X) :=

m∑
i=1

T ∗i XTi (X ∈ B(H)).

Fix an integer p ≥ 1. We say that T is a spherical p-contraction (resp.
spherical p-expansion) if

(1.1)
∑

q∈N,0≤q≤p
(−1)|q|

(
p

q

)
Qqs(I) ≥ 0 (resp. ≤ 0).

T is a spherical p-isometry if equality occurs in (1.1). We say that T is
a spherical complete hypercontraction (resp. spherical complete hyperexpan-
sion) if T is a spherical p-contraction (resp. spherical p-expansion) for all
positive integers p. In all the above definitions, if p = 1 then we drop the
prefix 1- and if m = 1 then we drop the term spherical.

A spherical m-isometry is a spherical complete hyperexpansion if and only
if m = 2. Also, a spherical 2-expansive T is subnormal if and only if it is a
spherical isometry [14].

Recall that a commuting m-tuple T = (T1, . . . , Tm) on H is said to be
subnormal if there exist a Hilbert space K ⊇ H and a commuting m-tuple
N = (N1, . . . , Nm) of normal operators Ni in B(K) such that

Nih = Tih for every h ∈ H and 1 ≤ i ≤ m.

A spherical complete hypercontraction is always subnormal [7].
An m-variable weighted shift T = (T1, . . . , Tm) with respect to an or-

thonormal basis {en}n∈Nm of a Hilbert space H is defined by

Tien := w(i)
n en+εi (1 ≤ i ≤ m),

where εi is the m-tuple with 1 in the ith place and zeros elsewhere. We
indicate the m-variable weighted shift operator T with weight sequence{

w(i)
n : 1 ≤ i ≤ m,n ∈ Nm

}
by T : {w(i)

n }n∈Nm . We always assume that the weight multi-sequence of T
consists of positive numbers and that T is commuting.

Notice that Ti commutes with Tj if and only if w
(i)
n w

(j)
n+εi

= w
(j)
n w

(i)
n+εj

for

all n ∈ Nm.
A rather special example of a spherical m-isometry is the Drury–Arveson

m-shift ([22], [4], [23, Theorem 4.2]). The Drury–Arveson m-shift is the op-
eratorm-tupleMz,m of multiplication by the co-ordinate functions z1, . . . , zm
in the reproducing kernel Hilbert space associated with the positive definite
kernel

1

1− z1w1 − · · · − zmwm
(z, w ∈ B),
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where u denotes the complex conjugate of the complex number u, and B
denotes the open unit ball in the m-dimensional hermitian space Cm. Mz,m

can also be realized as the weighted shift with weight multi-sequence{√
ni + 1

|n|+ 1
: 1 ≤ i ≤ m, n ∈ Nm

}
,

where |n| := n1 + · · ·+ nm (n ∈ Nm).
The Drury–Arveson m-shift is a spherical complete hyperexpansion if and

only if m = 2.
Let T = (T1, . . . , Tm) be a commuting m-tuple on H and let Qs be the

spherical generating 1-tuple associated with T. Suppose T is jointly left-
invertible, that is, for some positive number α,

Qs(I) = T ∗1 T1 + · · ·+ T ∗mTm ≥ αI.
Note that Qs(I) is invertible. We refer to the m-tuple T s := (T s

1 , . . . , T
s
m)

as the spherical Cauchy dual to T , where

T s
i := Ti(Qs(I))−1 (i = 1, . . . ,m).

This notion, the spherical analog of the notion of the Cauchy dual operator
[29], is introduced and studied in [14]. Here is one notational excuse. For
future reference, it will be convenient to retain Shimorin’s original notation
T ′ for the Cauchy dual of T in case m = 1.

Notice that T s is jointly left-invertible if and only if so is T. In this case,
(T s)s = T. Since a spherical 2-expansion is a spherical expansion [14], its
spherical Cauchy dual tuple is well-defined.

Let T : {w(i)
n }n∈Nm denote a commuting m-variable weighted shift. Set

(1.2) βn(T ) :=

(
m∑
i=1

(
w(i)
n

)2) 1
2

(n ∈ Nm).

Suppose T is jointly left-invertible or equivalently infn∈Nm βn > 0. It is easy
to see that T s is an m-variable weighted shift with weight sequence{

w
(i)
n

β2n(T )
: 1 ≤ i ≤ m, n ∈ Nm

}
.

A routine calculation now shows that T s is commuting if and only if

βn+ε(i)(T ) = βn+ε(j)(T )

for all 1 ≤ i, j ≤ m and for all n ∈ Nm.
The spherical Cauchy dual M s

z,m of the Drury–Arveson m-shift Mz,m to
be referred as the dual Drury–Arveson m-shift, is the weighted shift operator
tuple with weights{√

(ni + 1)(|n|+ 1)

|n|+m
: 1 ≤ i ≤ m, n ∈ Nm

}
.
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Note that M s
z,m is commuting. One may employ Curto’s six-point test [18]

to reveal the interesting fact that the dual Drury–Arveson m-shift is jointly
hyponormal. Interestingly, in the course of the proofs of the main results,
we prove that the dual Drury–Arveson m-shift is indeed subnormal. The
present paper is a part of the work, initiated in [12], and carried out in
[13] and [14], to develop the theory of (spherical) complete hyperexpansions
parallel to the classical theory of subnormals.

The paper is organized as follows. In Section 2, we state the main results
of the paper (Theorems 2.2 and 2.3) and illustrate these results by exhibiting
a family of multi-variable weighted shifts of which the Drury–Arveson 2-shift
is a prototype. In Section 3, we present the proofs of the main results, which
involve the following important steps:

• Characterization of spherical hyperexpansivity of multi-shift T in
terms of hyperexpansivity of a canonical 1-variable shift Tβ associ-
ated with T (Lemma 3.3).
• Subnormality of the spherical Cauchy dual (Proposition 3.4).
• Essential normality of spherical hyperexpansions (Proposition 3.7).

