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Exotic group C∗-algebras in
noncommutative duality
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Abstract. We show that for a locally compact group G there is a
one-to-one correspondence between G-invariant weak*-closed subspaces
E of the Fourier–Stieltjes algebra B(G) containing Br(G) and quotients
C∗
E(G) of C∗(G) which are intermediate between C∗(G) and the reduced

group algebra C∗
r (G). We show that the canonical comultiplication on

C∗(G) descends to a coaction or a comultiplication on C∗
E(G) if and

only if E is an ideal or subalgebra, respectively. When α is an action of
G on a C∗-algebra B, we define “E-crossed products” B oα,E G lying
between the full crossed product and the reduced one, and we conjecture
that these “intermediate crossed products” satisfy an “exotic” version
of crossed-product duality involving C∗

E(G).
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1. Introduction

It has long been known that for a locally compact group G there are
many C∗-algebras between the full group C∗-algebra C∗(G) and the reduced
algebra C∗r (G) (see [Eym64]). However, little study has been made regarding
the extent to which these intermediate algebras can be called group C∗-
algebras.
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This paper is inspired by recent work of Brown and Guentner [BG], which
studies such intermediate algebras for discrete groups, and [Oka], which
shows that in fact there can be a continuum of such intermediate algebras.
We shall consider a general locally compact group G, and show that by
elementary harmonic analysis there is a one-to-one correspondence between
G-invariant weak*-closed subspaces E of the Fourier–Stieltjes algebra B(G)
containing Br(G) and quotients C∗E(G) of C∗(G) which are intermediate
between C∗(G) and the reduced group algebra C∗r (G).

We are primarily interested in the following results:

• E is an ideal if and only if there is a coaction

C∗E(G)→M(C∗E(G)⊗ C∗(G)).

• E is a subalgebra if and only if there is a comultiplication

C∗E(G)→M(C∗E(G)⊗ C∗E(G)).

(See Propositions 3.13 and 3.16 for more precise statements.) These C∗-
algebras can be used to describe various properties of G, e.g., if G is discrete
and E = B(G) ∩ c0(G), then G has the Haagerup property if and only
if C∗E(G) = C∗(G) (see [BG, Corollary 3.4]). Brown and Guentner also
prove that (again, in the discrete case) C∗E(G) is a compact quantum group,
because it carries a comultiplication, and this caught our attention since it
makes a connection with noncommutative crossed-product duality.

If we have a C∗-dynamical system (B,G, α), one can form the full crossed
product B oα G or the reduced crossed product B oα,r G. We show in
Section 6 that for E as above there is an “E-crossed product” Boα,EG, and
we speculate that these “intermediate” crossed products satisfy an “exotic”
version of crossed-product duality involving C∗E(G).

After a short section on preliminaries, in Section 3 we prove the above-
mentioned results concerning the existence of a coaction or comultiplication
on C∗E(G).

In Section 4 we briefly explore the analogue for arbitrary locally compact
groups of the construction used in [BG], where for discrete groups they
construct group C∗-algebras starting with ideals of `∞(G).

In Section 5 we specialize (for the only time in this paper) to the discrete
case, showing that a quotient C∗E(G) is a group C∗-algebra if and only if it
is topologically graded in the sense of [Exe97].

Finally, in Section 6 we outline a possible application of our exotic group
algebras to noncommutative crossed-product duality.

After this paper was circulated in preprint form, we learned that Buss
and Echterhoff [BuE] have given counterexamples to Conjecture 6.12 and
have proven Conjecture 6.14.

Acknowledgements. We thank the referee for helpful comments.
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2. Preliminaries

All ideals of C∗-algebras will be closed and two-sided. If A and B are
C∗-algebras, then A⊗B will denote the minimal tensor product.

For one of our examples we will need the following elementary fact, which
is surely folklore.

Lemma 2.1. Let A be a C∗-algebra, and let I and J be ideals of A. Let
φ : A→ A/I and ψ : A→ A/J be the quotient maps, and define

π = φ⊕ ψ : A→ (A/I)⊕ (A/J).

Then π is surjective if and only if A = I + J .

Proof. First assume that π is surjective, and let a ∈ A. Choose b ∈ A such
that

π(b) =
(
φ(a), 0

)
,

i.e., φ(b) = φ(a) and ψ(b) = 0. Then a− b ∈ I, b ∈ J , and a = (a− b) + b.
Conversely, assume that A = I + J , and let a ∈ A. Choose b ∈ I and

c ∈ J such that a = b+ c. Then ψ(c) = 0, and φ(c) = φ(a) since a− c ∈ I.
Thus

π(c) =
(
φ(a), 0

)
.

It follows that π(A) ⊃ (A/I)⊕ {0}, and similarly π(A) ⊃ {0} ⊕ (A/J), and
hence π is onto. �

A point of notation: for a homomorphism between C∗-algebras, or for
a bounded linear functional on a C∗-algebra, we use a bar to denote the
unique strictly continuous extension to the multiplier algebra.

We adopt the conventions of [EKQR06] for actions and coactions of a
locally compact group G on a C∗-algebra A. In particular, we use full
coactions δ : A→M(A⊗C∗(G)), which are nondegenerate injective homo-
morphisms satisfying the coaction-nondegeneracy property

(2.1) span{δ(A)(1⊗ C∗(G)) = A⊗ C∗(G)

and the coaction identity

(2.2) δ ⊗ id ◦ δ = id⊗ δG ◦ δ,

where δG is the canonical coaction on C∗(G), determined by δG(x) = x⊗ x
for x ∈ G (and where G is identified with its canonical image in M(C∗(G))).
Recall that δ gives rise to a right B(G)-module structure on A∗ given by

ω · f = ω ⊗ f ◦ δ for ω ∈ A∗ and f ∈ B(G),

and also to a left B(G)-module structure on A given by

f · a = id⊗ f ◦ δ(a) for f ∈ B(G) and a ∈ A,
and that moreover

(ω · f)(a) = ω(f · a) for all ω ∈ A∗, f ∈ B(G), and a ∈ A.
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Further recall that 1G · a = a for all a ∈ A, where 1G is the con-
stant function with value 1. In fact, suppose we have a homomorphism
δ : A → M(A ⊗ C∗(G)) satisfying all the conditions of a coaction except
perhaps injectivity. Then δ is in fact a coaction, because injectivity follows
automatically, by the following folklore trick:

Lemma 2.2. Let δ : A → M(A ⊗ C∗(G)) be a homomorphism satisfying
(2.1) and (2.2). Then for all a ∈ A we have

id⊗ 1G ◦ δ(a) = a,

where 1G ∈ B(G) is the constant function with value 1. In particular, δ is
injective and hence a coaction.

