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Local Calabi and curvature estimates for
the Chern–Ricci flow

Morgan Sherman and Ben Weinkove

Abstract. Assuming local uniform bounds on the metric for a solu-
tion of the Chern–Ricci flow, we establish local Calabi and curvature
estimates using the maximum principle.

Contents

1. Introduction 565

2. Preliminaries 567

3. Local Calabi estimate 569

4. Local curvature bound 574

5. Higher order estimates 578

References 580

1. Introduction

Let (M, ĝ) be a Hermitian manifold. The Chern–Ricci flow starting at ĝ
is a smooth flow of Hermitian metrics g = g(t) given by

(1.1)
∂

∂t
gi̄ = −RCi̄ , gi̄|t=0 = ĝi̄,

where RCi̄ := −∂i∂̄ log det g is the Chern–Ricci curvature of g. If ĝ is Kähler,
then the Chern–Ricci flow coincides with the Kähler–Ricci flow.

The Chern–Ricci flow was introduced by Gill [11] and further investi-
gated by Tosatti and the second-named author [25, 26]. This flow has many
of same properties as the Kähler–Ricci flow. For example: on manifolds
with vanishing first Bott–Chern class the Chern–Ricci flow converges to a
Chern–Ricci flat metric [11]; on manifolds with negative first Chern class,
the Chern–Ricci flow takes any Hermitian metric to the Kähler–Einstein
metric [25]; when M is a compact complex surface and ĝ is ∂∂-closed,
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the Chern–Ricci flow exists until either the volume of the manifold goes
to zero or the volume of a curve of negative self-intersection goes to zero
[25]; if in addition M is nonminimal with nonnegative Kodaira dimension,
the Chern–Ricci flow shrinks exceptional curves in finite time [26] in the
sense of Gromov–Hausdorff. These results are closely analogous to results
for the Kähler–Ricci flow [3, 10, 23, 20, 21].

In this note, we establish local derivative estimates for solutions of the
Chern–Ricci flow assuming local uniform bounds on the metric, generalizing
our previous work [18] on the Kähler–Ricci flow. Our estimates are local,
so we work in a small open subset of Cn. Write Br for the ball of radius r
centered at the origin in Cn, and fix T < ∞. We have the following result
(see Section 2 for more details about the notation).

Theorem 1.1. Fix r with 0 < r < 1. Let g(t) solve the Chern–Ricci flow
(1.1) in a neighborhood of Br for t ∈ [0, T ]. Assume N > 1 satisfies

(1.2)
1

N
ĝ ≤ g(t) ≤ Nĝ on Br × [0, T ].

Then there exist positive constants C,α, β depending only on ĝ such that:

(i) |∇̂g|2g ≤
CNα

r2
on Br/2× [0, T ], where ∇̂ is the Chern connection of

ĝ.

(ii) |Rm|2g ≤
CNβ

r4
on Br/4× [0, T ], for Rm the Chern curvature tensor

of g.

Note that the estimates are independent of the time T and so the results
hold also for time intervals [0, T ) or [0,∞). The dependence of the constants
on ĝ is as follows: up to three derivatives of torsion of ĝ and one derivative
of the Chern curvature of ĝ (see Remarks 3.1 and 4.1). We call the bound
(i) a local Calabi estimate [2] (see [29] for a similar estimate in the elliptic
case).

As a consequence of Theorem 1.1, we have local derivative estimates for
g to all orders:

Corollary 1.2. With the assumptions of Theorem 1.1, for any ε > 0 with
0 < ε < T , there exist constants Cm, αm and γm for m = 1, 2, 3, . . . depend-
ing only on ĝ and ε such that

|∇̂mR g|2ĝ ≤
CmN

αm

rγm
on Br/8 × [ε, T ],

where ∇̂R is the Levi-Civita covariant derivative associated to ĝ.

Note that our assumption (1.2) often holds for the Chern–Ricci flow on
compact subsets away from a subvariety. For example, this always occurs
for the Chern–Ricci flow on a nonminimal complex surface of nonnegative
Kodaira dimension [25, 26]. It has already been shown by Gill [11] that local
derivative estimates exist using the method of Evans–Krylov [9, 14] adapted
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to this setting. The purpose of this note is to give a direct maximum princi-
ple proof of Gill’s estimates, and in the process identify evolution equations
for the Calabi quantity |∇̂g|2g and the Chern curvature tensor Ri̄kl, which

were previously unknown for this flow. In addition, we more precisely de-
termine the form of dependence on the constants N and r. We anticipate
that this may be useful, for example in generalizations of arguments of [21].

In the case when ĝ is Kähler, so that g(t) solves the Kähler–Ricci flow, the
above result follows from results of the authors in [18]. The more general
case we deal with here leads to many more difficulties, arising from the
torsion tensors of g and ĝ. For these reasons, our conclusions here are
slightly weaker: for example, we cannot obtain the small values (α = 3 and
β = 8) in the estimates of (i) and (ii) that we achieved in [18].

Acknowledgements. The second-named author thanks Valentino Tosatti
and Xiaokui Yang for some helpful discussions.

2. Preliminaries

In this section we introduce the basic notions that we will be using
throughout the paper. We largely follow notation given in [25]. Given a
Hermitian metric g we write ∇ for the Chern connection associated to g,
which is characterized as follows. Define Christoffel symbols Γlik = gs̄l∂igks̄.

