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Lmc-compactification of a semitopological
semigroup as a space of e-ultrafilters

M. Akbari Tootkaboni

Abstract. Let S be a semitopological semigroup and CB(S) denote
the C∗-algebra of all bounded complex valued continuous functions on
S with uniform norm. A function f ∈ CB(S) is left multiplicative
continuous if and only if Tµf ∈ CB(S) for all µ in the spectrum of
CB(S), where Tµf(s) = µ(Lsf) and Lsf(x) = f(sx) for each s, x ∈ S.
The collection of all the left multiplicative continuous functions on S is
denoted by Lmc(S). In this paper, the Lmc-compactification of a semi-
topological semigroup S is reconstructed as a space of e-ultrafilters. This
construction is applied to obtain some algebraic properties of (ε, SLmc),
such that SLmc is the spectrum of Lmc(S), for semitopological semi-
groups S. It is shown that if S is a locally compact semitopological
semigroup, then S∗ = SLmc \ ε(S) is a left ideal of SLmc if and only if
for each x, y ∈ S, there exists a compact zero set A containing x such
that {t ∈ S : yt ∈ A} is a compact set.
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1. Introduction

It is well known that ultrafilters play a prominent role in the study of
algebraic and topological properties of the Stone–Čech compactification βS
of a discrete semigroup S. The Stone–Čech compactification βS of a discrete
space S can be described as the spectrum of B(S), where B(S) is the C∗-
algebra of all bounded complex-valued functions on S, or can be defined as
the space of all ultrafilters on S (see [3] and [7]).
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When S is a discrete semigroup, CB(S) will be an m-admissible algebra
and as a result, βS will be a semigroup. This semigroup, as the collection of
all ultrafilters on S, has a known operation attributed to Glazer. Capability
and competence of ultrafilter approach are mentioned clearly in [4], [5], [7]
and [14].

Any semigroup compactification of a Hausdorff semitopological semigroup
S is determined by the spectrum of a C∗-subalgebra F of B(S) containing
the constant functions. Also all semigroup compactification of a semitopo-
logical semigroup as a collection of z-filters has been described in [12]. This
approach sheds a new light on studying this kind of compactifications. With
what was done in [12] as a model, some new topics in semigroup compact-
ification are introduced using z-filters in a critical fashion. See [9],[10],[11]
and [13]. It seems that the methods presented in [1], [2], [9], [11], [12] and
[13] can serve as a valuable tool in the study of semigroup compactifications
and also of topological compactifications.

Let X be a completely regular space, C(X,R) denotes all the real-valued
continuous functions on X and CB(X,R) denotes all the bounded real-valued
continuous functions on X. The correspondences between z-filters on X
and ideals in C(X,R), which have been established in [5], are powerful
tools in the study of C(X,R). These correspondences, which also occur
in a rudimentary form in CB(X,R), are inconsequential, as many theorems
of [5] become false if C(X,R) is replaced by CB(X,R). However, there is
another correspondence between a certain class of z-filters on X and ideals
in CB(X,R) that leads to quite analogous theorems to those for C(X,R).
The requisite information is outlined in [5, 2L].

In Section 2, some familiarity with semigroup compactification and
Lmc-compactification will be presented. This section also consists of an
introduction to z-filters and an elementary external construction of Lmc-
compactification as a space of z-filters. Moreover, in this section e-filters
and e-ideals will be defined (they are adopted from [5, 2L]).

In Section 3, Lmc-compactification will be reconstructed as a space of e-
ultrafilters with a suitable topology, also a binary operation will be defined
on e-ultrafilters.

Section 4 concerns some theorems from [7] about the properties of βS
which are extended to some properties on SLmc, for semitopological semi-
group S.

2. Preliminary

Let S be a semitopological semigroup (i.e., for each s ∈ S, λs : S → S
and rs : S → S are continuous, where for each x ∈ S, λs(x) = sx and
rs(x) = xs) with a Hausdorff topology, CB(S) denotes the C∗-algebra of
all bounded complex valued continuous functions on S with uniform norm,
and C(S) denotes the algebra of all complex valued continuous functions
on S. A semigroup compactification of S is a pair (ψ,X), where X is a
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compact, Hausdorff, right topological semigroup (i.e., for all x ∈ X, rx
is continuous) and ψ : S → X is continuous homomorphism with dense
image such that, for all s ∈ S, the mapping x 7→ ψ(s)x : X → X is
continuous, (see Definition 3.1.1 in [3]). Let F be a C∗-subalgebra of CB(S)
containing the constant functions, then the set of all multiplicative means
of F (the spectrum of F), denoted by SF and equipped with the Gelfand
topology, is a compact Hausdorff topological space. Let Rsf = f ◦ rs ∈ F
and Lsf = f ◦ λs ∈ F for all s ∈ S and f ∈ F , and the function

s 7→ (Tµf(s)) = µ(Lsf)

is in F for all f ∈ F and µ ∈ SF , then SF under the multiplication µν =
µ ◦ Tν (µ, ν ∈ SF ), furnished with the Gelfand topology, makes (ε, SF )
a semigroup compactification (called the F-compactification) of S, where
ε : S → SF is the evaluation mapping. Also, ε∗ : C(SF ) → F is isometric

isomorphism and f̂ = (ε∗)−1(f) ∈ C(SF ) for f ∈ F is given by f̂(µ) = µ(f)
for all µ ∈ SF , (for more detail see section 2 in [3]).

Let F = CB(S), then βS = SCB(S) is the Stone–Čech compactification of
S, where S is a completely regular space.

A function f ∈ CB(S) is left multiplicative continuous if and only if

Tµf ∈ CB(S)

for all µ ∈ βS = SCB(S). The collection of all left multiplicative continuous
functions on S is denoted by Lmc(S). Therefore,

Lmc(S) =
⋂
{T−1µ (CB(S)) : µ ∈ βS}

is defined and (ε, SLmc) is the universal semigroup compactification of S
(Definition 4.5.1 and Theorem 4.5.2 in [3]). In general, S can not be em-
bedded in SLmc. In fact, as it was shown in [6] there is a completely
regular Hausdorff semitopological semigroup S, such that the continuous
homomorphism ε from S to its Lmc-compactification, is neither one-to-one
nor open as a mapping to ε(S).

The LUC-compactification is the spectrum of the C∗-algebra consisting
of all left uniformly continuous functions on semitopological semigroup S; a
function f : S → C is left uniformly continuous if s 7→ Lsf is a continuous
map from S to the space of bounded continuous functions on S with the
uniform norm. Let G be a locally compact Hausdorff topological group, by
Theorem 5.7 of chapter 4 in [3] implies that Lmc(G) = LUC(G). Also the
evaluation map G→ GLUC is open, (see [3]).

Now, some prerequisite material from [12] are quoted for the description
of (ε, SLmc) in terms of z-filters. For f ∈ Lmc(S), Z(f) = f−1({0}) is called
zero set, and the collection of all zero sets is denoted by Z(Lmc(S)). For
an extensive account of ultrafilters, the readers may refer to [4], [5], [7] and
[14].
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Definition 2.1. A ⊆ Z(Lmc(S)) is called a z-filter on Lmc(S) (or for
simplicity z-filter) if:

(i) ∅ /∈ A and S ∈ A.
(ii) If A,B ∈ A, then A

⋂
B ∈ A.

(iii) If A ∈ A, B ∈ Z(Lmc(S)) and A ⊆ B then B ∈ A.

Because of (iii), (ii) may be replaced by:

(ii′) If A,B ∈ A, then A ∩B contains a member of A.

