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On groupoids with involutions and their
cohomology

El-käıoum M. Moutuou

Abstract. We extend the definitions and main properties of graded ex-
tensions to the category of locally compact groupoids endowed with in-
volutions. We introduce Real Čech cohomology, which is an equivariant-
like cohomology theory suitable for the context of groupoids with invo-
lutions. The Picard group of such a groupoid is discussed and is given a
cohomological picture. Eventually, we generalize Crainic’s result, about
the differential cohomology of a proper Lie groupoid with coefficients in
a given representation, to the topological case.
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0. Introduction

A Real1 object in a category C is a pair (A, f) consisting of an object
A ∈ Ob(C) together with an element f ∈ IsomC(A,A), called the Real struc-
ture, such that f2 = 1A. For instance, an Atiyah Real space (X, τ) [2] is
nothing but a Real object in the category of locally compact spaces. We are
particularly interested in the category Gs [25] of locally compact Hausdorff
groupoids with strict homomorphisms [15, 16] as morphisms; we shall refer
to Real objects in Gs as Real groupoids. For example, let WPn(a1,...,an) be

the weighted projective orbifold [1] associated to the pairwise coprime inte-
gers a1, . . . , an; then together with the coordinate-wise complex conjugation,
WPn(a1,...,an) is a Real groupoid.

A morphism of Real groupoids is a morphism in Gs intertwining the
Real structures. We may also speak of a Real strict homomorphism. Real
groupoids form a category RGs in which morphisms are Real strict ho-
momorphisms. Moreover, they are the objects of a 2-category RG(2) de-
fined as follows. Let (G, ρ), (Γ, %) ∈ Ob(RGs). A generalized homomor-

phism [7, 9, 16, 25] Γ
Z−→ G is said to be Real if Z is given a Real structure

τ such that the moment maps and the groupoid actions respect some co-
herent compatibility conditions with respect to the Real structures. A mor-
phism of Real generalized homomorphisms (Z, τ) −→ (Z ′, τ ′) is a morphism
of generalized homomorphisms Z −→ Z ′ intertwining the Real structures.
Henceforth, 1-morphisms in RG(2) are Real generalized homomorphisms
and 2-morphisms are morphisms of Real generalized homomorphisms. All
functorial properties we deal with in this paper are however discussed in the
category RG defined as RG(2) “up to 2-isomorphisms”.

In [21], a Čech cohomology theory for topological groupoids is defined
as the Čech cohomology of simplicial topological spaces, and it is shown
that the well-known isomorphism between S1-central extensions of a discrete
groupoid G and the second cohomology group [19, 11] of G with coefficients
in the sheaf of germs of S1-valued functions also holds in the general case;
i.e., Ext(G,S1) ∼= Ȟ2(G•,S1). We define here an analogous theory ȞR∗

1Note the capitalization, used to avoid confusion with a module over R or a real
manifold.
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that fits well the context of Real groupoids. This theory was motivated by
the classification of groupoid C∗-dynamical systems endowed with involu-
tions [17]. These can be thought of as a generalization of continuous-trace
C∗-algebras with involutions. Specifically, it is known [20] that given such a
C∗-algebra A, its spectrum X admits a Real structure τ , and its Dixmier–
Douady invariant δ(A) ∈ Ȟ2(X,S1) is such that δ(A) = τ∗δ(A), where the
“bar” is the complex conjugation in S1. In fact, thinking of X as a Real
groupoid, we will see that all 2-cocycles satisfying the latter relation are
classified by ȞR2(X,S1), where S1 is endowed with the complex conjuga-
tion. ȞR∗ appears then to provide the right cohomological interpretation
of C∗-dynamical systems with involutions.

We try, to the extent possible, to make the present paper self-contained.
We start by collecting, in Section 1, a number of notions and results about
Real groupoids most of which are adapted from many sources in the litera-

ture [15, 19, 25]; specifically, we define the group ÊxtR(G, S) of (equivalence
classes of) Real graded S-central extensions over a Real groupoid G, by a
given Real abelian group S. In Section 2, we introduce Real Čech cohomol-
ogy, following closely [21]. While ȞR∗ behaves almost like a Z2-equivariant
cohomology theory, we will see that it is actually not. Geometric interpre-
tations of the cohomology groups ȞR1(G•,S) and ȞR2(G•, S), for a Real
Abelian group S, are given. Finally, we generalize a result by Crainic [4] (on
the differential cohomology groups of a proper Lie groupoid) to topological
proper (Real) groupoid.