Proof. First of all,

A = span
{

(id⊗ g)
(
δ(a)(1⊗ c)

)
: g ∈ B(G), a ∈ A, c ∈ C∗(G)

}
= span

{
id⊗ c · g ◦ δ(a) : g ∈ B(G), a ∈ A, c ∈ C∗(G)

}
= span

{
id⊗ f ◦ δ(a) : f ∈ B(G), a ∈ A

}
.

Now the following computation suffices: for all a ∈ A and f ∈ B(G) we have

id⊗ 1G ◦ δ
(
id⊗ f ◦ δ(a)

)
= id⊗ 1G ◦ id⊗ id⊗ f ◦ (δ ⊗ id) ◦ δ(a)

= id⊗ 1G ⊗ f ◦ (id⊗ δG) ◦ δ(a)

= id⊗ 1Gf ◦ δ(a)

= id⊗ f ◦ δ(a). �

3. Exotic quotients of C∗(G)

Let G be a locally compact group,. We are interested in certain quotients
C∗E(G) (see Definition 3.2 for this notation). We will always assume that
ideals of C∗-algebras are closed and two-sided. Let B(G) denote the Fourier–
Stieltjes algebra, which we identify with the dual of C∗(G). We give B(G)
the usual C∗(G)-bimodule structure: for a, b ∈ C∗(G) and f ∈ B(G) we
define

〈b, a · f〉 = 〈ba, f〉 and 〈b, f · a〉 = 〈ab, f〉.
This bimodule structure extends to an M(C∗(G))-bimodule structure, be-
cause for m ∈ M(C∗(G)) and f ∈ B(G) the linear functionals a 7→ 〈am, f〉
and a 7→ 〈ma, f〉 on C∗(G) are bounded. Regarding G as canonically em-
bedded in M(C∗(G)), the associated G-bimodule structure on B(G) is given
by

(x · f)(y) = f(yx) and (f · x)(y) = f(xy)

for x, y ∈ G and f ∈ B(G).
A quotient C∗(G)/I is uniquely determined by the annihilator E = I⊥ in

B(G), which is a weak*-closed subspace. We find it convenient to work in
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terms of E rather than I, keeping in mind that we will have I = ⊥E, the
preannihilator in C∗(G). First we record the following well-known property:

Lemma 3.1. For any weak ∗-closed subspace E of B(G), the following are
equivalent:

(1) ⊥E is an ideal;
(2) E is a C∗(G)-subbimodule;
(3) E is G-invariant.

Proof. (1)⇔(2) follows from, e.g., [Ped79, Theorem 3.10.8], and (2)⇔(3)
follows by integration. �

Definition 3.2. If E is a weak*-closed G-invariant subspace of B(G), let
C∗E(G) denote the quotient C∗(G)/⊥E.

Note that the above definition makes sense, by Lemma 3.1.

Example 3.3. Of course we have

C∗(G) = C∗B(G)(G).

Also,
C∗r (G) = C∗Br(G)(G),

where Br(G) is the regular Fourier–Stieltjes algebra of G, because if λ :
C∗(G)→ C∗r (G) denotes the regular representation of G then

(kerλ)⊥ = Br(G).

Recall for later use that the intersection Cc(G) ∩ B(G) is norm-dense in
the Fourier algebra A(G) (for the norm of functionals on C∗(G)), and is
weak*-dense in Br(G) [Eym64].

Remark 3.4. If E is a weak*-closed G-invariant subspace of B(G), and
q : C∗(G)→ C∗E(G) is the quotient map, then the dual map

q∗ : C∗E(G)∗ → C∗(G)∗ = B(G)

is an isometric isomorphism onto E, and we identify E = C∗E(G)∗ and regard
q∗ as an inclusion map.

Inspired in part by [BG], we pause here to give another construction of
the quotients C∗E(G):

(1) Start with a G-invariant, but not necessarily weak*-closed, subspace
E of B(G).

(2) Call a representation U of G on a Hilbert space H an E-represen-
tation if there is a dense subspace H0 of H such that the matrix
coefficients

x 7→ 〈Uxξ, η〉
are in E for all ξ, η ∈ H0.

(3) Define a C∗-seminorm ‖ · ‖E on Cc(G) by

‖f‖E = sup{‖U(f)‖ : U is an E-representation of G}.
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The following lemma is presumably well-known, but we include a proof
for the convenience of the reader.

Lemma 3.5. With the above notation, let I be the ideal of C∗(G) given by

(3.1) I = {a ∈ C∗(G) : ‖a‖E = 0}.

Then:

(1) I = ⊥E.
(2) The weak*-closure E of E in B(G) is G-invariant, and C∗

E
(G) =

C∗(G)/I is the Hausdorff completion of Cc(G) in the seminorm ‖·‖E.
(3) If E is an ideal or a subalgebra of B(G), then so is E.

Proof. (1) To show that I ⊂ ⊥E, let a ∈ I and f ∈ E. Since f ∈ B(G),
we can choose a representation U of G on a Hilbert space H and vectors
ξ, η ∈ H such that

f(x) = 〈Uxξ, η〉 for x ∈ G.