A z-ultrafilter is a z-filter which is not properly contained in any other
z-filter. The collection of all z-ultrafilters is denoted by Z(S). For x ∈ S,
x̂ = {Z(f) : f ∈ Lmc(S), f(x) = 0} is a z-ultrafilter. The z-filter F is
named converge to the limit µ ∈ SLmc if every neighborhood of µ contains
a member of F . The collection of all z-ultrafilters on Lmc(S) converge to
µ ∈ SLmc is denoted by [µ]. Let Q = {p̃ : p̃ = ∩[µ]} and define

Ã = {p̃ : A ∈ p̃}
for A ⊆ S. Let Q be equipped with the topology whose basis is

{(Ã)c : A ∈ Z(Lmc(S))},
and define

⋂
[µ] ∗

⋂
[ν] =

⋂
[µν]. Then (Q, ∗) is a (Hausdorff) compact right

topological semigroup and ϕ : SLmc → Q defined by ϕ(µ) = ∩[µ] = p̃, where⋂
A∈pA = {µ}, is topologically isomorphism. So Ã is equal to clSLmcA and

we denote it by A, also for simplicity we use x replace x̂. The operation “ ·”
on S, extends uniquely to “ ∗ ” on Q. For more discussion and details see
[12].

Remark 2.2. If p, q ∈ Z(S), then the following statements hold.

(i) If E ⊆ Z(Lmc(S)) has the finite intersection property, then E is
contained in a z-ultrafilter.

(ii) If B ∈ Z(Lmc(S)) and for all A ∈ p, A ∩B 6= ∅ then B ∈ p.
(iii) If A,B ∈ Z(Lmc(S)) such that A ∪B ∈ p, then A ∈ p or B ∈ p.
(iv) Let p and q be distinct z-ultrafilters, then there exist A ∈ p and

B ∈ q such that A ∩B = ∅.
(v) Let p be a z-ultrafilter, then there exists µ ∈ SLmc such that⋂

A∈p
ε(A) = {µ}.

(For (i), (ii), (iii) and (iv) see Lemma 2.2 and Lemma 2.3 in [12]. For (v)
see Lemma 2.6 in [12]).

In this paper, R denotes the topological group formed by the real numbers
under addition. Also we suppose ker(µ) = {f ∈ Lmc(S) : µ(f) = 0} for
µ ∈ Lmc(S)∗. By Theorem 11.5 in [8], M is a maximal ideal of Lmc(S) if
and only if there is µ ∈ SLmc such that ker(µ) = M .

Lemma 2.3. Let S be a Hausdorff semitopological semigroup.
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(1) If f ∈ Lmc(S) is real-valued, then f+ = max{f, 0} ∈ Lmc(S) and
f− = −min{f, 0} ∈ Lmc(S).

(2) Let f ∈ Lmc(S). then Re(f), Im(f) and |f | are all in Lmc(S).
(3) If f and g are real-valued functions in Lmc(S), then

(f ∨ g)(x) = max{f(x), g(x)} ∈ Lmc(S),

and

(f ∧ g)(x) = min{f(x), g(x)} ∈ Lmc(S).

(4) Let f ∈ Lmc(S) and there exists c > 0 such that c < |f(x)| for each
x ∈ S. Then 1

f ∈ Lmc(S).

(5) Let M be a maximal ideal and f ∈M , then f ∈M.

Proof. For (1), (2) and (3), since f 7→ f̂ : Lmc(S)→ C(SLmc) is isometrical

isomorphism and |f̂ | ∈ C(SLmc) for each f ∈ Lmc(S), so we have

|f̂ |(ε(x)) = |f̂(ε(x))|
= |ε(x)(f)|
= |f(x)|
= |f |(x)

for each x ∈ S. Thus, |f̂ | = |̂f | for each f ∈ Lmc(S) and so |f | ∈ Lmc(S)
for each f ∈ Lmc(S).
Now let f and g be real-valued functions, so

f ∨ g(x) =
|f − g|(x)

2
+

(f + g)(x)

2
∈ Lmc(S).

In a similar way f ∧ g, f+ and f− are in Lmc(S). Pick f ∈ Lmc(S), since

Lmc(S) is conjugate closed subalgebra so Re(f) = f+f
2 ∈ Lmc(S) and

Im(f) = f−f
2i ∈ Lmc(S).

For (4), let f ∈ Lmc(S) and there exists c > 0 such that c < |f(x)|
for each x ∈ S. So |f̂ |(µ) ≥ c for each µ ∈ SLmc, which implies that
1̂
f = 1

f̂
∈ C(SLmc). Therefore, 1

f ∈ Lmc(S).

For (5), let M be a maximal ideal in Lmc(S), so there exists µ ∈ SLmc

such that M = ker(µ) = {f ∈ Lmc(S) : µ(f) = 0}. Now let f ∈ M , so
µ(f) = µ(Re(f))+iµ(Im(f)) = 0. This implies that µ(Re(f)) = µ(Im(f)) =
0 and so µ(f) = 0. Thus, f ∈M . �

For f ∈ Lmc(S) and ε > 0, we define Eε(f) = {x ∈ S : |f(x)| ≤ ε}.
Every such set is a zero set. Conversely, every zero set is of this form,
Z(g) = Eε(ε+ |g|). For I ⊆ Lmc(S), we write E(I) = {Eε(f) : f ∈ I, ε > 0},
i.e., E(I) =

⋃
ε>0Eε(I). Finally, for any family A of zero sets, we define

E−(A) = {f ∈ Lmc(S) : Eε(f) ∈ A for each ε > 0},
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that is, E−(A) =
⋂
ε>0E

←
ε (A), where

E←ε (A) = {f ∈ Lmc(S) : Eε(f) ∈ A}.

Lemma 2.4. For any family A of zero sets,

E(E−(A)) =
⋃
ε>0

{Eε(f) : f ∈ Lmc(S), Eδ(f) ∈ A for all δ > 0} ⊆ A.

The inclusion may be proper, when A is a z-filter.

Proof. Let A be a family of zero sets, so

E−(A) = {f ∈ Lmc(S) : Eε(f) ∈ A for all ε > 0},

and thus,

E(E−(A)) = {Eε(f) : f ∈ E−(A), ε > 0}

=
⋃
ε>0

{Eε(f) : f ∈ E−(A)}

=
⋃
ε>0

{Eε(f) : Eδ(f) ∈ A for all δ > 0}

⊆ A.

Finally, let M0 = {f ∈ Lmc((R,+)) : f(0) = 0}, then M0 is a maximal ideal
in Lmc((R,+)) and A = {Z(f) : f ∈M0} is a z-filter. Define g(x) = |x| ∧ 1
for each x ∈ R, then g ∈M0 and so {0} = Z(g) ∈ A. Since

E(E−(A)) =
⋃
ε>0

{Eε(f) : Eδ(f) ∈ A for all δ > 0}

⊆ A,

pick f ∈ Lmc((R,+)) such that Eε(f) ∈ E(E−(A)) for each ε > 0. Since f is
continuous so for each ε > 0 there exists δ > 0 such that f((−δ, δ)) ⊆ (−ε, ε);
therefore, (−δ, δ) ⊆ Eε(f). This implies that E(E−(A)) is a collection of
uncountable zero sets. But {0} ∈ A is finite and so {0} /∈ E(E−(A)).
Therefore, E(E−(A)) 6= A. �

Definition 2.5. Let A be a z-filter. Then A is called an e-filter if

E(E−(A)) = A.

Hence, A is an e-filter if and only if, whenever Z ∈ A, there exist
f ∈ Lmc(S) and ε > 0 such that Z = Eε(f) and Eδ(f) ∈ A for every
δ > 0.

Lemma 2.6. Let I be a subset of Lmc(S). Then,

I ⊆ E−(E(I)) = {f ∈ Lmc(S) : Eε(f) ∈ E(I) for all ε > 0}.

The inclusion may be proper, even when I is an ideal.
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Proof. By Definition

I ⊆ E−(E(I)) = {f ∈ Lmc(S) : Eε(f) ∈ E(I) for all ε > 0}.
Finally, let I be the ideal of all functions in Lmc((R,+)) that vanish on a
neighborhood of 0. Pick g(x) = |x|∧1 in Lmc((R,+)) that vanishes precisely
at 0. Since for each ε > 0, Eε(g) = E ε

2
((g ∨ ε

2) − ε
2) and (g ∨ ε

2) − ε
2 ∈ I,

then Eε(g) ∈ E(I) for each ε > 0, and so g ∈ E−(E(I)) but g /∈ I. This
completes the proof. �

Definition 2.7. Let I be an ideal of Lmc(S). I is called an e-ideal if
E−(E(I)) = I.