Let X = X l ∂
∂zl

be a vector field and let a = ak dz
k be a (1, 0) form. Then

(2.1) ∇iX l = ∂iX
l + ΓlirX

r, ∇iaj = ∂iaj − Γrijar.

We can, in a natural way, extend ∇ to act on any tensor. Note that ∇ makes
g parallel: i.e., ∇g = 0. Similarly we let ∇̂ denote the Chern connection
associated to ĝ.

Define the torsion tensor T of g by

(2.2) Tij
k = Γkij − Γkji.

We note that g is Kähler precisely when T = 0. We write

Tı̄̄
k̄ := Γk̄ı̄̄ − Γk̄̄̄ı := Γkij − Γkji

for the components of the tensor T . We lower and raise indices using the

metric g. For example, T ijk = gaigbjgklTab
l.

We define the Chern curvature tensor of g to be the tensor written locally
as

(2.3) Ri̄k
l = −∂̄Γlik.

Then

(2.4) Ri̄kl̄ = −∂i∂̄gkl̄ + gs̄r∂igks̄∂̄grl̄.

Again we have lowered an index using the metric g. Note that Ri̄kl̄ = Rjı̄lk̄
holds.
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The commutation formulas for the Chern connection are given by

[∇i,∇̄]X l = Ri̄k
lXk, [∇i,∇̄]Xk = −Ri̄k̄ l̄X l(2.5)

[∇i,∇̄]ak = −Ri̄klal, [∇i,∇̄]al = Ri̄
k̄
l̄ak.

Because g is not assumed to be a Kähler metric the Bianchi identities will
not necessarily hold for Ri̄kl̄. However their failure to hold can be measured
with the torsion tensor T defined above:

Ri̄kl̄ −Rk̄il̄ = −∇̄Tikl̄(2.6)

Ri̄kl̄ −Ril̄k̄ = −∇iT̄l̄k
Ri̄kl̄ −Rkl̄i̄ = −∇̄Tikl̄ −∇kT̄l̄i = −∇iT̄l̄k −∇l̄Tik̄

∇pRi̄kl̄ −∇iRp̄kl̄ = −TpirRr̄kl̄
∇q̄Ri̄kl̄ −∇̄Riq̄kl̄ = −Tq̄̄s̄Ris̄kl̄.

These identities are well-known (see [27] for example). Indeed, it is routine
to verify the first line, and the second and third lines follow directly from it.
Furthermore the fifth line follows directly from the fourth. For the fourth
line we calculate:

∇pRi̄kl = −∇p(∂̄Γlik) = −∂p∂̄Γlik − Γlpr∂̄Γ
r
ik + Γrpi∂̄Γ

l
rk + Γrpk∂̄Γ

l
ir.

Swapping the p and i indices, subtracting, and combining terms, we find

∇pRi̄kl −∇iRp̄kl = −TpirRr̄kl + ∂̄

(
∂iΓ

l
pk − ∂pΓlik + ΓlirΓ

r
pk − ΓlprΓ

r
ik

)
.

Now one checks that the quantity in parentheses vanishes.
We define the Chern–Ricci curvature tensor RCi̄ by

(2.7) RCi̄ = g l̄kRi̄kl̄ = −∂i∂̄ log det g.

Note that
√
−1RCi̄dz

i ∧ dz ̄ is a real closed (1,1) form. We will suppose that

g = g(t) satisfies the Chern–Ricci flow :

(2.8)
∂

∂t
gi̄ = −RCi̄ , gi̄|t=0 = ĝi̄,

for t ∈ [0, T ] for some fixed positive time T . We will use ∇̂, Γ̂lik, T̂ik
l, R̂i̄kl,

etc., to denote the corresponding quantities with respect to the metric ĝ.
Define a real (1,1) form ω = ω(t) by ω =

√
−1gi̄dz

i ∧ dz ̄ and similarly for
ω̂. From (2.8) we have that

(2.9) ω = ω̂ + η(t)

for a closed (1, 1) form η. Hence

(2.10) Tikl̄ = T̂ikl̄.

Here we raise and lower indices of T̂ using the metric ĝ, in the same manner
as for g above. Note that Tikl̄ = grl̄Tik

r = ∂igkl − ∂kgil and T̂ikl̄ = ĝrl̄T̂ik
r =

∂iĝkl − ∂kĝil.
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It is convenient to introduce the tensor Ψik
l = Γlik − Γ̂lik. We raise and

lower indices of Ψ using the metric g, and write Ψı̄k
l for the components of

Ψ. We note here that Ψ can be used to switch between the connections ∇
and ∇̂. For example given a tensor of the form Xi

j we have

(2.11) ∇pXi
j − ∇̂pXi

j = −Ψpi
rXr

j + Ψpr
jXi

r.

Observe that

(2.12) ∇̄Ψik
l = −Ri̄kl + R̂i̄k

l.

We write ∆ for the “rough Laplacian” of g, ∆ = ∇q̄∇q̄, where ∇q̄ = gq̄p∇p.
Finally note that we will write all norms | · | with respect to the metric g.