Let K0 be the smallest G-invariant subspace of H containing both ξ and
η, and let K = K0. Then K is a closed G-invariant subspace of H, so
determines a subrepresentation ρ of G. For every ζ, κ ∈ K0, the func-
tion x 7→ 〈Uxζ, κ〉 is in E because E is G-invariant. Thus ρ is an E-
representation. We have

|〈a, f〉| = |〈ρ(a)ξ, η〉|
≤ ‖ρ(a)‖‖ξ‖‖η‖
≤ ‖a‖E‖ξ‖‖η‖
= 0.

Thus a ∈ ⊥E.
For the opposite containment, suppose by way of contradiction that we

can find a ∈ ⊥E \ I. Then ‖a‖E 6= 0, so we can also choose an E-
representation U of G on a Hilbert space H such that U(a) 6= 0. Let H0 be
a dense subspace of H such that for all ξ, η ∈ H0 the function x 7→ 〈Uxξ, η〉
is in E. By density we can choose ξ, η ∈ H0 such that 〈U(a)ξ, η〉 6= 0. Then
g(x) = 〈Uxξ, η〉 defines an element g ∈ E, and we have

〈a, g〉 = 〈U(a)ξ, η〉 6= 0,

which is a contradiction. Therefore ⊥E ⊂ I, as desired.
(2) Since I = ⊥E we have E = I⊥, which is G-invariant because I is

an ideal, by Lemma 3.1. We have I = ⊥E, so C∗
E

(G) = C∗(G)/I by Def-

inition 3.2. Since Cc(G) is dense in C∗(G), the result now follows by the
definition of I in (3.1).

(3) This follows immediately from separate weak*-continuity of multipli-
cation in B(G). This is a well-known property of B(G), but we include
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the brief proof here for completeness: the bimodule action of B(G) on the
enveloping algebra W ∗(G) = B(G)∗, given by

〈a · f, g〉 = 〈a, fg〉 = 〈f · a, g〉 for a ∈W ∗(G), f, g ∈ B(G),

leaves C∗(G) invariant, because it satisfies the submultiplicativity condition
‖a · f‖ ≤ ‖a‖‖f‖ on norms and leaves Cc(G) ⊂ C∗(G) invariant. Thus, if
fi → 0 weak* in B(G) and g ∈ B(G), then for all a ∈ C∗(G) we have

〈a, fig〉 = 〈a · g, fi〉 → 0. �

Corollary 3.6.

(1) A representation U of G is an E-representation if and only if, iden-
tifying U with the corresponding representation of C∗(G), we have
kerU ⊃ ⊥E.

(2) A nondegenerate homomorphism τ : C∗(G) → M(A), where A is a
C∗-algebra, factors through a homomorphism of C∗E(G) if and only
if

ω ◦ τ ∈ E for all ω ∈ A∗,

where again E denotes the weak*-closure of E.

Proof. This follows readily from Lemma 3.5. �

Remark 3.7. In light of Lemma 3.5, if we have a G-invariant subspace E of
B(G) that is not necessarily weak*-closed, it makes sense to, and we shall,
write C∗E(G) for C∗

E
(G). However, whenever convenient we can replace E

by its weak*-closure, giving the same quotient C∗E(G).

Observation 3.8. By Lemma 3.5, if E is a G-invariant subspace of B(G)
then:

(1) C∗E(G) = C∗(G) if and only if E is weak*-dense in B(G).
(2) C∗E(G) = C∗r (G) if and only if E is weak*-dense in Br(G).

We record an elementary consequence of our definitions:

Lemma 3.9. For a weak*-closed G-invariant subspace E of B(G), the fol-
lowing are equivalent:

(1) ⊥E ⊂ kerλ.
(2) E ⊃ Br(G).
(3) E ⊃ A(G).
(4) E ⊃ (Cc(G) ∩B(G)).
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(5) There is a (unique) homomorphism ρ : C∗E(G)→ C∗r (G) making the
diagram

C∗(G)
q

$$

λ

��

C∗E(G)

ρ
!

zz

C∗r (G)

commute.

Definition 3.10. For a weak*-closed G-invariant subspace E of B(G), we
say the quotient C∗E(G) is a group C∗-algebra of G if the above equivalent
conditions (1)–(5) are satisfied. If Br(G) ( E 6= B(G) we say the group
C∗-algebra is exotic.

We will see in Proposition 5.1 that if G is discrete then a quotient C∗E(G)
is a group C∗-algebra if and only if it is topologically graded in Exel’s sense
[Exe97, Definition 3.4].

We are especially interested in group C∗-algebras that carry a coaction
or a comultiplication. We will need the following result, which is folklore
among coaction cognoscenti:

Lemma 3.11. If δ : A→M(A⊗C∗(G)) is a coaction of G on a C∗-algebra
A and I is an ideal of A, then the following are equivalent:

(1) There is a coaction δ̃ on A/I making the diagram

(3.2) A
δ //

q

��

M(A⊗ C∗(G))

q⊗id
��

A/I
δ̃

// M(A/I ⊗ C∗(G))

commute (where q is the quotient map).
(2) I ⊂ ker q ⊗ id ◦ δ.
(3) I⊥ is a B(G)-submodule of A∗.

Proof. This is well-known, but difficult to find in the literature, so we
include the brief proof for the convenience of the reader. There exists a
homomorphism δ̃ making the diagram (3.2) commute if and only if (2)

holds, and in that case δ̃ will satisfy the coaction-nondegeneracy (2.1) and

the coaction identity (2.2). By Lemma 2.2 this implies that δ̃ is a coaction.
Thus (1)⇔(2), and (2)⇔(3) follow from a routine calculation using the fact
that {ψ ⊗ f : ψ ∈ (A/I)∗, f ∈ B(G)} separates the elements of

M(A/I ⊗ C∗(G)). �
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Recall that the multiplication in B(G) satisfies

〈a, fg〉 = 〈δG(a), f ⊗ g〉 for a ∈ C∗(G) and f, g ∈ B(G),

where f ⊗ g denotes the functional in (C∗(G)⊗ C∗(G))∗ determined by

〈x⊗ y, f ⊗ g〉 = f(x)g(y) for x, y ∈ G.

