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Lmc-compactification of a semitopological
semigroup as a space of e-ultrafilters

M. Akbari Tootkaboni

ABSTRACT. Let S be a semitopological semigroup and CB(S) denote
the C™*-algebra of all bounded complex valued continuous functions on
S with uniform norm. A function f € CB(S) is left multiplicative
continuous if and only if T, f € CB(S) for all p in the spectrum of
CB(S), where T, f(s) = u(Lsf) and L, f(z) = f(sz) for each s,z € S.
The collection of all the left multiplicative continuous functions on S is
denoted by Lmc(S). In this paper, the Lmc-compactification of a semi-
topological semigroup S is reconstructed as a space of e-ultrafilters. This
construction is applied to obtain some algebraic properties of (e, S¥™),
such that S™™¢ is the spectrum of Lmc(S), for semitopological semi-
groups S. It is shown that if S is a locally compact semitopological
semigroup, then S* = S¥™°\ ¢(S) is a left ideal of S¥™° if and only if
for each z,y € S, there exists a compact zero set A containing x such
that {t € S:yt € A} is a compact set.
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1. Introduction

It is well known that ultrafilters play a prominent role in the study of
algebraic and topological properties of the Stone-Cech compactification 5.5
of a discrete semigroup S. The Stone-Cech compactification 5 of a discrete
space S can be described as the spectrum of B(S), where B(S) is the C*-
algebra of all bounded complex-valued functions on S, or can be defined as
the space of all ultrafilters on S (see [3] and [7]).
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When S is a discrete semigroup, CB(S) will be an m-admissible algebra
and as a result, 5.5 will be a semigroup. This semigroup, as the collection of
all ultrafilters on S, has a known operation attributed to Glazer. Capability
and competence of ultrafilter approach are mentioned clearly in [4], [5], [7]
and [14].

Any semigroup compactification of a Hausdorff semitopological semigroup
S is determined by the spectrum of a C*-subalgebra F of B(S) containing
the constant functions. Also all semigroup compactification of a semitopo-
logical semigroup as a collection of z-filters has been described in [12]. This
approach sheds a new light on studying this kind of compactifications. With
what was done in [12] as a model, some new topics in semigroup compact-
ification are introduced using z-filters in a critical fashion. See [9],[10],[11]
and [13]. It seems that the methods presented in [1], [2], [9], [11], [12] and
[13] can serve as a valuable tool in the study of semigroup compactifications
and also of topological compactifications.

Let X be a completely regular space, C(X,R) denotes all the real-valued
continuous functions on X and CB(X,R) denotes all the bounded real-valued
continuous functions on X. The correspondences between z-filters on X
and ideals in C(X,R), which have been established in [5], are powerful
tools in the study of C(X,R). These correspondences, which also occur
in a rudimentary form in CB(X,R), are inconsequential, as many theorems
of [5] become false if C(X,R) is replaced by CB(X,R). However, there is
another correspondence between a certain class of z-filters on X and ideals
in CB(X,R) that leads to quite analogous theorems to those for C(X,R).
The requisite information is outlined in [5, 2L].

In Section 2, some familiarity with semigroup compactification and
Lmec-compactification will be presented. This section also consists of an
introduction to z-filters and an elementary external construction of Lmec-
compactification as a space of z-filters. Moreover, in this section e-filters
and e-ideals will be defined (they are adopted from [5, 2L]).

In Section 3, Lmc-compactification will be reconstructed as a space of e-
ultrafilters with a suitable topology, also a binary operation will be defined
on e-ultrafilters.

Section 4 concerns some theorems from [7] about the properties of S
which are extended to some properties on S“™¢, for semitopological semi-
group S.

2. Preliminary

Let S be a semitopological semigroup (i.e., for each s € S, A\s : S — §
and rs : S — S are continuous, where for each x € S, A\s(z) = sz and
rs(z) = xs) with a Hausdorff topology, CB(S) denotes the C*-algebra of
all bounded complex valued continuous functions on S with uniform norm,
and C(S) denotes the algebra of all complex valued continuous functions
on S. A semigroup compactification of S is a pair (¢, X), where X is a
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compact, Hausdorff, right topological semigroup (i.e., for all z € X, r,
is continuous) and ¥ : S — X is continuous homomorphism with dense
image such that, for all s € S, the mapping z — ¥(s)z : X — X is
continuous, (see Definition 3.1.1 in [3]). Let F be a C*-subalgebra of CB(S)
containing the constant functions, then the set of all multiplicative means
of F (the spectrum of F), denoted by S7 and equipped with the Gelfand
topology, is a compact Hausdorff topological space. Let Rsf = fors € F
and Lgf = fods € F forall s € S and f € F, and the function

s = (T.f(s)) = w(Lsf)

is in F for all f € F and pu € S, then S¥ under the multiplication pv =
poT, (uv € S%), furnished with the Gelfand topology, makes (g, S7)
a semigroup compactification (called the F-compactification) of S, where
e: S — 87 is the evaluation mapping. Also, £* : C(S7) — F is isometric
isomorphism and f = (*)7(f) € C(SF) for f € F is given by f(1) = u(f)
for all 4 € S, (for more detail see section 2 in [3]).

Let F = CB(S), then 3S = SB() is the Stone-Cech compactification of
S, where S is a completely regular space.

A function f € CB(S) is left multiplicative continuous if and only if

T, f € CB(S)

for all i € 8S = SCB) . The collection of all left multiplicative continuous
functions on S is denoted by Lmc(S). Therefore,

Lme(S) = (T, (CB(S)) : n € BS}

is defined and (e, S™™¢) is the universal semigroup compactification of S
(Definition 4.5.1 and Theorem 4.5.2 in [3]). In general, S can not be em-
bedded in S¥™°¢. In fact, as it was shown in [6] there is a completely
regular Hausdorff semitopological semigroup S, such that the continuous
homomorphism ¢ from S to its Lmc-compactification, is neither one-to-one
nor open as a mapping to £(.5).