3. Local Calabi estimate

In this section we prove part (i) of Theorem 1.1. We consider the Calabi-
type [2, 28] quantity

(3.1) S := |Ψ|2 = |∇̂g|2.
Our goal in this section is to uniformly bound S on the set Br/2, which

we will do using a maximum principle argument. First we compute its
evolution. Calculate

∆S = gq̄p∇p∇q̄
(
gāigb̄jgkc̄Ψij

kΨab
c
)

= gq̄pgāigb̄jgkc̄∇p
(
∇q̄Ψij

kΨab
c + Ψij

k∇qΨab
c
)

= |∇Ψ|2 + |∇Ψ|2 + gāigb̄jgkc̄

(
∆Ψij

kΨab
c

+ Ψij
k(∆Ψab

c + gq̄pRpq̄arΨrb
c + gq̄pRpq̄brΨar

c − gq̄pRpq̄rcΨab
r)
)

= |∇Ψ|2 + |∇Ψ|2 + 2Re
(

(∆Ψij
k)Ψij

k

)
+ (Rp

p
r
iΨrj

k +Rp
p
r
jΨir

k −RppkrΨij
r)Ψij

k.

From (2.12) we have

(3.2) ∆Ψij
k = −∇q̄Riq̄jk +∇q̄R̂iq̄jk.

For the time derivative of S, first compute (cf. [17] in the Kähler case),

(3.3)
∂

∂t
Ψij

k =
∂

∂t
Γkij = −∇i(RC)j

k.

Then
∂

∂t
S =

∂

∂t

(
gāigb̄jgkc̄Ψij

kΨab
c
)

=

(
∂

∂t
gāi
)

Ψij
kΨā

j
k +

(
∂

∂t
gb̄j
)

Ψij
kΨi

b̄k

+

(
∂

∂t
gkc̄

)
Ψij

kΨijc̄ + 2Re

((
∂

∂t
Ψij

k

)
Ψij

k

)
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= (RC)āiΨij
kΨā

j
k + (RC)b̄jΨij

kΨi
b̄k

− (RC)kc̄Ψij
kΨijc̄ − 2Re

(
(∇i(RC)j

k)Ψij
k

)
.

Therefore(
∂

∂t
−∆

)
S = − |∇Ψ|2 − |∇Ψ|2 +

(
Rr̄ip

p −Rppr̄i
)

Ψij
kΨr̄

j
k

+
(
Rr̄jp

p −Rppr̄j
)

Ψij
kΨi

r̄k − (Rkr̄p
p −Rppkr̄) Ψij

kΨijr̄

− 2Re
[(
∇iRjkpp + ∆Ψij

k
)

Ψij
k

]
.

By (2.6) we can re-write the terms involving a difference in curvature using
the torsion tensor T . For the term in square brackets we compute, using
(3.2) and again (2.6) that

∇iRjkpp + ∆Ψij
k =∇i

(
Rp

p
j
k +∇jT pkp +∇pTpjk

)
−∇q̄Riq̄jk +∇q̄R̂iq̄jk

=
(
∇pRipjk − TiprRrpjk +∇i∇jT pkp +∇i∇pTpjk

)
−∇q̄Riq̄jk +∇q̄R̂ip̄jk

=− TiprRrpjk +∇i∇jT pkp +∇i∇pTpjk +∇q̄R̂iq̄jk.

Hence S satisfies the following evolution equation(
∂

∂t
−∆

)
S =(3.4)

− |∇Ψ|2 − |∇Ψ|2

+
(
∇rTq̄ iq̄ +∇q̄T q̄ri

)
Ψij

kΨrj
k +

(
∇rTq̄jq̄ +∇q̄T q̄rj

)
Ψij

kΨir
k

−
(
∇kTq̄rq̄ +∇q̄T q̄kr

)
Ψij

kΨij
r

− 2Re
[(
∇i∇jT pkp +∇i∇q̄T q̄jk − TiprRrpjk + gq̄p∇pR̂iq̄jk

)
Ψij

k

]
.

There are similar calculations to (3.4) in the literature which generalize
Calabi’s argument [2, 28]: in the elliptic Hermitian case [6, 29]; in the case
of the Kähler–Ricci flow (see also [18]) in [3, 17]; and in other settings
[27, 24, 22].

For the remainder of this section we will write C for a constant of the form
CNα for C and α depending only on ĝ. Our goal is to show that S ≤ C/r2.
The constant C will be used repeatedly and may change from line to line,
and we may at times use C ′ or C1, etc.

We would like to bound the right-hand side of (3.4). First, from (2.10)
and (2.11) we have, for example,

(3.5) ∇āTijk = g l̄k(∇̂āT̂ijl̄ −Ψāl̄
r̄T̂ijr̄).
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This and similar calculations show that the third and fourth lines of (3.4)

can be bounded by C(S3/2 + 1). Next we address the terms in the last line
of the evolution equation for S.