Remark 3.12. Note that we need to explicitly state the above convention
for f ⊗ g, since we are using the minimal tensor product: if G is a group for
which the canonical surjection

C∗(G)⊗max C
∗(G)→ C∗(G)⊗ C∗(G)

is noninjective1, then

C∗(G)⊗ C∗(G) 6= C∗(G×G),

(C∗(G)⊗ C∗(G))∗ 6= B(G×G),

because C∗(G×G) = C∗(G)⊗max C
∗(G).

Corollary 3.13. Let E be a weak*-closed G-invariant subspace of B(G),
and let q : C∗(G) → C∗E(G) be the quotient map. Then there is a coaction
δEG of G on C∗E(G) such that

δEG(q(x)) = q(x)⊗ x for x ∈ G
if and only if E is an ideal of B(G).

Proof. Since E is the annihilator of ker q, this follows immediately from
Lemma 3.11. �

Recall that in Definition 3.10 we called C∗E(G) a group C∗-algebra if E is
a weak*-closed G-invariant subspace of B(G) containing Br(G); this latter
property is automatic if E is an ideal (as long as it’s nonzero):

Lemma 3.14. Every nonzero norm-closed G-invariant ideal of B(G) con-
tains A(G), and hence every nonzero weak*-closed G-invariant ideal of B(G)
contains Br(G).

Proof. Let E be the ideal. It suffices to show that E ∩A(G) is norm dense
in A(G). There exist t ∈ G and f ∈ E such that f(t) 6= 0. By [Eym64,
Lemma 3.2] there exists g ∈ A(G) ∩ Cc(G) such that g(t) 6= 0, and then
fg ∈ E ∩ Cc(G) is nonzero at t. By G-invariance of E, for all x ∈ G
there exists f ∈ E such that f(x) 6= 0. Then for any y 6= x we can find
g ∈ A(G) ∩ Cc(G) such that g(x) 6= 0 and g(y) = 0, and so fg ∈ E is
nonzero at x and zero at y. Thus E ∩ A(G) is an ideal of A(G) that is
nowhere vanishing on G and separates points, so by [Eym64, Corollary 3.38]
E ∩A(G) is norm dense in A(G), so we are done. �

1e.g., any infinite simple group with property T — see [BO08, Theorem 6.4.14 and
Remark 6.4.15]
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Recall that a comultiplication on a C∗-algebra A is a homomorphism
(which we do not in general require to be injective) ∆ : A → M(A ⊗ A)
satisfying the co-associativity property

∆⊗ id ◦∆ = id⊗∆ ◦∆

and the nondegeneracy properties

span{∆(A)(1⊗A)} = A⊗A = span{(A⊗ 1)∆(A)}.
A C∗-algebra with a comultiplication is called a C∗-bialgebra (see [Kaw08]
for this terminology). A comultiplication ∆ on A is used to make the dual
space A∗ into a Banach algebra in the standard way:

ωψ := ω ⊗ ψ ◦∆ for ω, ψ ∈ A∗.
The following is another folklore result, proved similarly to Lemma 3.11:

Lemma 3.15. If ∆ : A→M(A⊗A) is a comultiplication on a C∗-algebra
A and I is an ideal of A, then the following are equivalent:

(1) There is a comultiplication ∆̃ on A/I making the diagram

A
∆ //

q

��

M(A⊗A)

q⊗q
��

A/I
∆̃

// M(A/I ⊗A/I)

commute (where q is the quotient map).
(2) I ⊂ ker q ⊗ q ◦∆.
(3) I⊥ is a subalgebra of A∗.

We apply this to the canonical comultiplication δG on C∗(G):

Proposition 3.16. Let E be a weak*-closed G-invariant subspace of B(G),
and let q : C∗(G) → C∗E(G) be the quotient map. Then the following are
equivalent:

(1) There is a comultiplication ∆ making the diagram

C∗(G)
δG //

q

��

M(C∗(G)⊗ C∗(G))

q⊗q
��

C∗E(G)
∆

// M(C∗E(G)⊗ C∗E(G))

commute.
(2) ⊥E ⊂ ker q ⊗ q ◦ δG.
(3) E is a subalgebra of B(G).

Remark 3.17. Proposition 3.16 tells us that if E is a weak*-closed G-
invariant subalgebra of B(G), then the group algebra C∗E(G) is a C∗-bi-
algebra. However, this probably does not make C∗E(G) a locally compact
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quantum group, since this would require an antipode. It might be difficult
to investigate the general question of whether there exists some antipode
on C∗E(G) that is compatible with the comultiplication; it seems more rea-
sonable to ask whether the quotient map q : C∗(G) → C∗E(G) takes the
canonical antipode on C∗(G) to an antipode on C∗E(G). This requires E to
be closed under inverse i.e., if f ∈ E then so is the function f∨ defined by
f∨(x) = f(x−1). Now, f∨(x) = f∗(x) where f∗ is defined by f∗(a) = f(a∗)
for a ∈ C∗(G). Since f ∈ E if and only if f∗ ∈ E, we see that E is invariant
under f 7→ f∨ if and only if it is invariant under complex conjugation. In
all our examples (in particular Section 4) E has this property. Note that
C∗E(G) always has a Haar weight, since we can compose the canonical Haar
weight on C∗r (G) with the quotient map C∗E(G) → C∗r (G). However, this
Haar weight on C∗E(G) is faithful if and only if E = Br(G).

Remark 3.18. By Lemma 3.5, if E is a G-invariant ideal of B(G) and
I = ⊥E, then E is also a G-invariant ideal, so by Proposition 3.13 there is
a coaction δEG of G on C∗E(G) such that

δEG(q(x)) = q(x)⊗ x for x ∈ G,

where q : C∗(G)→ C∗E(G) is the quotient map.

Similarly, if E is a G-invariant subalgebra of B(G) then E is also a G-
invariant subalgebra, so by Proposition 3.16 there is a comultiplication ∆
on C∗E(G) such that

∆(q(x)) = q(x)⊗ q(x) for x ∈ G.