In Section 4, as an application to our main results, we obtain the follow-
ing generalization of a fundamental lemma of Arveson [4, Lemma 7.13]: If
the spherical Cauchy dual T s is commutative and I − T1T ∗1 − · · · − TmT ∗m
is compact for a spherical completely hyperexpansive m-variable weighted
shift T, then the identity representation of the C∗-algebra C∗(T ) generated
by T is a boundary representation for the unital operator space generated
by T if and only if T is not a spherical isometry (Proposition 4.1). One
may attribute the absence of inner functions in the multiplier algebra of
the Drury–Arveson m-shift Mz,m (m ≥ 2) to the harmonic analysis of the
associated sequences {βn(Mz,m)}n∈Nm (see (1.2) above). The last section is
devoted to some possible generalizations and a couple of unsolved problems.

2. Statement and examples

Let T denote a jointly left-invertible commuting m-tuple. By the C∗-
algebra generated by T (in symbol, C∗(T )), we mean the norm closure of all
noncommutative polynomials in the (2m)-variables T1, . . . , Tm, T

∗
1 , . . . , T

∗
m

which fixes the origin. It is easy to see that our definition coincides with
the standard definition of C∗(T ). Indeed, since T is jointly left-invertible,
C∗(T ) contains Qs(I) = T ∗1 T1 + · · · + T ∗mTm. A simple application of the
Spectral Theorem now shows that C∗(T ) contains the inverse of Qs(I) (and
hence the identity operator). This also proves the following elementary fact
crucial for our investigations.

Lemma 2.1. Let T denote a jointly left-invertible commuting m-tuple. If
the spherical Cauchy dual T s is commuting then we have C∗(T s) = C∗(T ).
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A commutator ideal CT of C∗(T ) is the norm closed ideal of C∗(T ) gen-
erated by the set of all elements of the form AB −BA (A,B ∈ C∗(T )). We
use the symbol C(H) to denote the ideal of compact operators on H.

For T ∈ B(H), we reserve the symbols σ(T ), σap(T ), σp(T ) for the joint
(Taylor) spectrum, approximate point spectrum, point spectrum of T respec-
tively. For the definitions and the basic theory of various spectra including
the Taylor spectrum, the reader is referred to [17].

To state the main results of this paper, we need to introduce some more
notations. Let C(X) denote the C∗-algebra of continuous functions on the
compact Hausdorff space X, endowed with the sup norm ‖ · ‖∞. For H ⊆ K,
let PH stand for the orthogonal projection of K ontoH. Finally, let z1, . . . , zm
be the co-ordinate functions in Cm given by

zi(w1, . . . , wm) = wi, (w1, . . . , wm) ∈ Cm.

Theorem 2.2. Let T : {w(i)
n }n∈Nm denote a spherical completely hyperex-

pansive m-variable weighted shift on H. Assume that the spherical Cauchy
dual T s is commuting. Then there exists a commuting m-tuple N consisting
of normal operators on some Hilbert space K containing H such that the
diagram

C∗(N)
ψ

//

θ
��

C(σ(N))

r

��

C∗(T ) q
// C∗(T )/CT

φ
// C(σap(T ))

commutes, where:

(1) ψ : C∗(N)→ C(σ(N)) is the isometric ∗-isomorphism such that

ψ(Ni) = zi (1 ≤ i ≤ m).

(2) The restriction mapping r : C(σ(N))→ C(σap(T )) is a well-defined
surjection.

(3) φ : C∗(T )/CT → C(σap(T )) is the isometric ∗-isomorphism with

φ(Ti + CT ) = zi (1 ≤ i ≤ m).

(4) q : C∗(T )→ C∗(T )/CT is the quotient map.
(5) θ : C∗(N) → C∗(T ) given by θ(f(N)) = PHf(N)|H, f ∈ C(σ(N))

is a (completely) positive linear mapping.

Theorem 2.3. Let T : {w(i)
n }n∈Nm denote a spherical completely hyperex-

pansive m-variable weighted shift on H. Assume that the spherical Cauchy
dual T s is commuting. Then the defect operator I − T1T ∗1 − · · · − TmT ∗m is
compact if and only if we have an exact sequence of C∗-algebras

0 7−→ C(H)
i
↪→ C∗(T )

π7−→ C(σap(T )) 7−→ 0,

where i : C(H) ↪→ C∗(T ) is the inclusion map and π : C∗(T ) → C(σap(T ))
is the unital*-homomorphism defined by π(Ti) = zi (i = 1, . . . ,m).
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Remark. Note that the compactness of I−T1T ∗1 −· · ·−TmT ∗m is necessary
for the conclusion of Theorem 2.3. This follows from the fact that σap(T ) is
contained in the boundary of the unit ball (see Lemma 3.5 below).

We defer the proofs of Theorems 2.2 and 2.3 until the next section for
two major reasons. Firstly, these are rather involved, at least conceptu-
ally. Secondly, as our proofs consist of several interesting observations of
independent interest, a separate spot for their get-together is desirable!

In the remaining part of this section, we exhibit a family of spherical
complete hyperexpansions of which the Drury–Arveson 2-shift is a prototype
(cf. [11, Section 5]).

Example 2.4. For a probability measure ν on [0, 1], let

Ik :=

∫
[0,1]

r2kdν(r) (k ∈ N).

Consider the m-variable weighted shift Tν = (Tν1, . . . , Tνm) with weights

w(i)
n :=

√
ni + 1

|n|+m

√
I|n|

I|n|+1
(n ∈ Nm, 1 ≤ i ≤ m).

Observe that β2n(Tν) =
I|n|
I|n|+1

(see (1.2) of Section 1). It is now easy to see

that the spherical Cauchy dual T s
ν is commuting. In general, Tν is not a

spherical complete hyperexpansion. This is a consequence of the known fact
that the Cauchy dual of a contractive subnormal weighted shift, if it exists,
is not necessarily completely hyperexpansive [8] and Lemma 3.3 of the next
section. In the next section, we provide a function-theoretic characterization
of spherical completely hyperexpansive Tν (refer to the remark following
Lemma 3.3).