Hence, I is an e-ideal if and only if, whenever Eε(f) ∈ E(I) for all ε > 0,
then f ∈ I.

Lemma 2.8. The following statements hold.

(1) The intersection of e-ideals is an e-ideal.
(2) If I is an ideal in Lmc(S), then E(I) is an e-filter.
(3) If A is any z-filter, then E−(A) is an e-ideal in Lmc(S).
(4) I ⊆ J ⊆ Lmc(S) implies E(I) ⊆ E(J), and A ⊆ B ⊆ Z(Lmc(S))

implies E−(A) ⊆ E−(B).
(5) If J is an e-ideal, then I ⊆ J if and only if E(I) ⊆ E(J). If A is an

e-filter, then A ⊆ B if and only if E−(A) ⊆ E−(B).
(6) If A is any e-filter, then E−(A) is an e-ideal. Let I be an ideal

in Lmc(S), then E−(E(I)) is the smallest e-ideal containing I. In
particular, every maximal ideal in Lmc(S) is an e-ideal.

(7) For any z-filter A, E(E−(A)) is the largest e-filter contained in A.

Proof. (1) Suppose that {Iα} is a collection of e-ideals and I =
⋂
α Iα. Let

Eε(f) ∈ E(I) for each ε > 0, then Eε(f) ∈ E(Iα) for each ε > 0, so f ∈ Iα
for each α. This implies f ∈ I.

(2) Let Eε(f) = ∅ for some ε > 0 and f ∈ I, then ε ≤ |f(x)| ≤ M for
some M > 0 and for each x ∈ S. So 1

f ∈ Lmc(S) and 1 = f 1
f ∈ I. This is a

contradiction and so ∅ /∈ E(I).
Let f ′ ∈ Lmc(S), f ∈ I be a nonnegative function and Eε(f) ⊆ Z(f ′),

then g(x) = |f ′(x)|+ ε
ε∨|f(x)| ∈ Lmc(S). Now

|f(x)|g(x) = |f ′(x)f(x)|+ ε|f(x)|
ε ∨ |f(x)|

,

so x ∈ Z(f ′) implies that |f(x)g(x)| = ε|f(x)|
ε∨|f(x)| ≤ ε. Hence Z(f ′) ⊆ Eε(fg).

If x ∈ Eε(fg), then

|f ′(x)f(x)| ≤ |f ′(x)f(x)|+ ε|f(x)|
ε ∨ |f(x)|

= |f(x)g(x)| ≤ ε

and if x /∈ Z(f ′) then ε < |f(x)| and |g(x)f(x)| > ε. Therefore this implies
Eε(fg) ⊆ Z(f ′), and so Eε(fg) = Z(f ′).
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Suppose that Eε(f), Eδ(g) ∈ E(I) for some f, g ∈ I and ε, δ > 0. Let
γ = ε ∧ δ ∧ 1

2 , then

E γ2

4

(ff + gg) ⊆ Eγ(f) ∩ Eγ(g) ⊆ Eε(f) ∩ Eδ(g),

thus Eε(f) ∩ Eδ(g) ∈ E(I).
Now let Z ∈ E(I), so there exists f ∈ I such that Z = Eε(f) for some

ε > 0. By definition of E(I), Eδ(f) ∈ E(I) for each δ > 0, so E(I) is an
e-filter.

(3) Let f, g ∈ E−(A). Since Eε/2(|f |)∩Eε/2(|g|) ⊆ Eε(|f − g|); therefore,

Eε(f − g) ∈ A for each ε > 0. Thus, f − g ∈ E−(A). Let f ∈ E−(A),
g ∈ Lmc(S) and M = ‖g‖ + 1. Hence, E ε

M
(f) ⊆ Eε(fg) and fg ∈ E−(A).

Now let Eε(f) ∈ E−(A) for each ε > 0. Definition of E−(A) implies that
f ∈ E−(A). Thus, E−(A) is an e-ideal.

(4) This can easily be checked.
(5) It is obvious that if I ⊆ J then E(I) ⊆ E(J) by (4).
Conversely. If f ∈ I, then Eε(f) ∈ E(I) for each ε > 0, so Eε(f) ∈ E(J).

Since J is an e-filter, so f ∈ J . If A ⊆ B, then E−(A) ⊆ E−(B). Since A is
an e-filter, then A = E(E−(A)) ⊆ E(E−(B)) ⊆ B.

(6) Let I = E−(A) = {f ∈ Lmc(S) : ∀ε > 0, Eε(f) ∈ A}; thus, A is an
e-filter, and A = E(E−(A)) = E(I). This implies I = E−(A) = E−(E(I))
and so I is an e-ideal. Let I ⊆ Lmc(S) be an ideal, then J = E−(E(I))
is an e-ideal (by (3) and (4)), so I ⊆ J . Let I ⊆ K ⊆ J and K be an
e-ideal, then E(I) ⊆ E(K) ⊆ E(J) = E(I) and E(K) = E(I). Thus,
J = E−(E(I)) = E−(E(K)) = K, and this implies that J is the smallest
e-ideal containing I.

Finally, every maximal ideal in Lmc(S) is an e-ideal. For this, let M be a
maximal ideal in Lmc(S). Then, E−(E(M)) is an e-ideal, M ⊆ E−(E(M))
and M is maximal so, M = E−(E(M)).

(7) Let A be a z-filter, then E−(A) is an ideal in Lmc(S), so E(E−(A))
is an e-filter and B = E(E−(A)) ⊆ A. Now let U be an e-filter such that
B ⊆ U ⊆ A, then E−(U) = E−(A). Hence, B ⊆ A is an e-filter. �

A maximal e-filter is called an e-ultrafilter. Zorn’s Lemma implies that
every e-filter is contained in an e-ultrafilter. Because, if Y is a chain of e-
filters, then it is also a chain of z-filters and so ∪Y is a z-filter. It is sufficient
to show ∪Y is an e-filter. Let Z ∈ ∪Y, then there exists Y ∈ Y, such that
Z ∈ Y . Since Y is an e-ideal, so there exist f ∈ Lmc(S) and ε > 0 such
that Z = Eε(f) and {Eδ(f) : δ > 0} ⊆ Y. Thus, there exist f ∈ Lmc(S) and
ε > 0 such that Z = Eε(f) and {Eδ(f) : δ > 0} ⊆ ∪Y. Therefore, ∪Y is an
e-filter.

Theorem 2.9. If M is a maximal ideal in Lmc(S), then E(M) is an e-
ultrafilter, and if A is an e-ultrafilter, then E−(A) is a maximal ideal in
Lmc(S).
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Proof. Let M be a maximal ideal, so E(M) is an e-filter (Lemma 2.8(2)).
Suppose that there exists an e-filter U such that E(M) ⊆ U , then
M = E−(E(M)) ⊆ E−(U) and so E(M) = E(E−(U)) = U , by Lem-
ma 2.8(7). Thus, E(M) is an e-ultrafilter.

Now let E be an e-ultrafilter, then E−(E) is an ideal in Lmc(S) (Lem-
ma 2.8(3)). Let J be a maximal ideal such that E−(E) ⊆ J , then J is an e-
ideal and so E(E−(E)) ⊆ E(J). Since E is an e-ultrafilter, so E = E(E−(E))
and E−(E) = E−(E(J)) = J . This implies that E−(E) is maximal. �

The correspondence M 7→ E(M) is one to one from the set of all maximal
ideals in Lmc(S) onto the set of all e-ultrafilters.