The LUC-compactification is the spectrum of the C*-algebra consisting
of all left uniformly continuous functions on semitopological semigroup S; a
function f : S — C is left uniformly continuous if s — L, f is a continuous
map from S to the space of bounded continuous functions on S with the
uniform norm. Let G be a locally compact Hausdorff topological group, by
Theorem 5.7 of chapter 4 in [3] implies that Lmc(G) = LUC(G). Also the
evaluation map G — G*YC is open, (see [3]).

Now, some prerequisite material from [12] are quoted for the description
of (g, S™m¢) in terms of z-filters. For f € Lmc(S), Z(f) = f~1({0}) is called
zero set, and the collection of all zero sets is denoted by Z(Lmc(S)). For
an extensive account of ultrafilters, the readers may refer to [4], [5], [7] and
[14].
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Definition 2.1. A C Z(Lmc(S)) is called a z-filter on Lmc(S) (or for
simplicity z-filter) if:
(i) 0 ¢ Aand S € A.
(ii) If A,B € A, then AN B € A.
(ii) If A€ A, B € Z(Lmce(S)) and A C B then B € A.

Because of (iii), (ii) may be replaced by:
(i) If A, B € A, then AN B contains a member of A.

A z-ultrafilter is a z-filter which is not properly contained in any other
z-filter. The collection of all z-ultrafilters is denoted by Z(S). For z € S,
T ={Z(f) : f € Lmce(S), f(x) = 0} is a z-ultrafilter. The z-filter F is
named converge to the limit u € S™¢ if every neighborhood of i contains
a member of F. The collection of all z-ultrafilters on Lmc(S) converge to
p € S¥M¢ is denoted by [u]. Let @ = {p: p = N[u]} and define

A={p:Aep}
for AC S. Let Q be equipped with the topology whose basis is

{(A)°: A € Z(Lme(9))},
and define ([u] *([v] = N[pv]. Then (Q,*) is a (Hausdorff) compact right
topological semigroup and ¢ : S¥™¢ — Q defined by ¢(u) = N[u] = p, where
N AepZ = {u}, is topologically isomorphism. So A is equal to clgLmeA and
we denote it by A, also for simplicity we use x replace Z. The operation “-”
on S, extends uniquely to “*” on Q. For more discussion and details see
[12].

Remark 2.2. If p,q € Z(5), then the following statements hold.

(i) If £ C Z(Lmc(S)) has the finite intersection property, then E is
contained in a z-ultrafilter.
(ii) If B € Z(Lmc(S)) and for all A € p, AN B # () then B € p.
(iii) If A, B € Z(Lmc(S)) such that AU B € p, then A € p or B € p.
(iv) Let p and ¢ be distinct z-ultrafilters, then there exist A € p and
B € ¢ such that AN B = 0.
(v) Let p be a z-ultrafilter, then there exists u € S¥™¢ such that

() e(4) = {u}.
Aep

(For (i), (ii), (iii) and (iv) see Lemma 2.2 and Lemma 2.3 in [12]. For (v)
see Lemma 2.6 in [12]).

In this paper, R denotes the topological group formed by the real numbers
under addition. Also we suppose ker(u) = {f € Lmc(S) : p(f) = 0} for
w € Lme(S)*. By Theorem 11.5 in [8], M is a maximal ideal of Lmc(S) if
and only if there is 4 € S¥™ such that ker(u) = M.

Lemma 2.3. Let S be a Hausdorff semitopological semigroup.
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(1) If f € Lme(S) is real-valued, then f* = max{f,0} € Lmc(S) and
[~ = —min{f,0} € Lmc(S).

(2) Let f € Lmc(S). then Re(f), Im(f) and |f| are all in Lmc(S).

(3) If f and g are real-valued functions in Lmc(S), then

(f vV g)(z) = max{f(z),g(x)} € Lmc(S),
and
(f A g)(x) = min{f(z),g(x)} € Lmc(S).
(4) Let f € Lmc(S) and there exists ¢ > 0 such that ¢ < |f(x)| for each
x €S. Then % € Lmc(95).
(5) Let M be a mazimal ideal and f € M, then f € M.

Proof. For (1), (2) and (3), since f IE Lmc(S) — C(S¥™°) is isometrical
isomorphism and |f| € C(S™™¢) for each f € Lmc(S), so we have

-~ -~

[fl(e(x)) = [f(e(z))]
= le(@)(f)|
= |f(2)]
= |fl(z)

for each x € S. Thus, |f| = |/f\| for each f € Lmc(S) and so |f| € Lmc(S)

for each f € Lmc(S).
Now let f and g be real-valued functions, so

In a similar way f A g, f* and f~ are in Lmc(S). Pick f € Lmc(S), since
Lmc(S) is conjugate closed subalgebra so Re(f) = % € Lmc(S) and
Im(f) = 451 € Lmc(S).

For (4), let f € Lmc(S) and there exists ¢ > 0 such that ¢ < |f(z)]
for each 2 € S. So |f|(1) > c for each p € S which implies that
= % € C(S¥me). Therefore, % € Lmc(S).

For (5), let M be a maximal ideal in Lmc(S), so there exists u € Sm¢
such that M = ker(u) = {f € Lmc(S) : u(f) = 0}. Now let f € M, so

u(f) = pRe(f))+ip(Im(f)) = 0. This implies that p(Re(f)) = p(Im(f)) =
0 and so u(f) =0. Thus, f € M. O

1
f

For f € Lmc(S) and € > 0, we define E.(f) = {z € S : |f(z)] < €}.
Every such set is a zero set. Conversely, every zero set is of this form,
Z(g) = Ec(e+|g|). For I C Lmc(S), we write E(I) = {E.(f): f € I,e > 0},
ie., E(I) = e Ee(I). Finally, for any family A of zero sets, we define

E~(A) ={f € Lmc(S) : E.(f) € A for each € > 0},
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that is, £~ (A) = (.»o £ (A), where
B (A) = {f € Lme(S) : E(f) € A},
Lemma 2.4. For any family A of zero sets,

= | J{E(f) : f € Lmc(S), Es5(f) € A for all § >0} C A.