We claim that the compactness of defect operator I−Tν1T ∗ν1−· · ·−TνmT ∗νm
is equivalent to lim|n|→∞ βn(Tν) = 1. Notice that Tν1T

∗
ν1 + · · ·+ TνmT

∗
νm is

a diagonal operator with entries(
w

(1)
n−ε1

)2
+ · · ·+

(
w

(m)
n−εm

)2
=

|n|
|n|+m− 1

I|n|−1

I|n|
=

|n|
|n|+m− 1

β2|n|−1(Tν),

with the convention that w
(i)
n−εi = 0 if ni = 0. By an application of the

Cauchy–Schwarz inequality, β2k(Tν) = Ik
Ik+1

is easily seen to be a decreasing

function of k. Since a diagonal operator {λn}n∈Nm is compact if and only if
lim|n|→∞ λn = 0, the claim stands verified. We will see, as a consequence of
Lemma 3.5(1) below, that I − Tν1T ∗ν1 − · · · − TνmT ∗νm is compact if Tν is a
spherical 2-expansion.

For λ ≥ 1, let νλ denote the probability measure on [0, 1] governed by

k!

λ(λ+ 1) · · · (k − 1 + λ)
=

∫
[0,1]

r2kdνλ(r) (k ∈ N).
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The existence of νλ is ensured by [20, Theorem 2.7]. Notice that Tνλ is the
m-variable weighted shift with weight sequence√

ni + 1

|n|+m

√
|n|+ λ

|n|+ 1
(n ∈ Nm, 1 ≤ i ≤ m).

The following special cases are noteworthy:

(1) λ = 1 : Notice that dν1(r) is the point mass at {1} and that Tν1 is
nothing but the Szegö m-shift with weight sequence{√

ni + 1

|n|+m
: 1 ≤ i ≤ m,n ∈ Nm

}
.

(2) λ = 2 : Notice that dν2(r) is the weighted Lebesgue measure 2rdr
on [0, 1] and that Tν2 is the m-variable weighted shift with weight
sequence{√

ni + 1

|n|+m

√
|n|+ 2

|n|+ 1
: 1 ≤ i ≤ m,n ∈ Nm

}
.

If m = 2 then note that Tν2 is nothing but the Drury–Arveson 2-
shift.

Observe that lim|n|→∞ βn(Tνλ) = 1. By the preceding discussion, the defect
operator I − Tνλ1T ∗νλ1 − · · · − TνλmT

∗
νλm

is compact for any λ ≥ 1.

3. Proofs of the structure theorems

Let T : {w(i)
n }n∈Nm be an m-variable weighted shift. Throughout this

section, let βn(T ) denote(
m∑
i=1

(
w(i)
n

)2) 1
2

(n ∈ Nm).

Whenever there is no ambiguity, we write simply βn in place of βn(T ). For
ready reference, we record the following triviality.

Lemma 3.1. Let T : {w(i)
n }n∈Nm denote a commuting m-variable weighted

shift. Then the following statements are equivalent:

(1) The spherical Cauchy dual T s is commuting.
(2) The multi-sequence {βn(T )}n∈Nm satisfies

βn+εj (T ) = βn+εi(T ) (1 ≤ i, j ≤ m, n ∈ Nm),

where εi is the m-tuple with 1 in the ith place and zeros elsewhere.
(3) The multi-sequence {βn(T )}n∈Nm satisfies

βn(T ) = β|n|ε1(T ) for all n ∈ Nm,

where |n| = n1 + · · ·+ nm.
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Definition 3.2. Let T : {w(i)
n }n∈Nm be an m-variable weighted shift with

respect to the orthonormal basis {en}n∈Nm of H. Consider the one-variable
weighted shift Tβ : {βkε1}k∈N with respect to some another orthonormal
basis {fk}k∈N of H. We refer to Tβ as the shift associated with T.

Clearly, Tβ is a unitary invariant for T. Although, Tβ is far from being
complete, it can be used quite efficiently to characterize spherical contrac-
tions (resp. spherical expansions resp. spherical p-isometry).

The following simple lemma plays a key role in our investigations.

Lemma 3.3. Let T : {w(i)
n }n∈Nm denote a commuting m-variable weighted

shift with respect to the orthonormal basis {en}n∈Nm of H. Let Tβ denote the
shift associated with T with respect to the orthonormal basis {fk}n∈N of H.
If the spherical Cauchy dual T s is commuting, then for any positive integer
p, the following statements are equivalent:

(1) T is a spherical p-contraction (resp. spherical p-expansion, resp.
spherical p-isometry).

(2) Tβ is a p-contraction (resp. p-expansion, resp. p-isometry).

In particular, T is a spherical complete hypercontraction (resp. spherical
complete hyperexpansion) if and only if Tβ is a complete hypercontraction
(resp. complete hyperexpansion).

Proof. Assume that T s is commuting. We contend that

(3.1) 〈Qks(I)en, en〉 = β2|n|ε1β
2
(|n|+1)ε1

· · ·β2(|n|+k−1)ε1 (k ∈ N, n ∈ Nm),

where Qs denote the spherical generating 1-tuple associated with T. We
prove (3.1) by induction on k ≥ 1. Clearly, k = 1 is immediate from
Lemma 3.1. Suppose that (3.1) holds true for k ≥ 1. Since Qk+1

s (I) =∑m
j=1 T

∗
j Q

k
s(I)Tj , one has

〈Qk+1
s (I)en, en〉 =

m∑
j=1

〈Qks(I)Tjen, Tjen〉

=
m∑
j=1

(
w(j)
n

)2
〈Qks(I)en+εj , en+εj 〉

=
m∑
j=1

(
w(j)
n

)2
β2(|n|+1)ε1

β2(|n|+2)ε1
· · ·β2(|n|+k)ε1 ,

where we used the induction hypothesis in the last step. The desired identity
in (3.1) (with k replace by k+1) is immediate if we again apply Lemma 3.1.