Example 3.19. Note that if the quotient C∗E(G) is a group C∗-algebra,
then the quotient map q : C∗(G) → C∗E(G) is faithful on Cc(G), and so
by Lemma 3.5 C∗E(G) is the completion of Cc(G) in the associated norm
‖ ·‖E . However, q being faithful on Cc(G) is not sufficient for C∗E(G) to be a
group C∗-algebra. The simplest example of this is in [FD88, Exercise XI.38]
(which we modify only slightly): let 0 ≤ a < b < 2π, and define a surjection

q : C∗(Z)→ C[a, b]

by

q(n)(t) = eint.

Then the unitaries q(n) are linearly independent, so q is faithful on cc(Z),
but q(C∗(Z)) is not a group C∗-algebra because ker q is a nontrivial ideal of
C∗(Z) and Z is amenable, so that kerλ = {0}.

Example 3.20. The paper [EQ99] shows how to construct exotic group
C∗-algebras C∗E(G) (see also [KS, Remark 9.6] for similar exotic quantum
groups) with no coaction: let

q = λ⊕ 1G,
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where 1G denotes the trivial 1-dimensional representation ofG. The quotient
C∗E(G) is a group C∗-algebra since ker q = kerλ∩ker 1G. On the other hand,
we have

E = (ker q)⊥ = Br(G) + C1G,

which is not an ideal of B(G) unless it is all of B(G), i.e., unless q is faithful;
as remarked in [EQ99], this behavior would be quite bizarre, and in fact we
do not know of any discrete nonamenable group with this property.

However, these quotients C∗E(G) are C∗-bialgebras, because Br(G)+C1G
is a subalgebra of B(G). Thus, these quotients give examples of exotic
group C∗-bialgebras that are different from those in [BG, Proposition 4.4
and Remark 4.5]. It is interesting to note that these quotients of C∗(G) are
of a decidedly elementary variety: by Lemma 2.1 we have

C∗E(G) = C∗r (G)⊕ C,

because C∗(G) = kerλ + ker 1G since G is nonamenable. To see this latter
implication, recall that if G is nonamenable then 1G is not weakly contained
in λ, so ker 1G 6⊃ kerλ, and hence C∗(G) = kerλ + ker 1G since ker 1G is a
maximal ideal.

Valette has a similar example in [Val84, Theorem 3.6] where he shows
that if N is a closed normal subgroup of G that has property (T), then
C∗(G) is the direct sum of C∗(G/N) and a complementary ideal.

For a different source of exotic group C∗-bialgebras, see Example 3.22.

Example 3.21. We can also find examples of group C∗-algebras with no
comultiplication: modify the preceding example by taking

q = λ⊕ γ,
where γ is a nontrivial character of G (assuming that G has such characters).
Then

(ker q)⊥ = Br(G) + Cγ,
which is not a subalgebra of B(G) when G is nonamenable.

Example 3.22. Let G be a locally compact group for which the canonical
surjection

(3.3) C∗(G)⊗max C
∗(G)→ C∗(G)⊗ C∗(G)

is not injective. (In the second tensor product we use the minimal C∗-tensor
norm as usual. See Remark 3.12.) Let I denote the kernel of this map. Since
the algebraic product B(G) � B(G) is weak*-dense in (C∗(G) ⊗ C∗(G))∗,
the annihilator E = I⊥ is the weak*-closed span of functions of the form

(x, y) 7→ f(x)g(y) for f, g ∈ B(G).

This is clearly a subalgebra, but not an ideal, because it contains 1. Also,
E ⊃ Br(G×G) because the surjection (3.3) can be followed by

C∗(G)⊗ C∗(G)→ C∗r (G)⊗ C∗r (G) ∼= C∗r (G×G).
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Thus the canonical coaction δG×G of G × G on C∗(G × G) descends to a
comultiplication on the group C∗-algebra C∗E(G×G) ∼= C∗(G)⊗C∗(G), but
not to a coaction of G×G.

4. Classical ideals

We continue to let G be an arbitrary locally compact group.
We will apply the theory of the preceding sections to group C∗-algebras

C∗E(G) with E of the form

E = D ∩B(G),

where D is some familiar G-invariant set of functions on G.

Notation 4.1. If D is a G-invariant set of functions on G, we write

‖f‖D = ‖f‖D∩B(G),

and similarly C∗D(G) = C∗D∩B(G)(G).

So, for instance, we can consider C∗Cc(G), C∗C0(G)(G), and C∗Lp(G)(G). In

each of these cases the intersection E = D ∩ B(G) is a G-invariant ideal
of B(G), so by Remark 3.18 and Lemma 3.14 these quotients are all group
C∗-algebras carrying coactions of G, and hence by Proposition 3.16 they
carry comultiplications. In the case that G is discrete, cc(G), c0(G), and
`p(G) could be regarded as classical ideals of `∞(G); this is the context of
Brown and Guentner’s “new completions of discrete groups” [BG].

We have
C∗Cc(G)(G) = C∗A(G)(G) = C∗r (G),

because Cc(G) ∩ B(G) is norm dense in A(G), and hence weak*-dense in
Br(G). However, the quotients C∗C0(G)(G) and C∗Lp(G)(G) are more mysteri-

ous. Nevertheless, we have the following (which, for the case of discrete G,
is [BG, Proposition 2.11]):

Proposition 4.2. For all p ≤ 2 we have C∗Lp(G)(G) = C∗r (G).

Proof. Since Lp(G) ∩ B(G) consists of bounded functions, for p ≤ 2 we
have

Cc(G) ∩B(G) ⊂ Lp(G) ∩B(G) ⊂ L2(G) ∩B(G).

Now, if U is a representation of G having a cyclic vector ξ such that the
function x 7→ 〈Uxξ, ξ〉 is in L2(G), then U is contained in λ (see, e.g.,
[Car76]), and consequently L2(G) ∩B(G) ⊂ A(G). Thus

Br(G) = Cc(G) ∩B(G)
weak*

⊂ Lp(G) ∩B(G)
weak*

⊂ L2(G) ∩B(G)
weak*

⊂ A(G)
weak*

= Br(G),
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and the result follows. �

Remark 4.3.