e>0

The inclusion may be proper, when A is a z-filter.
Proof. Let A be a family of zero sets, so
E~(A) ={f € Lmc(S) : E.(f) € A for all € > 0},
and thus,
E(E~(A) = {E(f) : f € B~ (A),e >0}
= {E(f): f € BZ (W)}

e>0

= | J{E(f) f) € A for all § > 0}
e>0

cA

Finally, let My = {f € Lmc((R,+)) : f(0) = 0}, then My is a maximal ideal
in Lmc((R,+)) and A= {Z(f): f € My} is a z-filter. Define g(z) = |z| A 1
for each x € R, then g € My and so {0} = Z(g) € A. Since

U{E ) € Afor all § >0}
e>0

QA)

pick f € Lmc((R, +)) such that E.(f) € E(E~(A)) for each € > 0. Since f is
continuous so for each € > 0 there exists 6 > 0 such that f((—9,9)) C (—¢,¢);
therefore, (—0,9) C E.(f). This implies that E(E~(A)) is a collection of
uncountable zero sets. But {0} € A is finite and so {0} ¢ E(E~(A)).
Therefore, E(E~(A)) # A. O

Definition 2.5. Let A be a z-filter. Then A is called an e-filter if
E(E~(A)) = A.

Hence, A is an e-filter if and only if, whenever Z € A, there exist
f € Lmc(S) and € > 0 such that Z = E.(f) and Es(f) € A for every
0 >0.

Lemma 2.6. Let I be a subset of Lmc(S). Then,
ICE (E(I)={f€Lmc(S): E(f) € E(I) for all e > 0}.

The inclusion may be proper, even when I is an ideal.
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Proof. By Definition
ICE (E(I)={f€Lme(S): E(f) € E(I) for all € > 0}.

Finally, let I be the ideal of all functions in Lmc((R,+)) that vanish on a
neighborhood of 0. Pick g(z) = |#|A1 in Lmc((R, 4)) that vanishes precisely

at 0. Since for each € > 0, Ee(g9) = E<((gV 5) —5) and (gV §) — 5 € I,
then E.(g) € E(I) for each € > 0, and so g € E(E(I)) but g ¢ I. This
completes the proof. O

Definition 2.7. Let I be an ideal of Lmc(S). I is called an e-ideal if
E-(E(I))=1.

Hence, I is an e-ideal if and only if, whenever E.(f) € E(I) for all € > 0,
then f € I.

Lemma 2.8. The following statements hold.

(1) The intersection of e-ideals is an e-ideal.

(2) If I is an ideal in Lmc(S), then E(I) is an e-filter.

(3) If A is any z-filter, then E~(A) is an e-ideal in Lmc(S).

(4) I € J C Lme(S) implies E(I) C E(J), and A C B C Z(Lmc(5))
implies E~(A) C E~(B).

(5) If J is an e-ideal, then I C J if and only if E(I) C E(J). If A is an
e-filter, then A C B if and only if E~(A) C E~(B).

(6) If A is any e-filter, then E~(A) is an e-ideal. Let I be an ideal
in Lmc(S), then E=(E(I)) is the smallest e-ideal containing I. In
particular, every mazimal ideal in Lmc(S) is an e-ideal.

(7) For any z-filter A, E(E~(A)) is the largest e-filter contained in A.

Proof. (1) Suppose that {I,} is a collection of e-ideals and I = (), Io. Let
E.(f) € E(I) for each € > 0, then E.(f) € E(I,) for each € > 0, so f € I,
for each «. This implies f € [.

(2) Let Ec(f) = 0 for some € > 0 and f € I, then € < |f(x)] < M for
some M > 0 and for each x € S. So % € Lme(S) and 1 = f% € I. Thisis a
contradiction and so () ¢ E(I).

Let f' € Lmc(S), f € I be a nonnegative function and E(f) C Z(f'),
then g(z) = | ()| + Ffy € Lme(S). Now

e a4 @)
F@lo@) = IF @ F@)+ 2

so z € Z(f') implies that |f(z)g()| = 2 < e. Hence Z(f') C Ec(fg).
If x € E(fg), then

F@f@] < | @ @]+ ST~ 1@t <
and if z ¢ Z(f') then € < |f(x)| and |g(z)f(x)| > €. Therefore this implies

E(fg) € Z(f/)7 and so Ee(fg) = Z(f/)'
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Suppose that Ec(f), Es5(g) € E(I) for some f,g € I and €,6 > 0. Let
7=6/\5/\%,’5hen

Eﬁ(f? +99) C E,(f) N E,y(9) € Ec(f) N Es(9),

thus E.(f) N Es(g) € E(I).

Now let Z € E(I), so there exists f € I such that Z = E.(f) for some
€ > 0. By definition of E(I), Es(f) € E(I) for each § > 0, so E(I) is an
e-filter.

(3) Let f,g € E~(A). Since Ecj5(|f]) N E¢/2(lg]) € Ee(|f — g]); therefore,
E(f —g) € A for each € > 0. Thus, f —g € E-(A). Let f € E~(A),
g € Lmc(S) and M = ||g|| + 1. Hence, E< (f) C Ec(fg) and fg € E~(A).
Now let E.(f) € E~(A) for each € > 0. Definition of £~ (.A) implies that
f € E (A). Thus, E~(A) is an e-ideal.

(4) This can easily be checked.

(5) It is obvious that if I C J then E(I) C E(J) by (4).

Conversely. If f € I, then E.(f) € E(I) for each € > 0, so E.(f) € E(J).
Since J is an e-filter, so f € J. If A C B, then E~(A) C E~(B). Since A is
an e-filter, then A= E(E~(A)) C E(E~(B)) CB.

(6) Let I = E~(A) = {f € Lmc(S) : Ve > 0, E.(f) € A}; thus, A is an
e-filter, and A = E(E~(A)) = E(I). This implies [ = E~(A) = E~(E(]))
and so [ is an e-ideal. Let I C Lmc(S) be an ideal, then J = E~(E(]))
is an e-ideal (by (3) and (4)), so I € J. Let I C K C J and K be an
e-ideal, then E(I) C E(K) C E(J) = E(I) and E(K) = E(I). Thus,
J=E"(E(I)) = E=(E(K)) = K, and this implies that J is the smallest
e-ideal containing I.