Theorem 2.10. The following property characterizes an ideal M in Lmc(S)
as a maximal ideal: given f ∈ Lmc(S), if Eε(f) meets every member of
E(M) for each ε > 0, then f ∈M .

Proof. Let M be a maximal ideal and f ∈ Lmc(S). Let Eε(f) meet every
member of E(M) for each ε > 0. So E(M) ∪ {Eε(f) : ε > 0} has the finite
intersection property, and so there exists a z-ultrafilter A containing it. By
Lemma 2.8 and Theorem 2.9,

M = E−(A) = {g ∈ Lmc(S) : Eε(g) ∈ A for each ε > 0}.

This implies that f ∈M .
Now let M be an ideal in Lmc(S) with the following property: given

f ∈ Lmc(S), if Eε(f) meets every member of E(M) for each ε > 0, then
f ∈ M . We show that M is a maximal ideal. Let f ∈ Lmc(S) \M and
so some Eε(f) fails to meet some member of E(M). Therefore, there exist
g ∈M and δ > 0 such that Eε(f)∩Eδ(g) = ∅. Pick γ = min{δ2, ε2, 1}, then
Eγ(ff + gg) ⊆ Eε(f) ∩ Eδ(g), so ff + gg is invertible and generated ideal
by M ∪ {f} is equal with Lmc(S). This implies M is a maximal ideal. �

Let A and B be z-ultrafilters. It is said that A ∼ B if and only if
E(E−(A)) = E(E−(B)). It is obvious that ∼ is an equivalence relation.
The equivalence class of A ∈ Z(S) is denoted by [A].

Lemma 2.11. Let A be a z-ultrafilter, then:

(a) Let Z(f) ∈ A for some f ∈ Lmc(S), then f ∈ E−(A).
(b) E−(A) is a maximal ideal.
(c) E(E−(A)) is an e-ultrafilter.
(d) Let Z be a zero set that meets every member of E(E−(A)), then

there exists B ∈ [A], such that Z ∈ B.

Proof. (a) By Remark 2.2(v), pick µ ∈ SLmc such that
⋂
A∈A ε(A) = {µ}.

Now let Z(f) ∈ A, then µ ∈ ε(Z(f)) and so there exists a net {ε(xα)} ⊆ ε(A)
such that limαε(xα) = µ. Since

µ(f) = limαε(xα)(f) = limαf(xα) = 0,
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so f ∈ ker(µ). It is obvious Z(f) ⊆ Eε(f) for each ε > 0 and so Eε(f) ∈ A
for each ε > 0. This implies f ∈ E−(A).

(b) By (a), there exists µ ∈ SLmc such that ker(µ) ⊆ E−(A). Since ker(µ)
is a maximal ideal in Lmc(S) and also by Lemma 2.8(3), so
ker(µ) = E−(A).

(c) Since E−(A) is a maximal ideal, so E(E−(A)) is an e-ultrafilter by
Theorem 2.9.

(d) Let Z be a zero set that meets every member of E(E−(A)). Then,
{Z} ∪ E(E−(A)) has the finite intersection property. Hence there exists
some z-ultrafilter B containing {Z} ∪ E(E−(A)). Since E(E−(A)) is an
e-ultrafilter contained in B, so by (b), E−(B) is a maximal ideal and by
Lemma 2.8(4), E−(A) ⊆ E−(B). Thus by Theorem 2.9, E−(B) = E−(A)
and so E(E−(B)) = E(E−(A)). Therefore, there exists B ∈ [A] such that
Z ∈ B. �

Remark 2.12. Since (R,+) is a locally compact topological group, by The-
orem 5.7 of Chapter 4 in [3],

Lmc(R) = {f ∈ CB(R) : t 7→ f ◦ λt : R→ CB(R) is norm continuous.}.

Let C◦(R) = {f ∈ CB(R) : limx→±∞f(x) = 0}, then C◦(R) is an ideal
of Lmc(R). Let M be a maximal ideal in Lmc(R) which contains C◦(R).

It is obvious that f(x) = e−x
2
sin(x) and g(x) = e−x

2
cos(πx) belong to

C◦(R). Then Z(f) = {kπ : k ∈ Z}, Z(g) = {2k+1
2 : k ∈ Z}, and

E(M) ∪ {Z(f)} and E(M) ∪ {Z(g)} have the finite intersection property.
So there exist z-ultrafilters A and B such that E(M)∪{Z(f)} ⊆ A and also
E(M) ∪ {Z(g)} ⊆ B. Since E(M) is an e-ultrafilter so there exist at least
two distinct z-ultrafilters containing E−(A). Thus:

(i) It is not necessary the collection of all z-ultrafilters containing an
e-ultrafilter be a single set.

(ii) Let A be a z-ultrafilter. Then there exists a zero-set Z such that Z
meets every member of E(E−(A)) and Z /∈ A .

3. Space of e-ultrafilters

In this section we will define a topology on the set of all e-ultrafilters of
a semitopological semigroup S, and establish some of the properties of the
resulting space. Also, the operation of the semitopological semigroup has
been extended to the set of all e-ultrafilters.

Definition 3.1. Let S be a Hausdorff semitopological semigroup.

(a) The collection of all e-ultrafilters is denoted by E(S), i.e.,

E(S) = {p : p is an e-ultrafilter}.

(b) Define A† = {p ∈ E(S) : A ∈ p} for each A ∈ Z(Lmc(S)).
(c) Define e(a) = {Eε(f) : f(a) = 0, ε > 0} for each a ∈ S.
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(d) It is said that A ⊂ Z(Lmc(S)) has the e-finite intersection property
if and only if E(E−(A)) has the finite intersection property.

Pick ε(a) ∈ SLmc for some a ∈ S, then

ker(ε(a)) = {f ∈ Lmc(S) : ε(a)(f) = 0}
= {f ∈ Lmc(S) : f(a) = 0}

is a maximal ideal and by Theorem 2.9,

E−(ker(ε(a))) = {Eε(f) : f(a) = 0, ∀ε > 0} = e(a)

is an e-ultrafilter.

Lemma 3.2. Let A,B ∈ Z(Lmc(S)) and f, g ∈ Lmc(S). Then:

(1) (A ∩B)† = A† ∩B†.
(2) (A ∪B)† ⊇ A† ∪B†.
(3) Pick x ∈ S and ε > 0. Then λ−1x (Eε(f)) = Eε(Lxf).
(4) Eε∧δ(|f | ∨ |g|) ⊆ Eε(f)∩Eδ(g) and Eε(|f | ∨ |g|) = Eε(f)∩Eε(g), for

each δ, ε > 0.

Proof. The proofs are routine. �

Since (A ∩B)† = A† ∩B† for each A,B ∈ Z(Lmc(S)), so the sets A† are
closed under finite intersection. Consequently, {A† : A ∈ Z(Lmc(S))} forms
a base for an open topology on E(S).

Theorem 3.3.

(1) Pick f ∈ Lmc(S) and ε > 0, then intS(A) = e−1(A†), and so e :
S → E(S) is continuous.

(2) Pick p ∈ E(S) and A ∈ Z(Lmc(S)), then the following statements
are equivalent:
(i) p ∈ clE(S)(e(A)).
(ii) For each B ∈ p, intS(B) ∩A 6= ∅.
(iii) For each B ∈ p, B ∩A 6= ∅.
(iv) There exists a z-ultrafilter Ap containing p such that A ∈ Ap.

(3) Pick A,B ∈ Z(Lmc(S)) such that p ∈ clE(S)(e(A))∩clE(S)(e(B)) and
p ∪ {A,B} has the finite intersection property, then

p ∈ clE(S)(e(A ∩B)).

(4) {clE(S)(e(A)) : A ∈ Z(Lmc(S))} is a base for closed subsets of E(S).
(5) E(S) is a compact Hausdorff space.
(6) e(S) is a dense subset of E(S).