Notice that a weighted shift T : {w(i)
n } is a spherical p-contraction (resp.

spherical p-expansion resp. spherical p-isometry) if and only if∑
q∈N,0≤q≤p

(−1)|q|
(
p

q

)
〈Qqs(I)en, en〉 ≥ 0 (resp. ≤ 0, resp. = 0)
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for every n ∈ Nm. Since 〈Qqs(I)en, en〉 = ‖T qβf|n|‖
2 in view of the discussion

in the previous paragraph, the desired equivalence is immediate. �

Remark. Let Tν be as in Example 2.4. It may be concluded from Exam-
ple 2.4 that the shift Tνβ associated with Tν admits the weight sequence
{βkε1(Tν)}k∈N given by ∫

[0,1] r
2kdν(r)∫

[0,1] r
2(k+1)dν(r)

(k ∈ N).

It is easy to see from Lemma 3.3 that Tν is a spherical complete hyperex-
pansion if and only if∑

q∈N,0≤q≤p
(−1)|q|

(
p

q

)
1∫

[0,1] r
2qdν(r)

≤ 0

for every p ≥ 1. The latter one is true if and only if

{
1∫

[0,1] r
2kdν(r)

}
k∈N

is

completely alternating (refer to [9] for the definition of completely alternating
sequences).

Let Tνλ be as in the last paragraph of Example 2.4. It follows from the
preceding discussion that Tνλ is a spherical complete hyperexpansion if and
only if the sequence {

λ(λ+ 1) · · · (k − 1 + λ)

k!

}
k∈N

is completely alternating. By [28, Example 2.3], this happens if and only if
1 ≤ λ ≤ 2. Notice that the shift associated with the Szegö m-shift Tν1 is the
unilateral shift while the shift associated with the Drury–Arveson 2-shift Tν2
(with m = 2) is the Dirichlet shift. The last observation has already been
noted in the discussion prior to [14, Corollary 4.3].

The preceding lemma has numerous applications. For instance, it can be
used to present an easy proof of the major half of [23, Theorem 4.2]. Further,
the preceding lemma enables one to deduce various properties of spherical
p-contractions (resp. spherical p-expansions resp. spherical p-isometries)
from those which are known for p-contractions (resp. p-expansions resp.
p-isometries) (see, for instance, the proof of Lemma 3.5 below).

3.1. Subnormality of spherical Cauchy dual. The proof of the next
result relies heavily on the beautiful result [8, Proposition 6] of A. Athavale.
It should be noted that this result relies heavily on a classical result of
Schoenberg characterizing the negative definite kernels in terms of a one
parameter family of positive definite kernels [9]. Ours may be considered as
the spherical analog of Athavale’s Theorem.
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Proposition 3.4. Let T : {w(i)
n }n∈Nm denote a spherical completely hy-

perexpansive m-variable weighted shift. If the spherical Cauchy dual T s is
commuting then T s is subnormal.

Proof. Suppose the spherical Cauchy dual T s is commuting. Since T is
given to be a spherical complete hyperexpansion, by Lemma 3.3, the shift
Tβ associated with T is completely hyperexpansive. Hence, by [8, Proof of
Proposition 6], the Cauchy dual (Tβ)′ of Tβ is completely hypercontractive.
Now if Qs (resp. Ps) denotes the spherical generating 1-tuple associated
with T (resp. T s) then

1

(βn(T ))2
= 〈Qs(I)−1en, en〉 = 〈Ps(I)en, en〉 = (βn(T s))2.

It follows that (Tβ)′ is indeed the shift (T s)β associated with T s. Thus the
shift (T s)β associated with T s is completely hypercontractive. By Lem-
ma 3.3, T s must be a spherical complete hypercontraction. Thus [7, Theo-
rem 5.2] is applicable, and hence T s is subnormal. �

3.2. Essential normality of spherical hyperexpansions.

Lemma 3.5. Let T : {w(i)
n }n∈Nm denote a spherical 2-expansive m-variable

weighted shift. Suppose the spherical Cauchy dual T s is commuting. Then
the following statements are true:

(1) βn → 1 as |n| → ∞.
(2) T s is a compact perturbation of T, that is, there exists an m-tuple K

of compact operators such that T = T s +K.
(3) σap(T

s) = σap(T ) ⊆ ∂B, where ∂B is the unit sphere in Cm.

Proof. (1) Recall that the weight-sequence of a 2-expansive weighted shift
converges to 1 [25]. Since βkε1 is the weight-sequence of the shift Tβ associ-
ated with T and since Tβ is 2-expansive (Lemma 3.3), one has

βn = β|n|ε1 → 1 as |n| → ∞
by an application of Lemma 3.1.

(2) Recall that T s = (T s
1 , . . . , T

s
m) is the weighted shift with weight-

sequence

v(i)n :=
w

(i)
n

β2n
(1 ≤ i ≤ m, n ∈ Nm).

To see (2), by the general theory, it suffices to check that

w(i)
n − v(i)n → 0 as |n| → ∞.

Since {w(i)
n }n∈Nm is bounded and since

w(i)
n − v(i)n = w(i)

n

(
1− 1

β2n

)
,

this is immediate from (1).
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(3) In view of (2), T and T s admit the same left Harte essential spectra.
By [21, Theorem 2.10(a)], the approximate point spectrum is the union
of the left Harte essential spectrum and the point spectrum. However, the
point spectrum of a weighted shift is always empty. It follows that σap(T

s) =
σap(T ).