Finally, every maximal ideal in Lmc(S) is an e-ideal. For this, let M be a
maximal ideal in Lmc(S). Then, E~(E(M)) is an e-ideal, M C E~(E(M))
and M is maximal so, M = E~ (E(M)).

(7) Let A be a z-filter, then E~(A) is an ideal in Lmc(S), so E(E~(A))
is an e-filter and B = E(E~(A)) € A. Now let U be an e-filter such that
BCUC A, then E=(U) = E~(A). Hence, B C A is an e-filter. O

A maximal e-filter is called an e-ultrafilter. Zorn’s Lemma implies that
every e-filter is contained in an e-ultrafilter. Because, if ) is a chain of e-
filters, then it is also a chain of z-filters and so U) is a z-filter. It is sufficient
to show U) is an e-filter. Let Z € UY, then there exists Y € ), such that
Z €Y. Since Y is an e-ideal, so there exist f € Lmc(S) and € > 0 such
that Z = E.(f) and {E5(f) : 6 > 0} C Y. Thus, there exist f € Lmc(S) and
€ > 0 such that Z = E.(f) and {Es(f) : § > 0} C UY. Therefore, UY is an
e-filter.

Theorem 2.9. If M is a mazimal ideal in Lmc(S), then E(M) is an e-
ultrafilter, and if A is an e-ultrafilter, then E~(A) is a mazimal ideal in
Lmc(S5).
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Proof. Let M be a maximal ideal, so E(M) is an e-filter (Lemma 2.8(2)).
Suppose that there exists an e-filter & such that E(M) C U, then
M = E~(E(M)) € E-(U) and so E(M) = E(E-(U)) = U, by Lem-
ma 2.8(7). Thus, E(M) is an e-ultrafilter.

Now let £ be an e-ultrafilter, then E~(€) is an ideal in Lmc(S) (Lem-
ma 2.8(3)). Let J be a maximal ideal such that E~(€) C J, then J is an e-
ideal and so E(E~(€)) C E(J). Since & is an e-ultrafilter, so £ = E(E~(£))
and E~(£) = E~(E(J)) = J. This implies that £~ (&) is maximal. O

The correspondence M +— E(M) is one to one from the set of all maximal
ideals in Lmc(S) onto the set of all e-ultrafilters.

Theorem 2.10. The following property characterizes an ideal M in Lme(S)
as a mazximal ideal: given f € Lmc(S), if E.(f) meets every member of
E(M) for each € >0, then f € M.

Proof. Let M be a maximal ideal and f € Lmc(S). Let E.(f) meet every
member of E(M) for each € > 0. So E(M) U {E(f) : € > 0} has the finite
intersection property, and so there exists a z-ultrafilter A containing it. By
Lemma 2.8 and Theorem 2.9,

M = E~(A) = {g € Lmc(9) : Ec(g) € A for each € > 0}.

This implies that f € M.

Now let M be an ideal in Lmc(S) with the following property: given
f € Lmc(S), if E.(f) meets every member of E(M) for each € > 0, then
f € M. We show that M is a maximal ideal. Let f € Lmc(S) \ M and
so some E(f) fails to meet some member of E(M). Therefore, there exist
g € M and 6 > 0 such that E.(f)N Es(g) = 0. Pick v = min{6?, €2, 1}, then
E(ff+99) C E(f) N Es(g), so ff + gg is invertible and generated ideal
by M U{f} is equal with Lmc(S). This implies M is a maximal ideal. [

Let A and B be z-ultrafilters. It is said that A ~ B if and only if
E(E~(A)) = E(E~(B)). It is obvious that ~ is an equivalence relation.
The equivalence class of A € Z(S) is denoted by [A].

Lemma 2.11. Let A be a z-ultrafilter, then:

(a) Let Z(f) € A for some f € Lmc(S), then f € E~(A).

(b) E=(A) is a mazimal ideal.

(¢) E(E~(A)) is an e-ultrafilter.

(d) Let Z be a zero set that meets every member of E(E~(A)), then
there exists B € [A], such that Z € B.

Proof. (a) By Remark 2.2(v), pick y € S such that (4. 4£(4) =
Now let Z(f) € A, then p € e(Z(f)) and so there exists a net {e(xq)} C
such that lime(zq) = p. Since

M(f) = limag(xoz)(f) = limaf(xa> =0,

{1}
e(4)
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so f € ker(u). It is obvious Z(f) C E¢(f) for each € > 0 and so E.(f) € A
for each € > 0. This implies f € E~(A).

(b) By (a), there exists p € S such that ker(u) € E~(A). Since ker(p)
is a maximal ideal in Lmc(S) and also by Lemma 2.8(3), so
ker(u) = E~(A).

(c) Since E~(A) is a maximal ideal, so E(E~(A)) is an e-ultrafilter by
Theorem 2.9.

(d) Let Z be a zero set that meets every member of E(E~(A)). Then,
{Z} U E(E~(A)) has the finite intersection property. Hence there exists
some z-ultrafilter B containing {Z} U E(E~(A)). Since E(E~(A)) is an
e-ultrafilter contained in B, so by (b), E~(B) is a maximal ideal and by
Lemma 2.8(4), E~(A) C E~(B). Thus by Theorem 2.9, E~(B) = E~(A)
and so E(E~(B)) = E(E~(A)). Therefore, there exists B € [A] such that
ZeB. O

Remark 2.12. Since (R, +) is a locally compact topological group, by The-
orem 5.7 of Chapter 4 in [3],

Lmc(R) ={f € CB(R) : t = f o)\ : R — CB(R) is norm continuous.}.

Let Co(R) = {f € CB[R) : limy—toof(x) = 0}, then Co(R) is an ideal
of Lmc(R). Let M be a maximal ideal in Lmc(R) which contains C,(R).
It is obvious that f(z) = e ® sin(z) and g(z) = e * cos(rxz) belong to
Co(R). Then Z(f) = {kr : k € Z}, Z(g) = {¥F : k € Z}, and
EM)U{Z(f)} and E(M)U{Z(g)} have the finite intersection property.
So there exist z-ultrafilters A and B such that E(M)U{Z(f)} C A and also
E(M)U{Z(g)} C B. Since E(M) is an e-ultrafilter so there exist at least
two distinct z-ultrafilters containing £~ (A). Thus:

(i) It is not necessary the collection of all z-ultrafilters containing an
e-ultrafilter be a single set.