(1) The proof of Proposition 4.2 is much easier when G is discrete, be-
cause then for ξ ∈ `2(G) we have

ξ(x) = 〈λxχ{e}, ξ〉,

so `2(G) ⊂ A(G).

(2) In general, C0(G) ∩B(G)
weak* ⊃ Br(G). The containment can be

proper (for perhaps the earliest result along these lines, see [Men16]).
When G is discrete, this phenomenon occurs precisely when G is a-
T-menable but nonamenable, by the result of [BG] mentioned in the
introduction.

(3) Using the method outlined in this section, if we start with a G-

invariant ideal D of L∞(G) and put E = D ∩B(G)
weak*

, we get
many weak*-closed ideals of B(G), but probably not all. For exam-
ple, if we let zF be the supremum in the universal enveloping von
Neumann algebra W ∗(G) = C∗(G)∗∗ of the support projections of
finite dimensional representations of G, then it follows from [Wal75,
Proposition 1, Theorem 2, Proposition 8] that (1 − zF ) · B(G) is
an ideal of B(G) and zF · B(G) = AP (G) ∩ B(G) is a subalgebra.
It seems unlikely that for all locally compact groups G the ideal
(1− zF ) ·B(G) arises as an intersection D ∩B(G) for an ideal D of
L∞(G).

5. Graded algebras

In this short section we impose the condition that the group G is discrete.
We made this a separate section for the purpose of clarity — here the as-
sumptions on G are different from everywhere else in this paper. [Exe97,
Definition 3.1] and [FD88, VIII.16.11–12] define G-graded C∗-algebras as
certain quotients of Fell-bundle algebras2. When the fibres of the Fell bun-
dle are 1-dimensional, each one consists of scalar multiplies of a unitary.
When these unitaries can be chosen to form a representation of G, the C∗-
algebra is a quotient C∗E(G).

The following can be regarded as a special case of [Exe97, Theorem 3.3]:

Proposition 5.1. Let E be a weak*-closed G-invariant subspace of B(G),
and let q : C∗(G) → C∗E(G) be the quotient map. Then the following are
equivalent:

(1) C∗E(G) is a group C∗-algebra in the sense of Definition 3.10.

2[Exe97, FD88] would require the images of the fibres to be linearly independent.
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(2) There is a bounded linear functional ω on C∗E(G) such that

ω(q(x)) =

{
1 if x = e,

0 if x 6= e.

(3) E contains the canonical trace tr on C∗(G).
(4) E ⊃ Br(G).
(5) There is a (unique) homomorphism ρ : C∗E(G)→ C∗r (G) making the

diagram

C∗(G)
q

$$

λ

��

C∗E(G)

ρ
!

zz

C∗r (G)

commute.

Proof. Assuming (2), the composition ω ◦ q coincides with tr, so tr ∈ E,
and conversely if tr ∈ E then we get a suitable ω. Thus (2) ⇔ (3).

For the rest, just note that Br(G) = (kerλ)⊥ is the weak*-closed G-
invariant subspace generated by tr = χ{e}, and appeal to Lemma 3.9. �

Remark 5.2. Condition (2) in Proposition 5.1 is precisely what Exel’s
[Exe97, Definition 3.4] would require to say that C∗E(G) is topologically
graded.

6. Exotic coactions

We return to the context of an arbitrary locally compact group G.
The coactions appearing in noncommutative crossed-product duality come

in a variety of flavors: reduced vs. full (see, e.g., [EKQR06, Appendix] or
[HQRW11]), and, among the full ones, a spectrum with normal and maximal
coactions at the extremes (see [EKQ04], for example). In this concluding
section we briefly propose a new program in crossed-product duality: “ex-
otic coactions”, involving the exotic group C∗-algebras C∗E(G) in the sense
of Definition 3.10. From now until Proposition 6.16 we are concerned with
nonzero G-invariant weak*-closed ideals E of B(G).

By Lemmas 3.9 and 3.14 the quotient C∗E(G) = C∗(G)/⊥E is a group
C∗-algebra. By Proposition 3.13, there is a coaction δEG of G on C∗E(G)
making the diagram

C∗(G)
δG //

q

��

M(C∗(G)⊗ C∗(G))

q⊗id
��

C∗E(G)
δEG

// M(C∗E(G)⊗ C∗(G))
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commute, where q is the quotient map, and by Proposition 3.16 there is a
quotient comultiplication ∆ on C∗E(G). Recall that we defined the exotic
group C∗-algebras to be the ones strictly between the two extremes C∗(G)
and C∗r (G), corresponding to E = B(G) and E = Br(G), respectively.

On one level, we could try to study coactions of Hopf C∗-algebras asso-
ciated to the locally compact group G other than C∗(G) and C∗r (G). But
there is an inconvenient subtlety here (see Remark 3.17). However, there
is a deeper level to this program, relating more directly to crossed-product
duality. At the deepest level, we aim for a characterization of all coactions
of G in terms of the quotients C∗E(G). We hasten to emphasize that at this
time some of the following is speculative, and is intended merely to outline
a program of study.

From now on, the unadorned term “coaction” will refer to a full coaction
of G on a C∗-algebra A.

Let ψ : (Am, δm) → (A, δ) be the maximalization of δ, so that δm is
a maximal coaction, ψ : Am → A is an equivariant surjection, and the
crossed-product surjection

ψ ×G : Am oδm G→ Aoδ G

(for the existence of which, see [EKQR06, Lemma A.46], for example) is an
isomorphism. Since δm is maximal, the canonical surjection

Φ : Am oδm Go
δ̂m
G→ Am ⊗K(L2(G))

is an isomorphism (this is “full-crossed-product duality”). Blurring the dis-
tinction between AmoδmG and the isomorphic crossed product AoδG, and

recalling that ψ × G : Am oδm G → A oδ G is δ̂m − δ̂ equivariant, we can
regard Φ as an isomorphism

Aoδ Go
δ̂
G

Φ
∼=
// Am ⊗K(L2(G)).