• Building on (3.5) we find

∇a∇bTı̄̄k̄ = gkl
(
∇a(∇̂bT̂ı̄̄l −Ψbl

rT̂ı̄̄r)
)

(3.6)

= gk̄l
(
∇̂a∇̂bT̂ı̄̄l −Ψab

r∇̂rT̂ı̄̄l −Ψal
r∇̂bT̂ı̄̄r

−(∇aΨbl
r)T̂ı̄̄r −Ψbl

r∇̂aT̂ı̄̄r + Ψbl
rΨar

sT̂ı̄̄s

)
,

and hence |∇i∇jT pkp| can be bounded by C(S + |∇Ψ|+ 1).
• Similarly,

∇a∇bTij
k(3.7)

= glk∇a(∇̂bT̂ijk −Ψbk
qT̂ijq)

= glk
(
∇̂a∇̂bT̂ijk −Ψai

p∇̂bT̂pjk −Ψaj
p∇̂bT̂ipk − (∇aΨbk

q)T̂ijq

−Ψbk
q(∇̂aT̂ijq −Ψai

pT̂pjq −Ψaj
pT̂ipq)

)
,

and so |∇i∇q̄T q̄jk| can be bounded by C(S + |∇Ψ|+ 1).
• Next, using (2.10) and (2.12):

Tip
rRr

p
j
k = gs̄rgq̄pT̂ips̄

(
R̂rq̄j

k −∇q̄Ψrj
k
)
,

so we can bound |TiprRrpjk| by C(|∇Ψ|+ 1).
• Finally, compute

∇pR̂iq̄jk = ∇̂pR̂iq̄jk −Ψpi
rR̂rq̄j

k −Ψpj
rR̂iq̄r

k + Ψpr
kR̂iq̄j

r.

So |gq̄p∇pR̂iq̄jk| can be bounded by C(S1/2 + 1).

Putting this all together we arrive at the bound

(3.8)

(
∂

∂t
−∆

)
S ≤ C(S3/2 + 1)− 1

2
(|∇Ψ|2 + |∇Ψ|2).

We note here the bounds:

|∇trĝg|2 ≤ CS(3.9)

|∇S|2 ≤ 2S(|∇Ψ|2 + |∇Ψ|2).(3.10)

The first follows from ∇p
(
ĝ̄igi̄

)
= ∇̂p

(
ĝ̄igi̄

)
= ĝ̄i∇̂pgi̄ and the second

follows from |∇S|2 =
∣∣∇|Ψ|2∣∣ ∣∣∇|Ψ|2∣∣ ≤ 2|Ψ|2 (|∇Ψ|2 +|∇Ψ|2). Furthermore

from [25, Proposition 3.1] (see also [6] in the elliptic case), we also have the
following evolution equation for trĝg:
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(
∂

∂t
−∆

)
trĝg =(3.11)

− g̄pgq̄i∇̂kgi̄∇̂kgpq̄ − 2 Re
(
g̄iT̂ki

p∇̂kgp̄
)

+ g̄i
(
∇̂iT̂̄kq̄ − R̂ikq̄ ̄

)
gkq̄ − g̄i

(
∇̂iT̂̄q̄ q̄ + ∇̂kT̂ik̄

)
+ g̄iT̂̄

kq̄T̂ik
p(ĝ − g)pq̄.

(Here ∇̂k = ĝ l̄k∇̂l̄ and we have raised indices on the tensor R̂m using ĝ).
This generalizes the second order evolution inequality for the Kähler–Ricci
flow [3] (cf. [28, 1]). Hence we have the estimate

(3.12)

(
∂

∂t
−∆

)
trĝg ≤ −

S

C0
+ C(S1/2 + 1),

for a uniform positive constant C0 (in fact we can take C0 = N).
We now would like to show that the evolution inequalities (3.8, 3.12) imply

a uniform bound on S = |∇̂g|2 on Br/2 × [0, T ]. Choose a smooth cutoff

function ρ which is supported in Br and is identically 1 on Br/2. We may

assume that |∇ρ|2, |∆ρ| are bounded by C/r2. Let K be a large uniform
constant, to be specified later, which is at least large enough so that

K

2
≤ K − trĝg ≤ K.

Let A denote another large positive constant to be specified later. We will
use a maximum principle argument with the function (cf. [5])

f = ρ2 S

K − trĝg
+Atrĝg

to show that S is bounded on Br/2.

Suppose that the maximum of f on Br × [0, T ] occurs at a point (x0, t0).
We assume for the moment that t0 > 0 and that x0 does not lie in the
boundary of Br. We wish to show that at (x0, t0), S is bounded from above
by a uniform constant C. Hence we may assume without loss of generality
that S > 1 at (x0, t0). In particular, we have(

∂

∂t
−∆

)
S ≤ CS3/2 − 1

2
(|∇Ψ|2 + |∇Ψ|2),(3.13) (

∂

∂t
−∆

)
trĝg ≤ −

S

2C0
+ C.

We compute at (x0, t0),
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(
∂

∂t
−∆

)
f =

A

(
∂

∂t
−∆

)
trĝg + (−∆(ρ2))

S

K − trĝg

+ ρ2 S

(K − trĝg)2

(
∂

∂t
−∆

)
trĝg + ρ2 1

K − trĝg

(
∂

∂t
−∆

)
S

− 4Re

[
ρ

S

(K − trĝg)2
∇trĝg · ∇ρ

]
− 4Re

[
ρ

1

K − trĝg
∇ρ · ∇S

]
− 2Re

[
ρ2 1

(K − trĝg)2
∇trĝg · ∇S

]
− 2ρ2S

(K − trĝg)3
|∇trĝg|2.