Proof. (1) Let p ∈ A†, so there exist f ∈ E−(p) and ε > 0 such that
Eε(f) = A and Eδ(f) ∈ p for each δ > 0. Pick x◦ ∈ intS(A), then |f(x◦)| < ε
or |f(x◦)| = ε.
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If δ = |f(x◦)| < ε, then Eε−δ(|f | ∨ δ − δ) = Eε(f), x◦ ∈ Eε−δ(|f | ∨ δ − δ)
and x◦ ∈ Eη(|f | ∨ δ − δ) for each η > 0. Thus,

e(x◦) ∈ Eε−δ(|f | ∨ δ − δ)† = Eε(f)† = A†.

If |f(x◦)| = ε, so there exists a neighborhood U such that x◦ ∈ U ⊆ A.
Since Lmc(S) and C(SLmc) are isometrically isomorphism, pick g ∈ Lmc(S)
such that g(U) = {0}, g(Ac) = {‖f‖} and g(S) ⊆ [0, ‖f‖]. Define h =
|f | ∧ g, then Eε(h) = Eε(f) = A and |h(x◦)| = 0 < ε. It is obvious that
Eδ(f) ⊆ Eδ(h) for each 0 < δ < ε and Eε(f) ⊆ Eδ(h) for each ε < δ.
Therefore Eδ(h) ∈ p for each δ > 0 and |h(x◦)| = 0 < ε. So by previous
case, e(x◦) ∈ Eε(h)† = A†. Thus x◦ ∈ e−1(A†) and so intS(A) ⊆ e−1(A†).

Now pick e(x) ∈ A†, so there exist ε > 0 and f ∈ Lmc(S) such that
Eε(f) = A, and so Eδ(f) ∈ e(x) for any δ > 0. Therefore, f(x) = 0 and
x ∈ Eε(f) for each ε > 0. Thus, e−1(A†) = intS(A).

(2) (i) ⇔ (ii): Since p ∈ clE(S)(e(A)) if and only if B† ∩ e(A) 6= ∅ for any

B ∈ p, if and only if e−1(B† ∩ e(A)) 6= ∅ for any B ∈ p, if and only if

intS(B) ∩A = e−1(B†) ∩ e−1(e(A)) 6= ∅
for any B ∈ p, by item (1).

It is obvious that (iii) and (iv) are equivalent and (ii) implies (iii).
(iii) ⇒ (ii): Let for some B ∈ p, B ∩ A 6= ∅ and intS(B) ∩ A = ∅. Since

B ∈ p so there exist f ∈ Lmc(S) and ε > 0 such that B = Eε(f), Eδ(f) ∈ p
for each δ > 0 and

E ε
2
(f) ∩A ⊆ intS(B) ∩A = ∅.

This is a contradiction.
(3) Let p ∪ {A,B} has the finite intersection property, so p ∪ {A ∩ B}

has the finite intersection property. Let Ap be a z-ultrafilter containing
p ∪ {A ∩B} and hence item (2), implies that p ∈ clE(S)(e(A ∩B)).

(4) It suffices to show that {(clE(S)(e(A)))c : A ∈ Z(Lmc(S))} is a base for
open subsets of E(S). Let U be an open subset containing p ∈ E(S). Since
{A† : A ∈ Z(Lmc(S))} forms a base for an open topology on E(S), so there
exist f ∈ Lmc(S) and ε > 0 such that p ∈ Eε(f)† ⊆ U and Eδ(f) ∈ p for
each δ > 0. Now pick 0 < γ < min{ ε2 , ‖f‖}, and define g(x) = ‖f‖ − |f(x)|.
Then g ∈ Lmc(S) and (E‖f‖−γ(g))c ⊆ Eγ(f), so

(clE(S)(E‖f‖−γ(g)))c ⊆ clE(S)((E‖f‖−γ(g))c) ⊆ clE(S)(Eγ(f)).

Hence, there exists δ > 0 such that (E‖f‖−γ(g) ∩ Eγ(f))
⋂
Eδ(f) = ∅, and

E‖f‖−γ(g) ∩ Eδ(f) = ∅.
This implies p /∈ clE(S)E‖f‖−γ(g) and so

p ∈ (clE(S)(E‖f‖−γ(g))c ⊆ Eε(f)†.

This shows that {(clE(S)(e(A)))c : A ∈ Z(Lmc(S))} is a base for open subsets
of E(S).
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(5) Suppose that p and q are distinct elements of E(S), then E−(p) and
E−(q) are maximal ideals, by Theorem 2.9. Pick f ∈ E−(p)\E−(q). So
by Theorem 2.10, there exist ε > 0 and A ∈ q = E(E−(q)), such that
Eε(f) ∩ A = ∅. Since A ∈ q = E(E−(q)), pick δ > 0 and g ∈ E−(q) such
that A = Eδ(g) and for all γ > 0, Eγ(g) ∈ q. Then Eε(f) ∩Eδ(g) = ∅. Now

let B = Eε(f), then A ∈ p, B ∈ q and A∩B = ∅. Thus A† ∩B† = ∅, p ∈ A†
and q ∈ B†, and so E(S) is Hausdorff.

Define η : p 7→ E(E−(p)) : Z(S) → E(S). By Lemma 2.11, if p ∈ Z(S),
then E(E−(p)) ∈ E(S) so η is well defined. Now let p be an e-ultrafilter, so
there exists a z-ultrafilter A containing p. By Lemma 2.11, p = E(E−(A)).
This implies η is onto. For each A ∈ Z(Lmc(S)), we have

η−1(clE(S)(e(A))) = {p ∈ Z(S) : η(p) ∈ clE(S)(e(A))}
By Theorem 3.3(2) = { p ∈ Z(S) : ∀B ∈ η(p), B ∩A 6= ∅}
By Theorem 3.3(2) = { p ∈ Z(S) : η(p) ∪ {A} ⊆ p}

= { p ∈ Z(S) : A ∈ p}

= Â.

Since {clE(S)(e(A)) : A ∈ Z(Lmc(S))} is a base for closed subsets of E(S),
so η is continuous. Since Z(S) is compact by Lemma 2.8 in [12], so E(S) is
also compact.

(6) By (4), e is continuous. Also,

e(S) = {p ∈ E(S) : ∀ B ∈ p, B† ∩ e(S) 6= ∅}
= {p ∈ e(S) : ∀ B ∈ p, B ∩ S 6= ∅}
= E(S). �

Definition 3.4. Let A be an e-filter. Then Â = {p ∈ E(S) : A ⊆ p}.

Theorem 3.5.

(a) If A is an e-filter, then Â is a closed subset of E(S).
(b) Let A be an e-filter and A ∈ Z(Lmc(S)). Then, A ∈ A if and only

if Â ⊆ A†.
(c) Suppose that A ⊆ E(S) and A = E(E−(∩A)), then A is an e-filter

and Â = clE(S)A.

Proof. (a) Pick p ∈ clE(S)Â, so A†∩Â 6= ∅, for each A ∈ p. Hence, A∪{A}
has the e-finite intersection property for each A ∈ p. This implies that

A ∪ p ⊆ p and so p ∈ Â.
(b) It is easy to verify the assertion.
(c) By assumption, A is an e-filter (by Lemma 2.8). Further, for each

p ∈ A, A ⊆ p implies that A ⊆ Â, thus by (a), clE(S)A ⊆ Â.
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To see that Â ⊆ clE(S)A, let p /∈ clE(S)A. Then, there exist B ∈ p and

C ∈ Z(Lmc(S)) such that clE(S)A ⊆ C† and B† ∩ C† = ∅. Hence, Â ⊆ C†

and this implies p /∈ Â. �

Definition 3.6. Suppose that p, q ∈ E(S) and A ∈ Z(Lmc(S)). Then,
A ∈ p + q if there exist ε > 0 and f ∈ Lmc(S) such that A = Eε(f) and
Eδ(q, f) = {x ∈ S : λ−1x (Eδ(f)) ∈ q} ∈ p for each δ > 0.

Theorem 3.7. Let p, q ∈ E(S), then p+ q is an e-ultrafilter.