We have a surjection

ψ ⊗ id : Am ⊗K(L2(G))→ A⊗K(L2(G)),

whose kernel is (kerψ) ⊗ K(L2(G)) since K(L2(G)) is nuclear. Let Kδ be
the inverse image under Φ of this kernel, giving an ideal of AoδGo

δ̂
G and

an isomorphism Φδ making the diagram

(6.1) Aoδ Go
δ̂
G

Φ
∼=

//

Q

��

Am ⊗K(L2(G))

ψ⊗id

��

(Aoδ Go
δ̂
G)/Kδ

Φδ

∼= // A⊗K(L2(G))
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commute, where Q is the quotient map. Adapting the techniques of [EQ02,
Theorem 3.7]3, it is not hard to see that Kδ is contained in the kernel of the
regular representation Λ : Aoδ Go

δ̂
G→ Aoδ Go

δ̂,r
G.

If δ is maximal, then diagram 6.1 collapses to a single row. On the other
hand, if δ is normal, then Q is the regular representation Λ and in particular

(Aoδ Go
δ̂
G)/Kδ = Aoδ Go

δ̂,r
G.

(In this case the isomorphism Φδ is “reduced-crossed-product duality”.)
With the ultimate goal (which at this time remains elusive — see Con-

jectures 6.12 and 6.14) of achieving an “E-crossed-product duality”, inter-
mediate between full- and reduced-crossed-product dualities, below we will
propose tentative definitions of “E-crossed-product duality” and “E-crossed
products” B oα,E G by actions α : G→ AutB, and we will prove that they
have the following properties:

(1) A coaction satisfies B(G)–crossed-product duality if and only if it is
maximal.

(2) A coaction satisfies Br(G)–crossed-product duality if and only if it
is normal.

(3) B oα,B(G) G = B oα G.
(4) B oα,Br(G) G = B oα,r G.
(5) The dual coaction α̂ on the full crossed product B oα G satisfies

B(G)-crossed-product duality.
(6) The dual coaction α̂n on the reduced crossed product B oα,r G sat-

isfies Br(G)-crossed-product duality.
(7) In general, B oα,E G is a quotient of B oα G by an ideal contained

in the kernel of the regular representation

Λ : B oα G→ B oα,r G.

(8) There is a dual coaction α̂E of G on B ×α,E G.

Definition 6.1. Define an ideal Jα,E of the crossed product B oα G by

Jα,E = ker id⊗ q ◦ α̂,

and define the E-crossed product by

B oα,E G = (B oα G)/Jα,E .

Note that the above properties (1)–(7) are obviously satisfied (because α̂
is maximal and α̂n is normal), and we now verify that (8) holds as well:

Theorem 6.2. Let E be a nonzero weak*-closed G-invariant ideal of B(G),
and let Q : B oα G → B oα,E G be the quotient map. Then there is a

3This is a convenient place to correct a slip in the last paragraph of the proof of [EQ02,
Theorem 3.7]: “contains” should be replaced by “is contained in” (both times).
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coaction α̂E making the diagram

B oα G
α̂ //

Q

��

M((B oα G)⊗ C∗(G))

Q⊗id
��

B oα,E G
α̂E

// M((B oα,E G)⊗ C∗(G))

commute.

Proof. By Lemma 3.13, we must show that

Jα,E ⊂ kerQ⊗ id ◦ α̂.

Let a ∈ Jα,E , ω ∈ (B oα,E G)∗, and g ∈ B(G). Then

ω ⊗ g ◦Q⊗ id ◦ α̂(a) = Q∗ω ⊗ g ◦ α̂(a)

= Q∗ω ◦ id⊗ g ◦ α̂(a)

= Q∗ω(g · a).

Now, since Q∗ω ∈ J⊥α,E , it suffices to show that g · a ∈ Jα,E . For h ∈ E we
have

h · (g · a) = (hg) · a = (gh) · a = g · (h · a) = 0,

because h · a = 0 by Lemma 6.3 below. �

Lemma 6.3. With the above notation, we have:

(1) Jα,E = {a ∈ B oα G : E · a = {0}}.
(2) J⊥α,E = span{(B oα G)∗ · E}, where the closure is in the weak ∗-

topology.

Proof. (1) For a ∈ B oα G, we have

a ∈ Jα,E
⇔ id⊗ q ◦ α̂(a) = 0

⇔ ω ⊗ h ◦ id⊗ q ◦ α̂(a) = 0

for all ω ∈ (B oα,E G)∗ and h ∈ C∗E(G)∗

⇔ ω ⊗ q∗h ◦ α̂(a) = 0

for all ω ∈ (B oα,E G)∗ and h ∈ C∗E(G)∗

⇔ ω ⊗ g ◦ α̂(a) = 0

for all ω ∈ (B oα,E G)∗ and g ∈ E
⇔ ω ◦ id⊗ g ◦ α̂(a) = 0

for all ω ∈ (B oα,E G)∗ and g ∈ E
⇔ ω(g · a) = 0 for all ω ∈ (B oα,E G)∗ and g ∈ E
⇔ g · a = 0 for all g ∈ E.
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(2) If a ∈ Jα,E , ω ∈ (B oα G)∗, and f ∈ E,

(ω · f)(a) = ω(f · a) = 0,

so ω · f ∈ J⊥α,E , and hence the left-hand side contains the right.
For the opposite containment, it suffices to show that

Jα,E ⊃ ⊥
(
(B oα G)∗ · E

)
.

If a ∈ ⊥((B oα G)∗ · E), then for all ω ∈ (B oα G)∗ and f ∈ E we have

0 = (ω · f)(a) = ω(f · a),

so f · a = 0, and therefore a ∈ Jα,E . �

Remark 6.4. We could define a covariant representation (π, U) of the action
(B,α) to be an E-representation if the representation U of G is an E-

representation, and we could define an ideal J̃α,E of B oα G by

(6.2) J̃α,E = {a : π × U(a) = 0 for every E-representation (π, U)},
similarly to what is done in [BG, Definition 5.2]. It follows from Corollary 3.6
that (π, U) is an E-representation in the above sense if and only if

ω ◦ U ∈ E for all ω ∈
(
π × U(B oα G)

)∗
,

where iG : C∗(G)→M(B oα G) is the canonical nondegenerate homomor-
phism, and consequently

J̃⊥α,E = {ω ∈ (B oα G)∗ : ω ◦ iG ∈ E}.
In the following lemma we show one containment that always holds between
(6.2) and the ideal of Definition 6.1, after which we explain why these ideals
do not coincide in general.