(ii) Let A be a z-ultrafilter. Then there exists a zero-set Z such that Z
meets every member of E(E~(A)) and Z ¢ A .

3. Space of e-ultrafilters

In this section we will define a topology on the set of all e-ultrafilters of
a semitopological semigroup S, and establish some of the properties of the
resulting space. Also, the operation of the semitopological semigroup has
been extended to the set of all e-ultrafilters.

Definition 3.1. Let S be a Hausdorff semitopological semigroup.
(a) The collection of all e-ultrafilters is denoted by £(5), i.e.,

E(S) ={p: pis an e-ultrafilter}.

(b) Define AT = {p € £(S) : A € p} for each A € Z(Lmc(S)).
(c) Define e(a) = {E(f) : f(a) =0,e > 0} for each a € S.
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(d) It is said that A C Z(Lmc(S)) has the e-finite intersection property
if and only if E(E~(.A)) has the finite intersection property.

Pick (a) € S¥™¢ for some a € S, then

ker(e(a)) = {f € Lme(S) : (a)(f) = 0}
— {f € Lme(S) : f(a) = 0}

is a maximal ideal and by Theorem 2.9,

B~ (ker(=(a))) = {E(f) : f(a) =0, ¥e > 0} = e(a)
is an e-ultrafilter.

Lemma 3.2. Let A, B € Z(Lmc(S)) and f,g € Lmc(S). Then:
(1) (AnB)I = AT n BT,
(2) (AuB)' D ATuUBf.
(3) Pickx € S and € > 0. Then \;Y(E.(f)) = E.(Lxf).
(4)

Eons(|f|V lgl) € Ec(f) N Es(g) and Ec(|f|V |g]) = E.(f) N Eclg), for
each 9,e > 0.

Proof. The proofs are routine. [l

Since (AN B)t = At N Bf for each A, B € Z(Lmc(S)), so the sets Af are
closed under finite intersection. Consequently, {AT: A € Z(Lmc(S))} forms
a base for an open topology on £(S).

Theorem 3.3.

(1) Pick f € Lmc(S) and € > 0, then intg(A) = e *(A"), and so e :
S — &(S) is continuous.
(2) Pick p € £(S) and A € Z(Lmc(S)), then the following statements
are equivalent:
(i) p € clg(s)(e(A)).
(ii) For each B € p, intg(B) N A # (.
(iii) For each B € p, BN A # 0.
(iv) There exists a z-ultrafilter A, containing p such that A € A,,.
(3) Pick A, B € Z(Lmc(S)) such that p € clg(s)(e(A))Nclg(s)(e(B)) and
pU{A, B} has the finite intersection property, then

pe Clg(s)(e(A N B)).

(4) {clg(s)(e(A)) : A € Z(Lmce(S))} is a base for closed subsets of £(S).
(5) E(S ) is a compact Hausdorff space.
(6) e(S) is a dense subset of £(S).

Proof. (1) Let p € Af, so there exist f € E~(p) and ¢ > 0 such that
E.(f) = Aand E5(f) € pforeach § > 0. Pick z, € intg(A), then |f(z,)| < €

or |f(xzo)| =e.
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If 6§ = |f(zo)| <e then Ec_5(|f| V0 —0) = Ec(f), o € Ec—5(|f] V6 —9)
and z, € E,(|f| v —6) for each np > 0. Thus,

6([1?0) € Ee—5(|f| Vo — 5)T = Ee(f)T = Al.

If |f(xo)| = €, so there exists a neighborhood U such that z, € U C A.
Since Lmc(S) and C(SY™€) are isometrically isomorphism, pick g € Lmc(9)
such that g(U) = {0}, g(A°) = {[[f[]} and g(S) < [0, f]]]. Define h =
|fI A g, then E.(h) = E.(f) = A and |h(zs)| = 0 < e. It is obvious that
Es(f) € Es(h) for each 0 < § < € and E.(f) C Es(h) for each € < 0.
Therefore Es(h) € p for each § > 0 and |h(z,)] = 0 < €. So by previous
case, e(z,) € E.(h) = AT, Thus x, € e7'(AT) and so intg(A4) C e~ 1(AT).

Now pick e(z) € Af, so there exist ¢ > 0 and f € Lmc(S) such that
E.(f) = A, and so Es(f) € e(x) for any 6 > 0. Therefore, f(z) = 0 and
x € E.(f) for each € > 0. Thus, e~ 1(A") = intg(A).

(2) (i) < (ii): Since p € clg(s)(e(A)) if and only if Bine(A) # 0 for any
B € p, if and only if e71(BTNe(A)) # 0 for any B € p, if and only if

intg(BYNA=e 4B ne l(e(Ad)) £ 0

for any B € p, by item (1).

It is obvious that (iii) and (iv) are equivalent and (ii) implies (iii).

(ili) = (ii): Let for some B € p, BN A # () and intg(B) N A = (). Since
B € p so there exist f € Lmc(S) and € > 0 such that B = E.(f), Es(f) €p
for each > 0 and

E<(f)NACintg(B)NA=0.
This is a contradiction.

(3) Let pU {A, B} has the finite intersection property, so p U {A N B}
has the finite intersection property. Let A, be a z-ultrafilter containing
pU{AN B} and hence item (2), implies that p € clg(g)(e(A N B)).

(4) It suffices to show that {(clg(sy(e(A))): A € Z(Lmc(9))} is a base for
open subsets of £(S). Let U be an open subset containing p € £(5). Since
{A": A € Z(Lmc(S))} forms a base for an open topology on £(S), so there
exist f € Lmc(S) and € > 0 such that p € E(f)f C U and Es(f) € p for
each 0 > 0. Now pick 0 <y <min{§, | f||}, and define g(x) = || f| — | f(=)].
Then g € Lmc(S) and (Ej¢—(9))¢ € E,(f), so

(clecs) (Bl 11— (9)))° € clegs) (Bl (9))°
Hence, there exists § > 0 such that (Es—(g) N
E)p1-(9) N Es(f) = 0.