Proof. It is obvious that ∅ /∈ p + q and S ∈ p + q. Let A ∈ p + q, then
there exist ε > 0 and f ∈ Lmc(S) such that A = Eε(f) and for each δ > 0,
Eδ(q, f) = {x ∈ S : λ−1x (Eδ(f)) ∈ q} ∈ p. Let A,B ∈ p+ q; therefore, there
exist δ, ε > 0 and f, g ∈ Lmc(S) such that A = Eε(f) and B = Eδ(g). So

A ∩B = Eε(f) ∩ Eδ(g)

⊇ Eε∧δ(f) ∩ Eε∧δ(g)

= Eε∧δ(|f | ∨ |g|),

and

Eγ(q, |f | ∨ |g|) = {x ∈ S : λ−1x (Eγ(|f | ∨ |g|)) ∈ q}
= {x ∈ S : Eγ(|Lxf | ∨ |Lxg|) ∈ q}
= {x ∈ S : Eγ(Lxf) ∩ Eγ(Lxg) ∈ q}
= Eγ(q, f) ∩ Eγ(q, g).

Since Eγ(q, f), Eγ(q, g) ∈ p, so Eγ(q, |f | ∨ |g|) = Eγ(q, f) ∩ Eγ(q, g) ∈ p.
Thus, Eδ∧ε(|f | ∨ |g|) ∈ p+ q and so A ∩B ∈ p+ q.

Now pick A ∈ p+ q and B ∈ Z(Lmc(S)) such that A ⊆ B. So A ∈ p+ q
implies that there exist ε > 0 and f ∈ Lmc(S) such that Eε(f) = A and
Eδ(q, f) ∈ p for each δ > 0. For B ∈ Z(Lmc(S)), so there exists g ∈ Lmc(S)
such that Z(g) = B. Now define u(x) = g(x) + ε

|f(x)|∨ε . Clearly, h = u
‖u‖ ∈

Lmc(S), Z(g) = Eε(fh) and Lxf ∈ E−(q) for each x ∈ Eδ(q, f) and δ > 0.
This implies LxfLxh ∈ E−(q) for each x ∈ Eδ(q, f), and so Eγ(LxfLxh) ∈ q
for each γ > 0. Thus, Eδ(q, f) ⊆ Eδ(q, fh) and Eδ(q, fh) ∈ p for each δ > 0;
therefore, Z(g) = Eε(fh) ∈ p+ q. So p+ q is an e-filter.

Now, it is proved that p + q is an e-ultrafilter. Let E−(p) = ker(µ) and
E−(q) = ker(ν) for µ, ν ∈ SLmc. It is claimed that E−(p + q) = ker(µν),
thus p+ q is an e-ultrafilter. Pick f ∈ ker(µν), so Tνf ∈ ker(µ) and for each
ε > 0,

Eε(Tνf) = {x ∈ S : |Tνf(x)| ≤ ε}
= {x ∈ S : |ν(Lxf)| ≤ ε}

= {x ∈ S : |L̂xf(ν)| ≤ ε}
∈ p.
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It is obvious that {t ∈ S : |L̂xf(t)| ≤ ε} = {t ∈ S : |Lxf(t)| ≤ ε} = Eε(Lxf).
Pick ε > 0. For each x ∈ E ε

2
(Tνf), E ε

2
((|Lxf | ∨ ε

2) − ε
2) ⊆ Eε(Lxf), and

E ε
2
((|Lxf | ∨ ε

2)− ε
2) ∈ E(ker(ν)) = q, so

Eε(Tνf) ⊆ {x ∈ S : Eε(Lxf) ∈ q} = Eε(q, f).

Thus, Eε(f) ∈ p + q for each ε > 0, and so f ∈ E−(p + q). Therefore
ker(µν) ⊆ E−(p+ q) and this completes the proof. �

Theorem 3.8. E(S) and SLmc are topologically isomorphic.

Proof. M is a maximal ideal of Lmc(S) if and only if there is a µ ∈ SLmc

such that ker(µ) = M . Thus, γ : µ 7→ E(ker(µ)) : SLmc → E(S) is well
defined and surjective. By Theorem 3.3(4), {clE(S)(e(A)) : A ∈ Z(Lmc(S))}
is a base for closed subsets of E(S), pick A ∈ Z(Lmc(S)) then

γ−1(clE(S)e(A)) = {µ ∈ SLmc : E(ker(µ)) ∈ clE(S)e(A)}

= {µ ∈ SLmc : ∀B ∈ E(ker(µ)), B† ∩ e(A) 6= ∅}
= {µ ∈ SLmc : ∀f ∈ ker(µ), ∀ δ > 0, Eδ(f) ∩A 6= ∅}
= {µ ∈ SLmc : ∀f ∈ ker(µ), ∀δ > 0, ∃xδ ∈ A ∩ Eδ(f)}
= clSLmc(A).

So γ is continuous. Since, γ : SLmc → E(S) is a surjective continuous
function, and SLmc is a compact space; therefore, γ is homeomorphism.
Now pick µ, ν ∈ SLmc, then

γ(µν) = E(ker(µν)) (see the proof of Theorem 3.7)

= E(ker(µ)) + E(ker(ν))

= γ(µ) + γ(ν).

Therefore, γ is homomorphism and thus E(S) and SLmc are topologically
isomorphic. �

By Theorem 3.8, SLmc could be described as a space of e-ultrafilters, i.e.,
SLmc = {E(ker(µ)) : µ ∈ SLmc}.

Lemma 3.9. Let A ∈ Z(Lmc(S)) and x ∈ S. Then A ∈ e(x) + p if and
only if λ−1x (A) ∈ p.

Proof. Pick A ∈ e(x) + q, so there exist ε > 0 and f ∈ Lmc(S) such that
A = Eε(f) and Eδ(q, f) = {t ∈ S : λ−1t (Eδ(f)) ∈ q} ∈ e(x) for each δ > 0
and λ−1x (Eδ(f)) ∈ q for each δ > 0. This implies λ−1x (A) ∈ p.
Conversely, let λ−1x (A) ∈ p, so there exist ε > 0 and f ∈ Lmc(S) such that
A = Eε(f) and λ−1x (A) ∈ p. Thus Eδ(Lxf) = λ−1x (Eδ(f)) ∈ p for each δ > 0,
and Lxf ∈ E−(p) = ker(µ) for some µ ∈ SLmc. Clearly, µ(Lxf) = 0 and so
ε(x)µ(f) = 0. This implies A ∈ E(ker(ε(x)µ)) = e(x) + p. �
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Definition 3.10. Let A and B be e-filters, and pick A ∈ Z(Lmc(S)). Then
A ∈ A + B if there exist ε > 0 and f ∈ Lmc(S) such that Eε(f) = A and
Eδ(B, f) = {x ∈ S : λ−1x (Eδ(f) ∈ B)} ∈ A for each δ > 0.

Lemma 3.11. Let A and B be e-filters. Then A+ B is an e-filter.

Proof. See Theorem 3.7. �

4. Applications

In this section, as an application, we consider the semigroup S∗ = SLmc\S
and work out some conditions characterizing when S∗ is a left ideal of SLmc.
The results of this section are found in [7], when S is a discrete semigroup.

Theorem 4.1. Pick p, q ∈ E(S) and let f ∈ Lmc(S). Then Eε(f) ∈ p + q
for each ε > 0 if and only if for each ε > 0 there exist Bε ∈ p and an indexed
family < Cε,s >s∈Bε in q such that

⋃
sCε,s ⊆ Eε(f).