Lemma 6.5. With the above notation, we have

J̃α,E ⊂ Jα,E .

Proof. If ω ∈ (B oα G)∗ and f ∈ E, then

ω · f ◦ iG = ω ⊗ f ◦ α̂ ◦ iG
= ω ⊗ f ◦ iG ⊗ id ◦ δG
= ω ◦ iG ⊗ f ◦ δG
=
(
ω ◦ iG

)
f,

which is in E because f ∈ E and E is an ideal of B(G). Thus ω·f ∈ J̃⊥α,E . �

Example 6.6. To see that the inclusion of Lemma 6.5 can be proper, con-
sider the extreme case E = Br(G), so that B oα,E G = B oα,r G. In this
case Jα,E is the kernel of the regular representation Λ : BoαG→ Boα,rG.

On the other hand, J̃α,E comprises the elements that are killed by every
representation π × U for which U is weakly contained in the regular repre-
sentation λ of G. [QS92, Example 5.3] gives an example of an action (B,α)
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having a covariant representation (π, U) for which U is weakly contained in

λ but π × U is not weakly contained in Λ. Thus kerπ × U contains J̃α,E
and Jα,E has an element not contained in kerπ × U , so J̃α,E is properly
contained in Jα,E in this case.

Definition 6.7. We say that G is E-amenable if there are positive definite
functions hn in E such that hn → 1 uniformly on compact sets.

Lemma 6.8. If G is E-amenable and (A,G, α) is an action, then Jα,E =
{0}, so

Aoα G ∼= Aoα,E G.

Proof. By Lemma 6.3, we have hn · a = 0 for all a ∈ Jα,E . Since hn → 1
uniformly on compact sets, it follows that hn · a → a in norm. To see this,
note that since the hn are positive definite and hn → 1, the sequence {hn}
is bounded in B(G), and certainly for f ∈ Cc(G) we have

hn ·
(
fa
)

= (hnf)a→ fa

in norm, because the pointwise products hnf converge to f uniformly and
hence in the inductive limit topology since supp f is compact. Therefore
Jα,E = {0}. �

Remark 6.9. In [BG, Section 5], Brown and Guentner study actions of a
discrete group G on a unital abelian C∗-algebra C(X), and introduce the
concept of a D-amenable action, where D is a G-invariant ideal of `∞(G).
In particular, if G is D-amenable then every action of G is D-amenable.
They show that if the action is D-amenable then J̃α,E = {0}, i.e.,

C∗D(X oG) ∼= C(X) oα G.

Here we have used the notation of [BG]: C∗D(X o G) denotes the quotient

of the crossed product C(X) oα G by the ideal J̃α,E (although Brown and
Guentner give a different, albeit equivalent, definition).

Question 6.10. With the above notation, form a weak*-closed G-invariant
ideal E of B(G) by taking the weak*-closure of D ∩ B(G). Then is the
stronger statement Jα,E = {0} true? (One easily checks it for E = Br(G),
and it is trivial for E = B(G).)

Note that the techniques of [BG] rely heavily on the fact that they are
using ideals of `∞(G), whereas our methods require ideals of B(G).

Definition 6.11. A coaction (A, δ) satisfies E–crossed-product duality if

Kδ = J
δ̂,E
,

where Kδ is the ideal from (6.1) and J
δ̂,E

is the ideal associated to the dual

action δ̂ in Definition 6.1.
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Thus (A, δ) satisfies E–crossed-product duality precisely when we have
an isomorphism ΦE making the diagram

Aoδ Go
δ̂
G

Φ //

Q

��

A⊗K(L2(G))

Aoδ Go
δ̂,E

G

ΦE

∼=
66

commute, where Q is the quotient map.

Conjecture 6.12. Every coaction satisfies E–crossed-product duality for
some E.

Observation 6.13. If E is an ideal of B(G), then every group C∗-algebra
C∗E(G) is an E-crossed product:

C∗E(G) = Coι,E G,

where ι is the trivial action of G on C, because the kernel of the quotient
map C∗(G)→ C∗E(G) is ⊥E. This generalizes the extreme cases:

(1) C∗(G) = Coι G.
(2) C∗r (G) = Coι,r G.

Conjecture 6.14. If (B,α) is an action, then the dual coaction α̂E on the
E-crossed product B oα,E G satisfies E–crossed-product duality.

Remark 6.15. In particular, by Observation 6.13, Conjecture 6.14 would
imply as a special case that the canonical coaction δEG on the group algebra
C∗E(G) satisfies E–crossed-product duality.

For our final result, we only require that E be a weak*-closed G-invariant
subalgebra of B(G) (but not necessarily an ideal). By Proposition 3.16,
C∗E(G) carries a comultiplication ∆ that is a quotient of the canonical co-
multiplication δG on C∗(G).

Techniques similar to those used in the proof of Theorem 6.2, taking g ∈ E
rather than g ∈ B(G), can be used to show:

Proposition 6.16. Let E be a weak ∗-closed G-invariant subalgebra of B(G),
and let (B,α) be an action. Then there is a coaction ∆α of the C∗-bialgebra
C∗E(G) making the diagram

B oα G
α̂ //

Q

��

M((B oα G)⊗ C∗(G))

Q⊗q
��

B oα,E G
∆α

// M((B oα,E G)⊗ C∗E(G))

commute, where we use notation from Theorem 6.2.

We close with a rather vague query:
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Question 6.17. What are the relationships among E-crossed products, E-
coactions, and coactions of the C∗-bialgebra C∗E(G)?

We hope to investigate this question, together with Conjectures 6.12 and
6.14, in future research.
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