To see the inclusion σap(T ) ⊆ ∂B, let λ = (λ1, . . . , λm) ∈ σap(T ). Note

that if we replace Ti by λi and T ∗i by λi in the definition of spherical 2-
expansivity, then one must have λ ∈ ∂B. Validity of such a substitution is
clear from the definition of the spherical 2-expansivity (see the discussion
preceding [23, Lemma 3.2]). �

Recall that an operator S in B(H) is said to be hyponormal if the self-
commutator [S∗, S] := S∗S − SS∗ of S is a positive operator.

Lemma 3.6. Let T : {w(i)
n }n∈Nm be a spherical 2-hyperexpansive m-variable

weighted shift such that T s is commuting. Suppose the defect operator

I − T1T ∗1 − · · · − TmT ∗m
is compact and that T s

i is hyponormal for each i = 1, . . . ,m. Then Ti is
essentially normal, that is, T ∗i Ti − TiT ∗i is compact for all i = 1, . . . ,m.

Proof. In view of the compactness of I − T1T ∗1 − · · · − TmT ∗m, one has

(3.2) lim
|n|→∞

(
w

(1)
n−ε1

)2
+ · · ·+

(
w

(m)
n−εm

)2
= 1.

Since Ti is a compact perturbation of T s
i (Lemma 3.5(2)), it suffices to check

that T s
i is essentially normal or equivalently v

(i)
n − v(i)n−εi → 0 as |n| → ∞,

where v
(i)
n := w

(i)
n
β2
n

(1 ≤ i ≤ m, n ∈ Nm). Since T s
i is hyponormal, one has

(3.3) v(i)n − v
(i)
n−εi ≥ 0 (n ∈ Nm, ni 6= 0).

Observe that

m∑
i=1

(
v(i)n

)2
−
(
v
(i)
n−εi

)2
=

1

β2n
−

m∑
i=1

(
w

(i)
n−εi)

2
)2

β2n−εi
−→ 0

in view of (3.2) and Lemma 3.5(1). The essential normality of T s
i is now

immediate from (3.3). �

Proposition 3.7. Let T : {w(i)
n }n∈Nm be a spherical completely hyperexpan-

sive m-variable weighted shift such that T s is commuting. Suppose the defect
operator I − T1T ∗1 − · · · − TmT ∗m is compact. Then Ti is essentially normal,
that is, T ∗i Ti − TiT ∗i is compact for all i = 1, . . . ,m.

Proof. As T is a spherical complete hyperexpansion, by Proposition 3.4,
T s is subnormal. In particular, T s

i is hyponormal for all i = 1, . . . ,m [16].
Now appeal to the preceding lemma. �
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3.3. A commutative diagram of Olin and Thomson. Recall that the
commutator ideal of the C∗-algebra C∗(T ) generated by a commuting tuple
T on H is denoted by CT .

Lemma 3.8. Let S be a subnormal m-tuple on H and let N be a normal
extension of S on some Hilbert space K. Then the diagram

C∗(N)
ψ

//

θ
��

C(σ(N))

r

��

C∗(S) q
// C∗(S)/CS

φ
// C(σap(S))

commutes, where:

(1) ψ : C∗(N)→ C(σ(N)) is the isometric ∗-isomorphism such that

ψ(Ni) = zi (1 ≤ i ≤ m).

(2) The restriction mapping r : C(σ(N))→ C(σap(S)) is a well-defined
surjection.

(3) φ : C∗(S)/CS → C(σap(S)) is the isometric ∗-isomorphism with

φ(Si + CS) = zi (1 ≤ i ≤ m).

(4) q : C∗(S)→ C∗(S)/CS is the quotient map.
(5) θ : C∗(N) → C∗(S) given by θ(f(N)) = PHf(N)|H, f ∈ C(σ(N))

is a (completely) positive linear mapping.

Proof. The proof goes verbatim the one-variable situation [27, Proof of
Theorem 1]. For the sake of completeness, we provide the essential details.
For p, q ∈ Nm, observe that

S∗pSq = PHN
∗pN q.

It is now easy to see that r ◦ ψ and φ ◦ q ◦ θ agree on the linear span of
{N∗pN q : p, q ∈ Nm}. Let f ∈ C(σ(N)). By the Stone–Weierstrass Theorem,
there exists a sequence {pn}n∈N of complex polynomials in z and z such
that ‖pn − f‖∞ → 0, ‖pn(N∗, N) − f(N)‖ → 0 as n → ∞. It follows that
the diagram above is commutative provided all the maps involved are well-
defined.

Verify that ‖pn(S∗, S)−PHf(N)‖ → 0 as n→∞, where pn(S∗, S) is given
by Agler’s hereditary functional calculus [1]. It is now clear that θ sends
C∗(N) into C∗(S). Clearly, θ is positive. Since σap(S) ⊆ σap(N) = σ(N),
the restriction mapping r of (2) is well-defined. By the Tietze extension
theorem, r is surjective as well. The proof is over if we invoke appropriate
analog of [16, Corollary 12.4, Chapter II]. This is provided by a result of
Bunce [10], which says that for any commuting m-tuple S of hyponormals,
there exists an isometric ∗-isomorphism φ : C∗(S)/CS → C(σap(S)) such
that φ(Si+CS) = zi (1 ≤ i ≤ m). This completes the proof of the lemma. �

We are now ready to prove Theorems 2.2 and 2.3.
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Proof of Theorem 2.2. We just need to put all the pieces into the place.
Suppose the spherical Cauchy dual T s is commuting. Then, by Propo-
sition 3.4, T s is subnormal. Thus it admits a normal extension N on
some Hilbert space K. Now, the preceding lemma yields a commutative
diagram for T s. However, since C∗(T s) = C∗(T ) (Lemma 2.1) and since
σap(T

s) = σap(T ) ⊆ ∂B (Lemma 3.5(3)), we obtain the desired commuta-
tive diagram. �

Proof of Theorem 2.3. We mention that the C∗-algebra generated by a
jointly left-invertible multi-variable weighted shift is irreducible [26, Corol-
lary 13]. Suppose now that the defect operator I−T1T ∗1 −· · ·−TmT ∗m is com-
pact. Then, by Proposition 3.7, Ti is essentially normal for all i = 1, . . . ,m.
To show that the commutator ideal CT of C∗(T ) coincides with the ideal
C(H) of compact operators on H, we imitate the proof of [16, Lemma
12.9, Chapter II]. Notice that C∗(T )/C(H) is generated by normal elements
T1 + C(H), . . . , Tm + C(H), and hence it is abelian. In particular, C(H) con-
tains CT . The inclusion C(H) ⊆ CT follows from the fact that C(H) admits
no nonzero characters (that is, multiplicative linear functionals sending I to
1) in view of