Proof. Let Eε(f) ∈ p + q for each ε > 0. Pick ε > 0, x ∈ Bε = Eε(q, f)
and let Cε,x = Eε(Lxf) = λ−1x (Eε(f)). For each x ∈ Bε, Cε,x ∈ q and so⋃
x∈Bε xCε,x ⊆ Eε(f).
Conversely, by hypothesis for each ε > 0, there exist Bε ∈ p and an

indexed family < Cε,s >s∈Bε in q such that
⋃
s∈Bε sCε,s ⊆ Eε(f). Then for

each s ∈ Bε, Cε,s ⊆ λ−1s (Eε(f)) = Eε(Lsf) and so Eε(Lsf) ∈ q, for each
s ∈ Bε. Thus, Bε ⊆ {t ∈ S : Eε(Ltf) ∈ q} = Eε(q, f) ∈ p, and Eε(f) ∈ p+ q
for each ε > 0. �

Theorem 4.2. Let A ⊆ Z(Lmc(S)) has the e-finite intersection property.
If for each A ∈ E(E−(A)) and x ∈ A, there exists B ∈ E(E−(A)) such that

xB ⊆ A, then
⋂
A∈E(E−(A)) ε(A) is a subsemigroup of SLmc.

Proof. Let T =
⋂
A∈E(E−(A)) ε(A). Since E(E−(A)) has the e-finite

intersection property, so T 6= ∅. Pick p, q ∈ T and let A ∈ E(E−(A)). Given
x ∈ A, there is some B ∈ E(E−(A)) such that xB ⊆ A. Therefore, there ex-
ist f, g ∈ Lmc(S) such that B = Eδ(g), A = Eε(f) and Eγ(g), Eγ(f) ∈ p∩ q
for each γ > 0, so xEδ(g) ⊆ Eε(f) and Eδ(g) ⊆ λ−1x (Eε(f)) = Eε(Lxf).
Since B ∈ p ∩ q thus A ⊆ {t ∈ S : Eε(Ltf) ∈ q} = Eε(q, f), and
A = Eε(f) ∈ p+ q. �

Definition 4.3.

(a) A ⊆ S is an unbounded set if ε(A) ∩ S∗ 6= ∅.
(b) A sequence {xn} is unbounded if ε({xn : n ∈ N}) ∩ S∗ 6= ∅.

Lemma 4.4. Let {xn} and {yn} be unbounded sequences in S. Let p, q ∈ S∗,
q ∈ ε({xn : n ∈ N}) and p ∈ ε({yn : n ∈ N}), then

p+ q ∈ ε({ykxn : k < n, k, n ∈ N}).
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Proof. It is obvious that for each A ∈ q, ε({xn : n ∈ N}) ∩ A† 6= ∅ and for
each B ∈ p, ε({yn : n ∈ N}) ∩ B† 6= ∅. Now let C ∈ p + q, then there exist
ε > 0 and f ∈ Lmc(S) such that C = Eε(f) and for each δ > 0, Eδ(q, f) ∈ p.
Pick δ > 0 and let x ∈ Eδ(q, f), then

ε(λ−1x (Eδ(f)) ∩ {xn : n ∈ N})

and

ε(Eδ(q, f) ∩ {yn : n ∈ N})
are unbounded, by Theorem 3.3(4). Hence for each yk ∈ Eδ(q, f),

ε(λ−1yk (Eδ(f)) ∩ {xn : n ∈ N})

and so

ε({ykxn : k, n ∈ N, k < n} ∩ Eδ(f))

are unbounded, by Theorem 3.3(4). This implies ε({ykxn : k, n ∈ N})∩C† 6=
∅ and p+ q ∈ ε({ykxn : k < n, k, n ∈ N}). �

Theorem 4.5. Suppose that S is a σ-compact commutative semigroup, then
SLmc is not commutative if and only if there exist unbounded sequences {xn}
and {yn} such that

ε({xkyn : k < n, k, n ∈ N}) ∩ ε({ykxn : k < n, k, n ∈ N}) = ∅.

Proof. Necessity. Since S is σ-compact, so there exists a sequence {Fn}∞n=1

of compact subsets of S such that Fn ⊆ Fn+1 and S =
⋃∞
n=1 Fn. Now pick p

and q in S∗ such that p+q 6= q+p. Then, there exist A ∈ p+q and B ∈ q+p
such that ε(A) ∩ ε(B) = ∅. So, there exist γ, ε > 0 and f, g ∈ Lmc(S) such
that Eε(f) = A and Eγ(g) = B. Pick 0 < δ < ε ∧ γ, let A1 = Eδ(q, f) and
B1 = Eδ(p, g). Then, A1 ∈ p and B1 ∈ q. Choose x1 ∈ A1 and y1 ∈ B1.
Inductively given x1, x2, ..., xn and y1, y2, ..., yn, choose xn+1 and yn+1 such
that

ε(xn+1) ∈ ε

(
A1
† ∩

(
n⋂
k=1

λ−1yk (Eδ(g))

)
∩ F cn

)
and

ε(yn+1) ∈ ε

(
B1
† ∩

(
n⋂
k=1

λ−1yk (Eδ(f))

)
∩ F cn

)
.

Then {xn} and {yn} are unbounded sequences,

ε({ykxn : k, n ∈ N, k < n}) ⊆ ε(A)

and

ε({xkyn : k, n ∈ N, k < n}) ⊆ ε(B).

Sufficiency. Now let there exist two unbounded sequences {xn} and {yn}
such that

ε({xkyn : k < n, k, n ∈ N}) ∩ ε({ykxn : k < n, k, n ∈ N}) = ∅.
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Pick p ∈ ε({xn : n ∈ N}) ∩ S∗ and q ∈ ε({yn : n ∈ N}) ∩ S∗. Then by Lem-
ma 4.4,

q + p ∈ ε({ykxn : k < n, k, n ∈ N})
and

p+ q ∈ ε({xkyn : k < n, k, n ∈ N}). �

Definition 4.6. A semitopological semigroup S is topologically weak left
cancellative if for all u ∈ S there exists a compact zero set A such that
ε(u) ∈ A† and λ−1v (A) is a compact set for each v ∈ S.

Theorem 4.7.

(a) Let S be a locally compact noncompact Hausdorff semitopological
semigroup and let S∗ be a closed left ideal of SLmc. Then S is topo-
logically weak left cancellative.

(b) Let S be a topologically weak left cancellative locally compact non-
compact Hausdorff semitopological semigroup. Then S∗ is a left ideal
of SLmc.

(c) Let S be a locally compact noncompact Hausdorff semitopological
semigroup and let S∗ be a closed subset of SLmc. Then S∗ is a left
ideal of SLmc if and only if S is topologically weak left cancellative.

Proof. (a) Pick x, y ∈ S such that for each compact zero setA ∈ Z(Lmc(S)),

ε(x) ∈ A† and BA = λ−1y (A) is noncompact. Pick pA ∈ S∗ ∩ ε(BA) so
ε(y) + pA ∈ ε(A). Now let

U = {A ∈ Z(Lmc(S)) : ε(x) ∈ A† and A is compact},

then {pA}A∈U is a net, ε(y) + pA → ε(x), and ε(x) ∈ S∗ = S∗. So this is a
contradiction.

(b) Since S is noncompact so S∗ 6= ∅. Pick p ∈ S∗, q ∈ SLmc and let
q + p = ε(x) ∈ ε(S). Let A ∈ Z(Lmc(S)) be a compact set and ε(x) ∈ A†.
Then A ∈ q + p and there exist f ∈ Lmc(S) and ε > 0 such that Eε(f) = A
and Eδ(p, f) ∈ q for each δ > 0. Now pick y ∈ Eε(p, f) then λ−1y (A) ∈ p, so

λ−1y (A) is not compact and this is a contradiction.
(c) This can easily be verified. �

Corollary 4.8. Let G be a locally compact non compact Hausdorff topolog-
ical group. Then G∗ is a left ideal of GLUC.

Proof. Let G be a locally compact non compact Hausdorff topological
group, so ε(G) is an open subset of GLUC , and hence G∗ is closed. Now
by Theorem 4.7, proof is completed. �

Theorem 4.9. Let S be a locally compact semitopological semigroup. The
following statements are equivalent:

(a) S∗ is right ideal of SLmc.
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(b) Given any zero compact subset A of S, any sequence {zn} in S, and
any unbounded sequence {xn} in S, there exists a n < m in N such
that xn · zm /∈ A.