This implies p ¢ clg(g) £ 7|—(g) and so
p € (cles) (B (9))° € BT

This shows that {(clg(gy(e(4)))¢: A € Z(Lmc(S))} is a base for open subsets
of £(9).

) € cle(s)(Ey(f))-
E ()N Es(f) =0, and
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(5) Suppose that p and ¢ are distinct elements of £(S), then E~(p) and
E~(q) are maximal ideals, by Theorem 2.9. Pick f € E~(p)\E (q). So
by Theorem 2.10, there exist ¢ > 0 and A € ¢ = E(E (q)), such that
E(f)NA=10. Since A € ¢g = E(E (q)), pick 6 >0 and g € E~(q) such
that A = E5(g) and for all v > 0, E,(g) € ¢. Then E.(f) N Es(g) = 0. Now
let B= E.(f),then Acp, Bcqgand ANB =§. Thus AfnBf =0, p € A
and ¢ € BY, and so £(S) is Hausdorff.

Define n : p — E(E~(p)) : Z2(S) — £(S). By Lemma 2.11, if p € Z(S5),
then E(E~(p)) € £(S) so n is well defined. Now let p be an e-ultrafilter, so
there exists a z-ultrafilter A containing p. By Lemma 2.11, p = E(E~(A)).
This implies 7 is onto. For each A € Z(Lmc(S)), we have

1~ (clg(s)(e(A))) = {p € Z(9) : n(p) € clesy(e(A))}
By Theorem 3.3(2) ={pe€ Z(S):VB €n(p), BNA#D}
By Theorem 3.3(2) = {p € Z(S) : n(p) U{A} C p}
={pe 2(5): Acp}
= A.

Since {clg(s)(e(A)) : A € Z(Lme(S))} is a base for closed subsets of £(S5),
so 7 is continuous. Since Z(S) is compact by Lemma 2.8 in [12], so £(S) is
also compact.

(6) By (4), e is continuous. Also,

S)={pec&(S):VBep, Bine(S)#0}
={pece(S):VBep, BNS#0}
= £(9). O

Definition 3.4. Let A be an e-filter. Then A = {p € £(5) : A C p}.

Theorem 3.5.

(a) If A is an e-filter, then A is a closed subset of £(S).

(b) Let A be an e-filter and A € Z(Lmc(S)). Then, A € A if and only
if AC Al

(c) Suppose that A C E(S) and A = E(E~(NA)), then A is an e-filter
and A = clg(s)A.

Proof. (a) Pick p € 015(5).;[, so ATNA # (), for each A € p. Hence, AU{A}
has the e-finite intersection property for each A € p. This implies that
AUp Cpandsope A

(b) It is easy to verify the assertion.

(c) By assumption, A is an e-filter (by Lemma 2. 8). Further, for each
pe A, AC pimplies that A C .A, thus by (a), clg(s)A C A
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To see that A C clesyA, let p ¢ clg(g)A. Then, there exist B € p and
C € Z(Lmc(S)) such that clgsyA € CT and BT N CT = (). Hence, Acct
and this implies p ¢ A. O

Definition 3.6. Suppose that p,q € £(S) and A € Z(Lmc(S)). Then,
A € p+ q if there exist € > 0 and f € Lmc(S) such that A = E.(f) and
Es(q,f) ={z € S: )\, (Es5(f)) € ¢} € p for each § > 0.

Theorem 3.7. Let p,q € £(S), then p+ q is an e-ultrafilter.

Proof. It is obvious that ) ¢ p+q and S € p+¢q. Let A € p+ ¢, then
there exist € > 0 and f € Lmc(S) such that A = E.(f) and for each § > 0,
Es(q, f) ={x € S: \;1(Es(f)) € ¢} € p. Let A, B € p+ g; therefore, there
exist d,¢ > 0 and f,g € Lmc(5) such that A = E.(f) and B = Es(g). So

ANB = E(f)N Es(g)
2 Ee/\é(f) N Ee/\&(g)
= Eens(If1V 191),

and

Ey(q,[fIV1g]) = {z € S: A\, (By(If V |9]) € ¢}
={zeS:E/(|L.f|V |Lzgl) € q}
={reS: E(L.f) N Ey(L.g) € q}
= Ey(q, f) N Ey(q, 9).

Since E,(q, f), Ey(q,9) € p, so Ey(q,|f| VIg]) = Ey(q,f) N Ey(q,9) € p.
Thus, Esac(|f|V]g]) €ep+qgandso ANBep+q.

Now pick A € p+ ¢ and B € Z(Lmc(S)) such that AC B. So A€ p+gq
implies that there exist ¢ > 0 and f € Lmc(S) such that E.(f) = A and
Es(q, f) € p for each 6 > 0. For B € Z(Lmc(S)), so there exists g € Lmc(5)

such that Z(g) = B. Now define u(z) = g(z) + Fayve: Clearly, h = i €

Lmc(S), Z(g) = E(fh) and L, f € E~(q) for each x € Es(q, f) and 6 > 0.
This implies L, fL,h € E~(q) for each x € E5(q, f), and so E (L, fL:h) € q
for each v > 0. Thus, Es(q, f) C Es(q, fh) and Es(q, fh) € p for each § > 0;
therefore, Z(g) = E<(fh) € p+ q. So p + q is an e-filter.

Now, it is proved that p + ¢ is an e-ultrafilter. Let E~(p) = ker(u) and
E~(q) = ker(v) for p,v € S¥m¢. Tt is claimed that E~(p + q) = ker(uv),
thus p+ ¢ is an e-ultrafilter. Pick f € ker(uv), so T, f € ker(u) and for each
€ >0,

E(T,f)={z € S:|T,f(x)] <€}
={zeS:|v(L.f) <e€}
= {z€S:|Lf(v)| < ¢}
€ p.
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It is obvious that {t € S : |me()|§} {teS:|L,f(t)
Pick € > 0. For each z € E<(T,f), E<((|[Laf|V 5) —

Be((|Lof1V §) — §) € E(ker()) = ¢, s0
E(T,f) C{z € 5 : E(L.f) € q} = Edlg, f).