But since a maximum occurs at (x0, t0) we have ∇f = 0 at this point, and
hence

2ρ∇ρ S

K − trĝg
+ ρ2 ∇S

K − trĝg
+ ρ2 S∇trĝg

(K − trĝg)2
+A∇trĝg = 0.

Then at (x0, t0),(
∂

∂t
−∆

)
f =

A

(
∂

∂t
−∆

)
trĝg + (−∆(ρ2))

S

K − trĝg
+ ρ2 S

(K − trĝg)2

(
∂

∂t
−∆

)
trĝg

+ ρ2 1

K − trĝg

(
∂

∂t
−∆

)
S − 4Re

[
ρ

1

K − trĝg
∇ρ · ∇S

]
+

2A|∇trĝg|2

K − trĝg
.

Making use of (3.9, 3.10, 3.13) and Young’s inequality, we obtain at (x0, t0),

0 ≤
(
∂

∂t
−∆

)
f ≤

(
− A

2C0
S + CA

)
+

(
CS

r2K

)
+

(
− ρ2

2K2C0
S2 +

Cρ2

K2
S

)
+

(
− ρ2

2K
(|∇Ψ|2 + |∇Ψ|2) +

ρ2

4K2C0
S2 + Cρ2S

)
+

(
ρ2

4K
(|∇Ψ|2 + |∇Ψ|2) +

C

Kr2
S

)
+
CA

K
S

≤− A

2C0
S + CA+

C ′

r2
S +

CA

K
S.

Now pick K ≥ 4C0C so that at (x0, t0),

0 ≤ − A

4C0
S + CA+

C ′

r2
S.

Then choose A = 8C′C0
r2

so that at (x0, t0),

C ′

r2
S ≤ CA,
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giving a uniform upper bound for S. It follows that f is bounded from above
by Cr−2 for a uniform C. Hence S on Br/2 is bounded above by Cr−2.

It remains to deal with the cases when t0 = 0 or x0 lies on the boundary
of Br. In either case we have f(x0, t0) ≤ Atrĝg(x0, t0) ≤ Cr−2 and the same
bound holds.

Remark 3.1. Tracing through the argument, one can see that the constants
only depend on uniform bounds for the torsion and curvature of ĝ, and one

and two derivatives (with respect to ∇̂ or ∇̂) of torsion and one derivative
of curvature.

4. Local curvature bound

In this section we prove part (ii) of Theorem 1.1. As in the previous
section, we write C for a constant of the form CNγ for some uniform C, γ.
We compute in the ball Br/2 on which we already have the bound S ≤ C/r2.

Let ∆R = 1
2g
q̄p(∇p∇q̄ +∇q̄∇p). First we need an evolution equation for

the curvature tensor. We begin with

∂

∂t
Ri̄k

l =
∂

∂t

(
−∂̄Γlik

)
= −∂̄

∂

∂t

(
Γlik

)
= −∂̄(−∇i(RC)k

l) = ∇̄∇iRklpp

and therefore,

(4.1)
∂

∂t
Ri̄kl̄ = −Rql̄ppRi̄kq +∇̄∇iRkl̄pp.

Now, computing in coordinates where g is the identity, we find

∆RRi̄kl̄ =
1

2
(∇p∇p̄ +∇p̄∇p)Ri̄kl̄

=∇p∇p̄Ri̄kl̄ +
1

2
(Rpp̄iq̄Rq̄kl̄ −Rpp̄q̄Riq̄kl̄ +Rpp̄kq̄Ri̄ql̄ −Rpp̄ql̄Ri̄kq̄)

=∇p(∇̄Rip̄kl̄ − Tp̄̄qRiq̄kl̄)

+
1

2
(Rpp̄iq̄Rq̄kl̄ −Rpp̄q̄Riq̄kl̄ +Rpp̄kq̄Ri̄ql̄ −Rpp̄ql̄Ri̄kq̄)

=∇̄∇pRip̄kl̄ −Rp̄iq̄Rqp̄kl̄ +Rp̄qp̄Riq̄kl̄

−Rp̄kq̄Rip̄ql̄ +Rp̄ql̄Rip̄kq̄ −∇p(Tp̄̄qRiq̄kl̄)

+
1

2
(Rpp̄iq̄Rq̄kl̄ −Rpp̄q̄Riq̄kl̄ +Rpp̄kq̄Ri̄ql̄ −Rpp̄ql̄Ri̄kq̄)

=∇̄(∇iRpp̄kl̄ − Tpiq̄Rqp̄kl̄)−Rp̄iq̄Rqp̄kl̄ +Rp̄qp̄Riq̄kl̄

−Rp̄kq̄Rip̄ql̄ +Rp̄ql̄Rip̄kq̄ −∇p(Tp̄̄qRiq̄kl̄)

+
1

2
(Rpp̄iq̄Rq̄kl̄ −Rpp̄q̄Riq̄kl̄ +Rpp̄kq̄Ri̄ql̄ −Rpp̄ql̄Ri̄kq̄)

=∇̄∇i(Rkl̄pp̄ −∇pTp̄l̄k −∇l̄Tpkp̄)−∇̄(Tpiq̄Rqp̄kl̄)−Rp̄iq̄Rqp̄kl̄
+Rp̄qp̄Riq̄kl̄ −Rp̄kq̄Rip̄ql̄ +Rp̄ql̄Rip̄kq̄ −∇p(Tp̄̄qRiq̄kl̄)