CT = ∩{ρ−1(0) : ρ is a character on C∗(T )}

(refer to the discussion following [10, Corollary 4]). The desired conclusion
now follows from Theorem 2.2. �

4. Boundary representations for spherical hyperexpansions

It is not the only purpose of this section to extend some results of [4] to
the setting of spherical hyperexpansions but also to pinpoint that several
striking results (e.g. absence of inner functions in the multiplier algebra) in
the theory of Drury–Arveson m-shift Mz,m (m ≥ 2) may be attributed to
the harmonic analysis of the associated sequences {βn(Mz,m)}n∈Nm .

By a unital operator space, we mean a pair S ⊆ B consisting of a linear
subspace S of a unital C∗-algebra B, which contains the unit of B and
generates B as a C∗-algebra, B = C∗(S). An irreducible representation of B
is a unital homomorphism r : B → B(H) such that r(B) is an irreducible
subalgebra ofB(H).An irreducible representation r : B → B(H) is said to be
a boundary representation for S if r|S has a unique completely positive linear
extension to B, namely r itself. Recall that φ from B into another C∗-algebra
A is completely positive if φn : Mn(B) → Mn(A) given by φn([ai,j ]) :=
[φ(ai,j)], [ai,j ] ∈Mn(B), is positive for all n ≥ 1.

Proposition 4.1. Let T : {w(i)
n }n∈Nm denote a spherical completely hyper-

expansive m-variable weighted shift on H. Assume that the spherical Cauchy
dual T s is commuting and that the defect operator I −T1T ∗1 − · · · −TmT ∗m is
compact. Then the following statements are equivalent:



C∗-ALGEBRAS GENERATED BY SPHERICAL HYPEREXPANSIONS 525

(1) The identity representation of C∗(T ) is a boundary representation
for the (d+ 1)-dimensional space L := linear span {I, T1, . . . , Tm}.

(2) T is not a spherical isometry.

Proof. (1) implies (2) Suppose that T is a spherical isometry. By [6, Propo-
sition 2], T is necessarily a subnormal tuple. It is then not difficult to see
that H is a subnormal module on σ(T ) in the sense of [24] (see, for example,
[17, Theorem 7.7]). By [24, Theorem 3.2], the identity representation of
C∗(T ) is not a boundary representation for L .

(2) implies (1) We imitate the proof of [4, Lemma 7.13]. We already
recorded in the proof of Theorem 2.3 that C∗(T ) is an irreducible C∗-algebra
containing the ideal C(H) of compact operators on H. Hence, by the Arve-
son’s Boundary Theorem [3], the identity representation of C∗(T ) is a bound-
ary representation for L provided the quotient map q : B(H)→ B(H)/C(H)
is not isometric when promoted to the space of m×m-matrices over L . Con-
sider the matrix A with rows

[T1, 0, . . . , 0], [0, T2, 0, . . . , 0], . . . , [0, . . . , 0, Tm].

By Theorem 2.3, the quotient map q sends Ti to the co-ordinate function zi
defined on σap(T ) (i = 1, . . . ,m). Thus q(A) is the matrix with rows

[z1, 0, . . . , 0], [0, z2, 0, . . . , 0], . . . , [0, . . . , 0, zm].

Since σap(T ) ⊆ ∂B (Lemma 3.5(3)), one has

‖q(A)‖ = sup{‖q(A)(z)‖ : z ∈ σap(T )} = 1.

Suppose now that T is not a spherical isometry. Since T is a spherical
expansion, it follows that ‖A‖ = ‖T ∗1 T1 + · · · + T ∗mTm‖ > 1. In particular,
‖q(A)‖ 6= ‖A‖. Thus the promoted quotient map is not isometric. �

There are several important consequences of the previous result (refer
to [4], [24]). However, to avoid book-keeping, we list only one significant
application.

Corollary 4.2. Let T : {w(i)
n }n∈Nm denote a spherical completely hyperex-

pansive m-variable weighted shift on H. Assume that the spherical Cauchy
dual T s is commuting, that the defect operator I − T1T ∗1 − · · · − TmT ∗m is
compact, and that T is not a spherical isometry. Let R1, R2, . . . , be a finite
or infinite sequence of operators on H, which commutes with T and which
satisfy

R∗1R1 +R∗2R2 + · · · = I.

Then each Ri is a scalar multiple of the identity operator.

Proof. We omit the deduction as it can be obtained along the lines of [4,
Proposition 8.13] in view of the preceding result. �
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5. Concluding remarks. Open problems

In this section, we first outline a possible approach to obtain a version
of Theorem 2.2 for arbitrary spherical complete hyperexpansions. Observe
that the conclusion of Theorem 2.2 holds true for any spherical complete
hyperexpansion for which the spherical Cauchy dual consists of commuting
hyponormals. Hence, it is natural to look for certain hyponormality property
of spherical Cauchy dual tuples. The results from single-variable theory of
hyperexpansions ([30], [12]) as well as Proposition 3.4 suggest the following
conjecture:

Conjecture 5.1. If the spherical Cauchy dual to a spherical 2-expansion is
commuting then it is jointly hyponormal.