Thus, E.(f) € p+ ¢ for each ¢ > 0, and so f € E~(p + ¢q). Therefore
ker(uv) C E~(p + ¢) and this completes the proof. O

|§}: €
) C EL )

Theorem 3.8. £(S) and S™™¢ are topologically isomorphic.

Proof. M is a maximal ideal of Lmc(S) if and only if there is a p € S¥m¢
such that ker(u) = M. Thus, v : p — E(ker(u)) : S¥™¢ — £(9) is well
defined and surjective. By Theorem 3.3(4), {clg(s)(e(A)) : A € Z(Lmc(S))}
is a base for closed subsets of £(.9), pick A € Z(Lmc(S)) then

v (clg(s)e(A)) = {p € S E(ker(u)) € clg(s)e(A)}
= {pu e S™: VB e E(ker(y)), Bfne(A) # 0}
= {p e S Vf e ker(u), V0 >0, Es(f)NA#0}
= {p e SMMC . Vf € ker(p), V6 > 0, 3zs € AN E5(f)}
= clgLmc(A).

So 7 is continuous. Since, v : S¥™M¢ — £(S) is a surjective continuous
function, and S™™¢ is a compact space; therefore, v is homeomorphism.
Now pick p, v € S¥™€ then

v(pv) = E(ker(uv)) (see the proof of Theorem 3.7)
= E(ker(p)) + E(ker(v))
= () +).
Therefore, v is homomorphism and thus £(5) and S™™¢ are topologically
isomorphic. O

By Theorem 3.8, S¥™¢ could be described as a space of e-ultrafilters, i.e.,
Stme — B (ker(p)) : p € S¥mel,

Lemma 3.9. Let A € Z(Lmc(S)) and x € S. Then A € e(x) + p if and
only if A\;1(A) € p.

Proof. Pick A € e(z) + g, so there exist ¢ > 0 and f € Lmc(S) such that
A= EJ(f) and Es(q, f) = {t € S : \; ' (E5(f)) € ¢} € e(z) for each § > 0
and \;1(E;s(f)) € q for each § > 0. This implies A\, '(4) € p.

Conversely, let A\;1(A) € p, so there exist ¢ > 0 and f € Lmc(S) such that
A= E.(f)and A\;1(A) € p. Thus Es(L.f) = A\;1(Es(f)) € p for each § > 0,
and L,f € E~(p) = ker(u) for some pu € S, Clearly, u(L,f) = 0 and so
e(z)u(f) = 0. This implies A € E(ker(e(x)u)) = e(x) + p. O
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Definition 3.10. Let A and B be e-filters, and pick A € Z(Lmc(S5)). Then
A € A+ B if there exist € > 0 and f € Lmc(S) such that E.(f) = A and
Es(B,f) ={z € S: )\, (Es(f) € B)} € A for each § > 0.

Lemma 3.11. Let A and B be e-filters. Then A+ B is an e-filter.
Proof. See Theorem 3.7. O

4. Applications

In this section, as an application, we consider the semigroup S* = S\ §
and work out some conditions characterizing when S* is a left ideal of S™™me¢,
The results of this section are found in [7], when S is a discrete semigroup.

Theorem 4.1. Pick p,q € £(S) and let f € Lme(S). Then E(f) € p+q
for each € > 0 if and only if for each € > 0 there exist B¢ € p and an indezed
family < Ce s >sep. in q such that |JsCes C Ec(f).

Proof. Let E.(f) € p+ ¢ for each ¢ > 0. Pick € > 0, x € B. = E.(q, f)
and let Ccp = E(Lyf) = M, YEC(f)). For each = € B, Cex € q and so
Uzes, 2Cex € Ec(f).

Conversely, by hypothesis for each ¢ > 0, there exist B, € p and an
indexed family < C¢ s >sep, in g such that UseBe sCes € Ec(f). Then for
each s € B, Ccs € A;HE(f)) = Ee(Lsf) and so Ec(Lsf) € g, for each
s € Be. Thus, B C{t€ S: E.(L.f) € q} = E(q, f) € p,and E.(f) €Ep+4q
for each € > 0. O

Theorem 4.2. Let A C Z(Lmc(S)) has the e-finite intersection property.
If for each A € E(E~(A)) and x € A, there ezists B € E(E~(A)) such that

zB C A, then mAeE(E—(A)) e(A) is a subsemigroup of S¥™C.

Proof. Let T = ﬂAeE(E—(A))@' Since E(E~(A)) has the e-finite
intersection property, so T' # (). Pick p,q € T and let A € E(E~(A)). Given
x € A, there is some B € E(E~(A)) such that zB C A. Therefore, there ex-
ist f,g € Lmc(S) such that B = E5(g), A = E.(f) and E,(9), E,(f) € pNgq
for each v > 0, so 2E5(9) C E.(f) and Es(g) C \;Y(E(f)) = E(Lsf).
Since B € pngqthus A C {t € S : E(Lf) € q} = FEcq,f), and
A=E(f)ep+aq O

Definition 4.3.

(a) A C S is an unbounded set if (A) N .S* # 0.
(b) A sequence {z,} is unbounded if e({z,, : n € N}) N S* £ (.

Lemma 4.4. Let {z,,} and {y,} be unbounded sequences in S. Letp,q € S*,
g€e({xn:neN}) andp € e({yn : n € N}), then

p+q€c({yprn i k <n, k,n € N}).
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Proof. It is obvious that for each A € ¢, e({z,, : n € N}) N AT # () and for
each B € p, e({yn : n € N}) N BT # (). Now let C' € p + ¢, then there exist
e >0 and f € Lmc(S5) such that C' = E(f) and for each § > 0, Es(q, f) € p.
Pick § > 0 and let = € Es(q, f), then

e\ (Bs(f) N{wn:n € N})
and

e(Es(q, f) N {yn : n € N})

are unbounded, by Theorem 3.3(4). Hence for each yi € Es(q, f),

5()\;;(E5(f)) N{x, :n € N})
and so
e({ygxn : k,n €N, k< n}nEs(f))

are unbounded, by Theorem 3.3(4). This implies e({yxz, : k,n € N})NCT #
0 and p+q € e({yrxn : k <n, k,n € N}). O

Theorem 4.5. Suppose that S is a o-compact commutative semigroup, then
Stme s not commutative if and only if there exist unbounded sequences {x,}
and {yn} such that

e({zgyn : k <n, k,n € N} Ne({yran : k <n, k,n e N}) = 0.