+
1

2
(Rpp̄iq̄Rq̄kl̄ −Rpp̄q̄Riq̄kl̄ +Rpp̄kq̄Ri̄ql̄ −Rpp̄ql̄Ri̄kq̄).
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Hence (
∂

∂t
−∆R

)
Ri̄kl̄ =(4.2)

−Rql̄pp̄Ri̄kq̄ +Rp̄iq̄Rqp̄kl̄ −Rp̄qp̄Riq̄kl̄ +Rp̄kq̄Rip̄ql̄ −Rp̄ql̄Rip̄kq̄

− 1

2
(Rpp̄iq̄Rq̄kl̄ −Rpp̄q̄Riq̄kl̄ +Rpp̄kq̄Ri̄ql̄ −Rpp̄ql̄Ri̄kq̄)

+∇p(T̂p̄̄qRiq̄kl̄) +∇̄(T̂piq̄Rqp̄kl̄) +∇̄∇i(∇pTp̄l̄k +∇l̄Tpkp̄).
To estimate this, we first compute

∇p(T̂p̄qRiqkl) = (∇̂pT̂p̄q −ΨpqrT̂p̄r)Riqkl + T̂p̄q∇pRiqkl,

and this is bounded by C(|Rm|/r + |∇Rm|). Using the fact that

Ri̄k
l = −∇̄Ψik

l + R̂i̄k
l

we have

(4.3) |Rm| ≤ |∇Ψ|+ C,

and hence

(4.4) |∇p(T̂p̄qRiqkl)| ≤ C
(
|∇Rm|+ |∇Ψ|

r
+

1

r

)
.

Similarly for the term ∇̄(T̂piq̄Rqp̄kl̄).
The last two terms of (4.2) involve three derivatives of torsion. We claim

that

(4.5) |∇∇∇T |, |∇∇∇T | ≤ C
(
|∇Rm|+ |∇Ψ|+ |∇Ψ|

r
+

1

r3

)
.

Indeed, applying ∇c to (3.6), we have

∇c∇a∇bTı̄̄k = gkl
(
∇̂c∇̂a∇̂bT̂ı̄̄l −Ψcı̄

q∇̂a∇̂bT̂q̄l −Ψc̄
q∇̂a∇̂bT̂ı̄ql

(4.6)

−∇c(Ψab
r∇̂rT̂ı̄̄l)−∇c(Ψal

r∇̂bT̂ı̄̄r)−∇c(Ψbl
r∇̂aT̂ı̄̄r)

−∇c(∇aΨbl
rT̂ı̄̄r) +∇c(Ψbl

rΨar
sT̂ı̄̄s)

)
.

The first three terms on the right-hand side are bounded by C(
√
S+ 1) and

hence by C/r. Next compute

∇c(Ψab
r∇̂rT̂ı̄̄l) = (∇cΨab

r)∇̂rT̂ı̄̄l + Ψab
r∇̂c∇̂rT̂ı̄̄l −Ψab

rΨcı̄
q∇̂rT̂q̄l(4.7)

−Ψab
rΨc̄

q∇̂rT̂ı̄ql,

which is bounded by C|∇Ψ| + C
√
S + CS and hence by C(|∇Ψ| + 1/r2).

The same bound holds for the other two terms on the second line of (4.6).
For the third line, compute

∇c(∇aΨbl
rT̂ı̄̄r) = (∇a∇cΨbl

r +Racb
pΨpl

r +Racl
pΨbp

r −RacprΨbl
p) T̂ı̄̄r

+ (∇aΨbl
r)
(
∇̂cT̂ı̄̄r −Ψcı̄

qT̂q̄r −Ψc̄
qT̂ı̄qr

)
,
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and using the fact that ∇cΨbl
r = −Rbclr + R̂bcl

r we obtain

∇c(∇aΨbl
rT̂ı̄̄r) =

(
−∇aRbclr + ∇̂aR̂bclr −Ψab

pR̂pcl
r −Ψal

pR̂bcp
r

+ Ψap
rR̂bcl

p +Racb
pΨpl

r +Racl
pΨbp

r −RacprΨbl
p
)
T̂ı̄̄r

+ (∇aΨbl
r)
(
∇̂cT̂ı̄̄r −Ψcı̄

qT̂q̄r −Ψc̄
qT̂ı̄qr

)
.

It follows that

(4.8) |∇c(∇aΨbl
rT̂ı̄̄r)| ≤ C

(
|∇Rm|+ |Rm|

r
+
|∇Ψ|
r

+
1

r

)
.

Finally,

∇c(Ψbl
rΨar

sT̂ı̄̄s) = (−Rbclr + R̂bcl
r)Ψar

sT̂ı̄̄s + Ψbl
r(−Racrs + R̂acr

s)T̂ı̄̄s

+ Ψbl
rΨar

s(∇̂cT̂ı̄̄s −Ψcı̄
qT̂q̄s −Ψc̄

qT̂ı̄qs),

giving

(4.9) |∇c(Ψbl
rΨar

sT̂ı̄̄s)| ≤ C
(
|Rm|
r

+
1

r3

)
.