For the definition and basic properties of jointly hyponormal tuples, the
reader is referred to [5] and [18]. It is easy to see that a jointly hyponormal
tuple is a spherical 2-contraction.

The next result supports Conjecture 5.1.

Proposition 5.2. If T is a spherical 2-expansion then the m×m operator
matrix

(5.1)
(
[(T s

j )∗, T s
i ]
)
1≤i,j≤m ≥ 0 on {(T s

1h, . . . , T
s
mh) : h ∈ H},

where T s denotes the spherical Cauchy dual to T, and the symbol [A,B]
stands for the commutator AB −BA of bounded linear operators A and B.

In particular, the spherical Cauchy dual of spherical 2-expansion is a
spherical 2-contraction.

Proof. Let Qs be the spherical generating 1-tuple associated with T and
let Ps denote the spherical generating 1-tuple associated with the spherical
Cauchy dual T s of T. It is easy to see that the conclusion in (5.1) is equivalent
to P 2

s (I) ≥ Ps(I)2. Because of the spherical 2-expansivity of T,

‖x‖〈Q2
s(I)x, x〉

1
2 ≤ ‖x‖

2 + 〈Q2
s(I)x, x〉

2
≤ 〈Qs(I)x, x〉 (x ∈ H).

Thus we obtain

(5.2) ‖x‖2〈Q2
s(I)x, x〉 ≤ 〈Qs(I)x, x〉2

for every x ∈ H. Let x := Qs(I)−1y for a nonzero y ∈ H. Then observe that

(5.3) 〈Q2
s(I)x, x〉 =

m∑
i,j=1

‖TjT s
i y‖2,
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which is positive since T and (hence) T s are jointly left-invertible. Further,
by utilizing the identity

∑m
j=1 T

∗
j T

s
j = I,

〈Qs(I)x, x〉 =

m∑
i=1

‖T s
i y‖2 =

m∑
i=1

〈
m∑
j=1

T ∗j T
s
j T

s
i y, T

s
i y〉

=
m∑
i=1

m∑
j=1

〈T s
j T

s
i y, TjT

s
i y〉 ≤

m∑
i=1

m∑
j=1

‖T s
j T

s
i y‖‖TjT s

i y‖

≤

 m∑
i,j=1

‖T s
j T

s
i y‖2

 1
2
 m∑
i,j=1

‖TjT s
i y‖2

 1
2

,

by an application of the Cauchy–Schwarz inequality. Combining the last
estimate with (5.2) and (5.3), we obtain

‖x‖2 ≤
m∑

i,j=1

‖T s
j T

s
i y‖2 =

m∑
i,j=1

‖T s
j Tix‖2 for every x ∈ H.

Equivalently, Qs ◦ Ps(I) ≥ I. Since

P 2
s (I) = Ps(I)Qs ◦ Ps(I)Ps(I)

in view of Ps(I) = Qs(I)−1, the desired conclusion is immediate. �

We list here some problems which arise naturally out of our investigations.
Notice that the defect operator I − TT ∗ is always compact for any finitely
multi-cyclic 2-expansion [12], and hence one would like to know whether
I − T1T ∗1 − · · · − TmT ∗m is compact for any finitely multi-cyclic spherical 2-
expansion for which σ(T ) is the closed unit ball. This is not true in case in
case σ(T ) is a proper subset of the closed unit ball.

It may be concluded from Lemma 3.3 that the dual Drury–Arveson m-
shift M s

z,m is a spherical complete hypercontraction if and only if the one-

variable weighted shift with weight-sequence
{
k+1
k+m

}
is a subnormal contrac-

tion. The latter one is true in view of [20, Theorem 2.7], and hence M s
z,m

is subnormal. One may now imitate the proof of Theorem 2.3 to present
an alternative proof of the first half of [4, Theorem 5.7]. Similarly, one may
obtain a version of Theorem 2.2 for the Drury–Arveson m-shift. Our next
result generalizes these facts substantially.

For compactly supported measure µ, let supp µ denote the support of µ.

Theorem 5.3. Let σ denote the normalized surface area measure on the unit
sphere ∂B. For a probability measure ν on [0, 1] with the point 1 in supp ν,
let dµ := dνdσ. Let Nz = (Nz1 , . . . , Nzm) denote the operator tuple of multi-
plication by the co-ordinate functions z1, . . . , zm in L2(µ). Let P 2(µ) denote
the closure of the analytic polynomials in L2(µ). Let Tν = (Tν1, . . . , Tνm) be
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the m-variable weighted shift with weight-sequence

w(i)
n :=

√
ni + 1

|n|+m

√√√√ ∫
[0,1] r

2kdν(r)∫
[0,1] r

2(k+1)dν(r)
(n ∈ Nm, 1 ≤ i ≤ m)

with respect to the orthonormal basis

{
zn√∫

B |zn|2dµ(z)

}
n∈Nm

of P 2(µ). Then

the diagram

C∗(Nz)
ψ

//

θ
��

C(supp µ)

r

��

C∗(Tν) q
// C∗(Tν)/CTν φ

// C(∂B)

commutes, where:

(1) ψ : C∗(Nz)→ C(supp µ) is the isometric ∗-isomorphism such that

ψ(Nzi) = zi (1 ≤ i ≤ m).

(2) The restriction mapping r : C(supp µ) → C(∂B) is a well-defined
surjection.

(3) φ : C∗(Tν)/CTν → C(∂B) is the isometric ∗-isomorphism with

φ(Tνi + CTν ) = zi (1 ≤ i ≤ m).

(4) q : C∗(Tν)→ C∗(Tν)/CTν is the quotient map.
(5) θ : C∗(Nz)→ C∗(Tν) given by

θ(f(Nz)) = PHf(Nz)|P 2(µ), f ∈ C(supp µ),

is a completely positive linear mapping.

In particular, C∗(Tν) is the Toeplitz C∗-algebra, that is, the C∗-algebra
generated by all Toeplitz operators f  PP 2(µ)φf on P 2(µ) with φ belonging
to C(supp µ).