Proof. Necessity. Since S is o-compact, so there exists a sequence {F}, }5°
of compact subsets of S such that F,, C Fy, 1 and S = |J,; Fy,. Now pick p
and ¢ in S* such that p+q # g+p. Then, there exist A € p+qand B € ¢+p
such that e(A) Ne(B) = (. So, there exist v,e > 0 and f, g € Lmc(S) such
that E.(f) = A and E,(g) = B. Pick 0 < d <eA~, let Ay = Es5(q, f) and
Bi = Es(p,g). Then, A; € p and By € q. Choose 21 € A; and y; € By.
Inductively given x1, x9, ..., z, and y1,¥y2, ..., Yn, choose z,4+1 and y,41 such

that
e(Tny1) €€ (AJ N (ﬂ Ay,}(Ea(g))> N Fﬁ)
k=1

and
e(yny1) €€ (BJ N (ﬂ )\y_kl(E(;(f))> N F,;) .
k=1
Then {z,} and {y,} are unbounded sequences,
e{yran 1 k,n e N, k <n}) Ce(A)
and
e({zkyn : k,n €N, kE<n}) Ce(B).

Sufficiency. Now let there exist two unbounded sequences {z,} and {y,}
such that

e({zgyn : k <n, k,n € NP Ne({yran : k <n, k,n e N}) = 0.
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Pick p € e({z,, : n € N})NS* and ¢ € e({y, : n € N}) N .S*. Then by Lem-
ma 4.4,

q+p€ec({ypxn : k <n, k,n e N})

and

p+q€c({xryn : k <n, k,n € N}). O

Definition 4.6. A semitopological semigroup S is topologically weak left
cancellative if for all © € S there exists a compact zero set A such that
e(u) € AT and A\;1(A) is a compact set for each v € S.

Theorem 4.7.

(a) Let S be a locally compact noncompact Hausdorff semitopological
semigroup and let S* be a closed left ideal of S¥™°. Then S is topo-
logically weak left cancellative.

(b) Let S be a topologically weak left cancellative locally compact non-
compact Hausdorff semitopological semigroup. Then S* is a left ideal
Of GgLme

(c) Let S be a locally compact noncompact Hausdorff semitopological
semigroup and let S* be a closed subset of S¥™¢. Then S* is a left
ideal of S¥™ if and only if S is topologically weak left cancellative.

Proof. (a) Pick z,y € S such that for each compact zero set A € Z(Lmc(S)),
e(x) € At and By = )\y_l(A) is noncompact. Pick py € S* Ne(By) so
e(y) + pa € €(A). Now let

U={Ae Z(Lme(S)) : e(z) € AT and A is compact},

then {pa}acy is a net, e(y) + pa — e(z), and e(x) € S* = S*. So this is a
contradiction.

(b) Since S is noncompact so S* # . Pick p € S*, ¢ € S“™° and let
q+p=c¢c(x) €e(S). Let A€ Z(Lmc(S)) be a compact set and e(z) € Af.
Then A € g+ p and there exist f € Lme(S) and € > 0 such that E.(f) = A
and Es(p, ) € q for each § > 0. Now pick y € Ec(p, f) then )\;1(14) € p, S0
A, 1(A) is not compact and this is a contradiction.

y
(c) This can easily be verified. O

Corollary 4.8. Let G be a locally compact non compact Hausdorff topolog-
ical group. Then G* is a left ideal of GFUC.

Proof. Let G be a locally compact non compact Hausdorff topological
group, so £(G) is an open subset of G*YC, and hence G* is closed. Now
by Theorem 4.7, proof is completed. O

Theorem 4.9. Let S be a locally compact semitopological semigroup. The
following statements are equivalent:

(a) S* is right ideal of S¥™°.
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(b) Given any zero compact subset A of S, any sequence {z,} in S, and
any unbounded sequence {x,} in S, there exists an < m in N such
that xp, - zpm ¢ A.

Proof. (a) implies (b). Suppose that {z,, - z,, : n,m € Nand n < m} C A.
Pick p € e({zm : m € N}) and ¢ € S* Ne({z, : n € N}), which we can do,
since {z,, : n € N} is unbounded. Thus ¢+ p € €(A) = £(4) C ¢(9), is a
contradiction.

(b) implies (a). Since S* # (), pick p € S¥™¢ and ¢ € S* such that ¢ +p =
g(a) € e(S) for some a € S, so there exists a compact set A € Z(Lmc(S))
such that e(a) € Af. Hence there exist ¢ > 0 and f € Lmc(S) such that
E.(f) = A and Es(f) € €(a), for each 6 > 0. Then for each 1/n < e,

El/n(pa f) = {S €5: )‘;I(El/n(f)) € p} €4q,
choose an unbounded sequence {,} such that x, € Ey,(p, f). Inductively
choose a sequence {z,,} in S such that for each m € N,

2 € () MM Ea()
n=1

(which one can do) since (7} A, (B /,(f)) € p. Then for each n < m in
N, oy - 2m € By, (f) C Ee(f) = A, is a contradiction. O

Examples 1.

(a) Let S be a discrete semigroup. If S is either right or left cancellative,
then S* = S\ S is a subsemigroup of 85, (See Corollary 4.29 in
[7]). This is not true for a left cancellative semitopological semigroup
S. Let (S = (1,40),+) with the natural topology. Then S* is not
subsemigroup. Pick p,q € clgime(1,2], thus there exist nets {z,}
and {ys} in (1,2] such that v — p, y3 — ¢ and z, +yg € [2,4].
Hence p + ¢q € [2,4] and so S* is not subsemigroup. Also, S* is not
a left ideal and so S is not topologically weak left cancellative.

(b) (S =[1,+00),+) with the natural topology is a topologically weak
left cancellative, thus S* is a left ideal of Stme,
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