Putting together (4.6, 4.7, 4.8, 4.9), and making use of (4.3), we obtain

|∇∇∇T | ≤ C
(
|∇Rm|+ |∇Ψ|+ |∇Ψ|

r
+

1

r3

)
,

and the bound for |∇∇∇T | follows similarly. This completes the proof of
the claim (4.5).

From (4.4) and the claim we just proved, since the second and third lines
of (4.2) are of the order |Rm|2, we have the bound

(4.10)

∣∣∣∣( ∂

∂t
−∆R

)
Rm

∣∣∣∣ ≤ C (|Rm|2 + |∇Rm|+ |∇Ψ|+ |∇Ψ|
r

+
1

r3

)
.

Now (
∂

∂t
−∆

)
|Rm|2 = g̄bgc̄kg l̄d(RC)āiRi̄kl̄Rab̄cd̄(4.11)

+ gāigc̄kg l̄d(RC)̄bRi̄kl̄Rab̄cd̄

+ gāig̄bg l̄d(RC)c̄kRi̄kl̄Rab̄cd̄

+ gāig̄bgc̄k(RC)l̄dRi̄kl̄Rab̄cd̄

+ 2Re

[
gāig̄bgc̄kg l̄d

(
(
∂

∂t
−∆R)Ri̄kl̄

)
Rab̄cd̄

]
− 2|∇Rm|2.

This together with (4.10) and (4.3) implies
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(
∂

∂t
−∆

)
|Rm|2

(4.12)

≤ C
(
|Rm|2 + |Rm|3 + |∇Rm| · |Rm|+ (|∇Ψ|+ |∇Ψ|)|Rm|

r
+
|Rm|
r3

)
≤ C

(
|Rm|3 +

1

r
+
|∇Ψ|2 + |∇Ψ|2

r
+
|Rm|
r3

)
− |∇Rm|2.

To show |Rm|2 is locally uniformly bounded we will use an argument
similar to the previous section. Let ρ now denote a cutoff function which is
identically 1 on Br/4, and supported in Br/2. From the previous section we

know that S is bounded by C/r2 on Br/2. As before we can assume |∇ρ|2
and |∆ρ| are bounded by C/r2. Let K = C1/r

2 where C1 is a constant to
be determined later, and is at least large enough so that K

2 ≤ K − S ≤ K.
Let A denote a constant to be specified later. We will apply the maximum
principle argument to the quantity

f = ρ2 |Rm|2

K − S
+AS.

As in the previous section, we calculate at a point (x0, t0) where a maximum
of f is achieved, and we first assume that t0 > 0 and that x0 does not occur
at the boundary of Br/2. We use the fact that ∇f = 0 at this point, giving
us(

∂

∂t
−∆

)
f =A(

∂

∂t
−∆)S + (−∆(ρ2))

|Rm|2

K − S
+ ρ2 |Rm|2

(K − S)2
(
∂

∂t
−∆)S

+ ρ2 1

K − S
(
∂

∂t
−∆)|Rm|2 − 4Re

(
1

K − S
ρ∇ρ · ∇|Rm|2

)
+

2A|∇S|2

K − S
.

Our goal is to show that at (x0, t0), we have |Rm|2 ≤ C/r4. Hence without
loss of generality, we may assume that 1/r + |Rm|/r3 ≤ C|Rm|3 and hence
(4.12) becomes(

∂

∂t
−∆

)
|Rm|2 ≤ C

(
|Rm|3 +

Q

r

)
− |∇Rm|2,

where for convenience we are writing Q = |∇Ψ|2+|∇Ψ|2. For later purposes,
recall from (4.3) that |Rm|2 ≤ Q+ C and from (3.10) that |∇S|2 ≤ 2SQ.

Also note that
∣∣∇|Rm|2

∣∣ ≤ 2|Rm||∇Rm|. By (3.8) we find that on Br/2
we have (

∂

∂t
−∆

)
S ≤ C

r3
− 1

2
Q.
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Using these, we find at (x0, t0),(
∂

∂t
−∆

)
f ≤

(
CA

r3
− AQ

2

)
+

(
C|Rm|2

Kr2

)
+

(
Cρ2|Rm|2

K2r3
− ρ2|Rm|2Q

2K2

)
+

(
Cρ2|Rm|3

K
+
Cρ2Q

Kr
− ρ2

K
|∇Rm|2

)
+

(
ρ2|∇Rm|2

2K
+ C
|Rm|2

Kr2

)
+

(
8ASQ

K

)
.

First choose C1 in the definition of K to be sufficiently large so that

8ASQ

K
≤ AQ

4
,

where we use the fact that S ≤ C/r2. Next observe that

Cρ2|Rm|3

K
≤ ρ2|Rm|2Q

2K2
+ C ′ρ2|Rm|2,

and hence (
∂

∂t
−∆

)
f ≤CA

r3
− AQ

4
+ C ′′Q+ C.

Now we may choose A sufficiently large so that A ≥ 8C ′′ and we obtain at
(x0, t0),

Q ≤ C

r3
,

which implies that |Rm|2 ≤ C/r3 at this point. It follows that at (x0, t0),
f is bounded from above by C/r2. The same bound holds if x0 lies in the
boundary of Br/2 or if t0 = 0. Hence on Br/4 we obtain

|Rm|2 ≤ C

r4
,

as required. This completes the proof of Theorem 1.1.