Proof. To see the first half of the theorem, in view of the proofs of Theorems
2.2 and 2.3, it suffices to check the following assertions:

(a) The spherical Cauchy dual T s
ν is subnormal.

(b) σ(Nz) = supp(µ) and σap(Tν) = ∂B.
(c) The commutator ideal CTν of C∗(Tν) coincides with C(P 2(µ)).

(a) Let Mz denote the operator tuple of multiplication by the co-ordinate
functions in P 2(µ). Observe that Nz is a normal extension of Mz. It has
been noted in [11, p. 1458] that Mz admits the weight-sequence

v(i)n :=

√
ni + 1

|n|+m

√√√√∫[0,1] r2(k+1)dν(r)∫
[0,1] r

2kdν(r)
(n ∈ Nm, 1 ≤ i ≤ m).
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It is now easy to see that the spherical Cauchy dual T s
ν is unitarily equivalent

to Mz.
(b) Clearly, σ(Nz) = supp(µ). In view of T s

ν = Mz as obtained in (a), it
may be concluded from [11, Proposition 16] that σap(T

s
ν ) = ∂B. Also, by

Lemma 3.5(3), σap(Tν) = σap(T
s
ν ). Thus we have σap(T ) = ∂B.

(c) It has been noted in [11] that Mzi is essentially normal for i = 1, . . . ,m.
One may now argue as the proof of Theorem 2.3 to conclude that the
the commutator ideal of C∗(Mz) coincides with C(P 2(µ)). Since C∗(Tν) =
C∗(T s

ν ) = C∗(Mz) in view of Lemma 2.1, the desired conclusion in (c) is
immediate.

To see the remaining part, recall that C∗(Tν) = C∗(Mz), and appeal to
[11, Corollary 18]. �

The method of the proof of the last theorem may tempt one to address the
following problem: Characterize m-variable weighted shifts (in particular,
spherical m-isometric m-variable weighted shifts) which admit subnormal
spherical Cauchy dual tuple.

We believe that the structure theory of spherical Cauchy dual tuples of
spherical complete hyperexpansions (resp. spherical m-isometries) will have
far reaching consequences for the spectral and function theory of spherical
complete hyperexpansions (resp. spherical m-isometries).

Acknowledgements. I convey my sincere thanks to Dr. V. M. Shola-
purkar, with whom I had a few fruitful conversations concerning the subject
of the paper.
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[25] Jabloński Zenon J.; Stochel, Jan. Unbounded 2-hyperexpansive operators.
Proc. Edinb. Math. Soc. (2) 44 (2001), no. 3, 613–629. MR1875772 (2002k:47080),
Zbl 0993.47003, doi: 10.1017/S001309159900139X.

[26] Jewell, Nicholas P.; Lubin, A. R. Commuting weighted shifts and analytic
function theory in several variables. J. Operator Theory 1 (1979), no. 2, 207–223.
MR0532875 (80c:47030), Zbl 0431.47016.

[27] Olin, Robert F.; Thomson, James E. Algebras generated by a subnormal oper-
ator. Trans. Amer. Math. Soc. 271 (1982), no. 1, 299–311. MR0648094 (84i:47063),
Zbl 0485.47015, doi: 10.1090/S0002-9947-1982-0648094-6.

[28] Sholapurkar, V. M.; Athavale, Ameer. Completely and alternatingly hyper-
expansive operators. J. Operator Theory 43 (2000), no. 1, 43–68. MR1740894
(2001a:47023), Zbl 0992.47012.

[29] Shimorin, Serguei. Wold-type decompositions and wandering subspaces for oper-
ators close to isometries. J. Reine Angew. Math. 531 (2001), 147–189. MR1810120
(2002c:47018), Zbl 0974.47014, doi: 10.1515/crll.2001.013.

[30] Shimorin, Serguei. Complete Nevanlinna–Pick property of Dirichlet-type spaces.
J. Funct. Anal. 191 (2002), no. 2, 276–296. MR1911187 (2003c:47032), Zbl
1038.46022, doi: 10.1006/jfan.2001.3871.

Indian Institute of Technology Kanpur, Kanpur- 208016, India
chavan@iitk.ac.in

This paper is available via http://nyjm.albany.edu/j/2013/19-26.html.

http://www.ams.org/mathscinet-getitem?mr=1875772
http://www.emis.de/cgi-bin/MATH-item?0993.47003
http://dx.doi.org/10.1017/S001309159900139X
http://www.ams.org/mathscinet-getitem?mr=0532875
http://www.emis.de/cgi-bin/MATH-item?0431.47016
http://www.ams.org/mathscinet-getitem?mr=0648094
http://www.emis.de/cgi-bin/MATH-item?0485.47015
http://dx.doi.org/10.1090/S0002-9947-1982-0648094-6
http://www.ams.org/mathscinet-getitem?mr=1740894
http://www.emis.de/cgi-bin/MATH-item?0992.47012
http://www.ams.org/mathscinet-getitem?mr=1810120
http://www.emis.de/cgi-bin/MATH-item?0974.47014
http://dx.doi.org/10.1515/crll.2001.013
http://www.ams.org/mathscinet-getitem?mr=1911187
http://www.emis.de/cgi-bin/MATH-item?1038.46022
http://www.emis.de/cgi-bin/MATH-item?1038.46022
http://dx.doi.org/10.1006/jfan.2001.3871
mailto:chavan@iitk.ac.in
http://nyjm.albany.edu/j/2013/19-26.html

	1. Introduction
	2. Statement and examples
	3. Proofs of the structure theorems
	3.1. Subnormality of spherical Cauchy dual
	3.2. Essential normality of spherical hyperexpansions
	3.3. A commutative diagram of Olin and Thomson

	4. Boundary representations for spherical hyperexpansions
	5. Concluding remarks. Open problems
	Acknowledgements

	References