Proof. (a) implies (b). Suppose that {xn · zm : n,m ∈ N and n < m} ⊆ A.

Pick p ∈ ε({zm : m ∈ N}) and q ∈ S∗ ∩ ε({xn : n ∈ N}), which we can do,

since {xn : n ∈ N} is unbounded. Thus q + p ∈ ε(A) = ε(A) ⊆ ε(S), is a
contradiction.

(b) implies (a). Since S∗ 6= ∅, pick p ∈ SLmc and q ∈ S∗ such that q+p =
ε(a) ∈ ε(S) for some a ∈ S, so there exists a compact set A ∈ Z(Lmc(S))
such that ε(a) ∈ A†. Hence there exist ε > 0 and f ∈ Lmc(S) such that
Eε(f) = A and Eδ(f) ∈ ε(a), for each δ > 0. Then for each 1/n < ε,

E1/n(p, f) = {s ∈ S : λ−1s (E1/n(f)) ∈ p} ∈ q,
choose an unbounded sequence {xn} such that xn ∈ E1/n(p, f). Inductively
choose a sequence {zm} in S such that for each m ∈ N,

zm ∈
m⋂
n=1

λ−1xn (E1/n(f))

(which one can do) since
⋂m
n=1 λ

−1
xn (E1/n(f)) ∈ p. Then for each n < m in

N, xn · zm ∈ E1/n(f) ⊆ Eε(f) = A, is a contradiction. �

Examples 1.

(a) Let S be a discrete semigroup. If S is either right or left cancellative,
then S∗ = βS \ S is a subsemigroup of βS, (See Corollary 4.29 in
[7]). This is not true for a left cancellative semitopological semigroup
S. Let (S = (1,+∞),+) with the natural topology. Then S∗ is not
subsemigroup. Pick p, q ∈ clSLmc(1, 2], thus there exist nets {xα}
and {yβ} in (1, 2] such that xα → p, yβ → q and xα + yβ ∈ [2, 4].
Hence p + q ∈ [2, 4] and so S∗ is not subsemigroup. Also, S∗ is not
a left ideal and so S is not topologically weak left cancellative.

(b) (S = [1,+∞),+) with the natural topology is a topologically weak
left cancellative, thus S∗ is a left ideal of SLmc.

References

[1] Alaste, Tomi. Representation of spectrums of C∗-algebra of bounded functions in
terms of filters. 2013. arXiv:1302.1340.

[2] Alaste, Tomi. U-filters and uniform compactification. Studia Math. 211 (2012), no.
3, 215–229. MR3002443, Zbl 06113314, doi: 10.4064/sm211-3-3.

[3] Berglund, John F.; Junghenn, Hugo D.; Milnes, Paul. Analysis on semigroups.
Function spaces, compactifications, representations. Canadian Mathematical Society
Series of Monographs and Advanced Texts. A Wiley-Interscience Publication. John
Wiley & Sons, Inc., New York, 1989. xiv+334 pp. ISBN: 0-471-61208-1. MR0999922
(91b:43001), Zbl 0727.22001.

[4] Comfort, W. W.; Negrepontis, S. The theory of ultrafilters. Die Grundlehren der
mathematischen Wissenschaften, Band 211. Springer-Verlag, New York-Heidelberg,
1974. x+482 pp. MR0396267 (53 #135), Zbl 0298.02004.

http://arXiv.org/abs/1302.1340
http://www.ams.org/mathscinet-getitem?mr=3002443
http://zbmath.org/?q=an:06113314
http://dx.doi.org/10.4064/sm211-3-3
http://www.ams.org/mathscinet-getitem?mr=0999922
http://zbmath.org/?q=an:0727.22001
http://www.ams.org/mathscinet-getitem?mr=0396267
http://zbmath.org/?q=an:0298.02004


688 M. AKBARI TOOTKABONI

[5] Gillman, Lonard; Jerison, Meyer. Rings of continuous functions. The University
Series in Higher Mathematics. D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-
London-New York, 1960. ix+300 pp. MR116199 (22 #6994).

[6] Hindman, Neil; Milnes, Paul. The LMC−compactification of a topologized
semigroup. Czechoslovak Math. J. 38(113) (1988), no. 1, 103–119. MR0925945
(89c:22008).

[7] Hindman, Neil; Strauss, Dona. Algebra in the Stone–C̆ech compactification. The-
ory and applications. de Gruyter Expositions in Mathematics, 27. Walter de Gruyter
& Co., Berlin, 1998. xiv+485 pp. ISBN: 3-11-015420-X. MR1642231 (99j:54001), Zbl
0918.22001.

[8] Rudin, Walter. Functional analysis. Second edition. International Series in Pure
and Applied Mathematics. McGraw-Hill, Inc., New York, 1991. xviii+424 pp. ISBN:
0-07-054236-8. MR1157815 (92k:46001), Zbl 0867.46001.

[9] Tootkaboni, Mohammad Akbari. Quotient space of LMC-compactification as a
space of z−filters. Acta Math Sci. Ser. B Engl. Ed. 32 (2012), no. 5, 2010–2020.
MR2960766, Zbl 06179108, arXiv:1005.0083.

[10] Tootkaboni, M.A.; Sales, A. Bagheri. Comfort order on Lmc-compactification.
To appear.

[11] Tootkaboni, M.A.; Eslami, Z. Density in locally compact topological groups.
Preprint.

[12] Tootkaboni, M.A.; Riazi, A. Ultrafilters on semitopological semigroups. Semi-
group Forum 70 (2005), no. 3, 317–328. MR2148146 (2006d:22005), Zbl 1078.22001,
doi: 10.1007/s00233-003-0015-y.

[13] Tootkaboni, M. A.; Vishki, H. R. E. Filters and semigroup compactification
properties. Semigroup Forum 78 (2009), no. 2, 349–359. MR2486647 (2009m:22005),
Zbl 1165.22003, doi: 10.1007/s00233-008-9118-9.

[14] Zelenyuk, Yevhen G. Ultrafilters and topologies on groups. de Gruyter Expo-
sitions in Mathematics, 50. Walter de Gruyter GmbH & Co. KG, Berlin, 2011.
viii+219 pp. ISBN: 978-3-11-020422-3. MR2768144 (2012c:22002), Zbl 1215.22001
doi: 10.1007/BF00971407.

Department of Mathematics, Shahed University, Tehran, Iran
akbari@shahed.ac.ir

This paper is available via http://nyjm.albany.edu/j/2013/19-34.html.

http://www.ams.org/mathscinet-getitem?mr=116199
http://www.ams.org/mathscinet-getitem?mr=0925945
http://www.ams.org/mathscinet-getitem?mr=1642231
http://zbmath.org/?q=an:0918.22001
http://zbmath.org/?q=an:0918.22001
http://www.ams.org/mathscinet-getitem?mr=1157815
http://zbmath.org/?q=an:0867.46001
http://www.ams.org/mathscinet-getitem?mr=2960766
http://zbmath.org/?q=an:06179108
http://arXiv.org/abs/1005.0083
http://www.ams.org/mathscinet-getitem?mr=2148146
http://zbmath.org/?q=an:1078.22001
http://dx.doi.org/10.1007/s00233-003-0015-y
http://www.ams.org/mathscinet-getitem?mr=2486647
http://zbmath.org/?q=an:1165.22003
http://dx.doi.org/10.1007/s00233-008-9118-9
http://www.ams.org/mathscinet-getitem?mr=2768144
http://zbmath.org/?q=an:1215.22001
http://dx.doi.org/10.1007/BF00971407
mailto:akbari@shahed.ac.ir
http://nyjm.albany.edu/j/2013/19-34.html

	1. Introduction
	2. Preliminary
	3. Space of e-ultrafilters
	4. Applications
	References