Remark 4.1. In addition to the dependence discussed in Remark 3.1, the
constants also depend on three derivatives of the torsion of ĝ, with respect

to ∇̂ or ∇̂.

5. Higher order estimates

In this last section, we prove Corollary 1.2 by establishing the estimates
for |∇̂mR g|2ĝ for m = 2, 3, . . .. For this part, we essentially follow the method

of Gill [11] (cf. [4, 7, 8, 16] in the Kähler case), but since the setting here
is slightly more general, we briefly outline the argument. In this section, we
say that a quantity is uniformly bounded if it can be bounded by CNαr−γ

for uniform C,α, γ.
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We work on the ball Br/4, and assume the bounds established in Theo-

rem 1.1. As in [25], define reference tensors (ĝt)i̄ = ĝi̄ − tR̂Ci̄ , where R̂Ci̄ is

the Chern–Ricci curvature of ĝ. For each fixed x ∈M , let ϕ = ϕ(x, t) solve

∂ϕ

∂t
= log

det g(t)

det ĝ
, ϕ|t=0 = 0.

Then gi̄ = (ĝt)i̄ + ∂i∂̄ϕ is the solution of the Chern–Ricci flow starting at
ĝ.

Consider the first order differential operator D = ∂
∂xγ , where xγ is a real

coordinate. Applying D to the equation for ϕ, we have

∂

∂t
(Dϕ) = g̄iDgi̄ − ĝ̄iD(ĝ)i̄ = g̄i∂i∂̄(Dϕ) + g̄iD(ĝt)i̄ − ĝ̄iDĝi̄.

Hence, working in real coordinates, the function u = D(ϕ) satisfies a linear
parabolic PDE of the form

(5.1) ∂tu = aαβ∂xα∂xβu+ f,

where A = (aαβ) is a real 2n× 2n positive definite symmetric matrix whose
largest and smallest eigenvalues Λ and λ satisfy

(5.2) C−1 ≤ λ ≤ Λ ≤ C,

for a uniform positive constant C.
Moreover, the entries of A are uniformly bounded in the Cδ/2,δ parabolic

norm for 0 < δ < 1. Indeed our Calabi-type estimate from part (i) of
Theorem 1.1,

|∇̂g|2 ≤ C,
implies that the Riemannian metric gR associated to g is bounded in the C1

norm in the space direction. On the other hand,

∂

∂t
gi̄ = −RCi̄ = −glkRi̄kl.

From the curvature bound of Theorem 1.1, we know that glkRi̄kl is uni-

formly bounded for any fixed i, j. It follows that ∂
∂t(gR)αβ is also uniformly

bounded for any fixed α, β. Thus we see that each entry aαβ in the matrix A
has uniform bounds in one space and one time derivative. This implies that
aαβ is uniformly bounded in the Cδ/2,δ parabolic norm for any 0 < δ < 1.

Next, note that u = ∂ϕ
∂xγ in (5.1) is bounded in the C0 norm since g(t) is

uniformly bounded and hence |
√
−1∂∂ϕ|C0 is uniformly bounded. Moreover,

f in (5.1) is uniformly bounded in the Cδ/2,δ norm.
We can then apply Theorem 8.11.1 in [15] to (5.1) to see that u is bounded

in the parabolic C1+δ/2,2+δ norm on a slightly smaller parabolic domain:
[ε′, T ] × Br′ for any ε′ and r′ with 0 < ε′ < ε and r/8 < r′ < r/4. Tracing
through the argument in [15], one can check that the estimates we obtain
indeed are of the desired form.
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Now apply D to the equality gi̄(t) = (ĝt)i̄ + ∂i∂̄ϕ. We get

Dgi̄ = D(ĝt)i̄ + ∂i∂̄u,

where we recall that D = ∂/∂xγ for some γ. Since we have bounds for u

in C1+δ/2,2+δ this implies that ∂i∂̄u is bounded in Cδ/2,δ. Since D(ĝt)i̄
is uniformly bounded in all norms we get that Dgi̄ is uniformly bounded

in Cδ/2,δ for all i, j. Since D = ∂/∂xγ and γ was an arbitrary index, it

follows that ∂γa
αβ is uniformly bounded in Cδ/2,δ for all α, β, γ. We have

a similar estimate for ∂γf . Now apply Theorem 8.12.1 in [15] (with k = 1)

to see that, for any α, ∂αu is uniformly bounded in C1+δ/2,2+δ on a slightly
smaller parabolic domain. This means that Dαϕ is uniformly bounded in
C1+δ/2,2+δ for any multi-index α ∈ R2n with |α| ≤ 2.

We can then iterate this procedure and obtain the required Ck bounds
for g(t) for all k. This completes the proof of the corollary.

Remark 5.1. In [18], we showed how to obtain higher derivative estimates
for curvature using simple maximum principle arguments (following [13,
19]). However, in the case of the Chern–Ricci flow, there are difficulties
in using this approach because of torsion terms that need to be controlled.
An alternative method to proving the estimates in this section may be to
generalize the work of Gill on the Kähler–Ricci flow [12]. This could give
an “elementary” maximum principle proof, but the technical difficulties in
carrying this out seem to be substantial.

References
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