1. Real groupoids and Real graded extensions

Recall [19, 16, 25] that a strict homomorphism between two groupoids

G
//
// X and Γ //

// Y is a functor ϕ : Γ −→ G given by a map

Y −→ X on objects and a map Γ(1) −→ G(1) on arrows, both denoted
again by ϕ, which preserve the groupoid structure maps, i.e., ϕ(s(γ)) =
s(ϕ(γ)), ϕ(r(γ)) = r(ϕ(γ)), ϕ(1y) = 1ϕ(y) and ϕ(γ1γ2) = ϕ(γ1)ϕ(γ2)

(hence ϕ(γ−1) = ϕ(γ)−1), for all (γ1, γ2) ∈ Γ(2) and y ∈ Y . Unless otherwise
specified, all our groupoids are topological groupoids which are supposed to
be Hausdorff and locally compact.

1.1. Real groupoids.

Definition 1.1. A Real groupoid is a groupoid G
//
// X together with

a strict 2-periodic homeomorphism ρ : G −→ G. The homeomorphism ρ is
called a Real structure on G. Such a groupoid will be denoted by a pair
(G, ρ).

Example 1.2. Any topological Real space (X, ρ) in the sense of Atiyah [2]
can be viwed as a Real groupoid whose the unit space and the space of
morphisms are identified with X; i.e., the operations in this Real groupoid
is defined by s(x) = r(x) = x, x · x = x, x−1 = x.
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Example 1.3. Any group with involution can be viewed as a Real groupoid
with unit space identified with the unit element. Such a group will be called
Real.

Lemma 1.4. Let G be an abelian group equipped with an involution τ :
G −→ G ( i.e., a Real structure). Set

<(τ) := {g ∈ G | τ(g) = g} = RG, =(τ) := {g ∈ G | τ(g) = −g}.
Then,

(1.1) G⊗ Z
[

1

2

]
∼= (<(τ)⊕=(τ))⊗ Z

[
1

2

]
.

If τ is understood, we will write IG for =(τ). We call <(τ) and =(τ) the
Real part and the imaginary part of G, respectively.

Proof. For all g ∈ G, one has g+ τ(g) ∈ RG, and g− τ(g) ∈ IG. Therefore,
after tensoring G with Z[1/2], every g ∈ G admits a unique decomposition

g =
g + τ(g)

2
+
g − τ(g)

2
∈ Z[1/2]⊗

(
RG⊕ IG

)
. �

Example 1.5. Let n ∈ N∗. Suppose ρ is a Real structure on the additive
group Rn. Then there exists a unique decomposition Rn = Rp ⊕ Rq such
that ρ is determined by the formula

ρ(x, y) = (1p ⊕ (−1q))(x, y) := (x,−y),

for all (x, y) = (x1, · · · , xp, y1, · · · , yq) ∈ Rp ⊕ Rq.
For each pair (p, q) ∈ N, we will write Rp,q for the additive group Rp+q

equipped with the Real structure (1p ⊕ (−1q)).
Define the Real space Sp,q as the invariant subset of Rp,q consisting of

elements u ∈ Rp+q of norm 1. For q = p, Sp,p is clearly identified with the
Real space Sp whose Real structure is given by the coordinate-wise complex
conjugation. Notice that rSp,q = Sp,0.

Example 1.6. Let (X, ρ) be a topological Real space. Consider the fun-
damental groupoid π1(X) over X whose arrows from x ∈ X to y ∈ X are
homotopy classes of paths (relative to end-points) from x to y and the par-
tial multiplication given by the concatenation of paths. The involution ρ
induces a Real structure on the groupoid as follows: if [γ] ∈ π1(X), we set
ρ([γ]) the homotopy classes of the path ρ(γ) defined by ρ(γ)(t) := ρ(γ(t))
for t ∈ [0, 1].

Two Real structures ρ and ρ′ on G are said to be conjugate if there exists
a strict homeomorphism φ : G −→ G such that ρ′ = φ ◦ ρ ◦ φ−1. In this case
we say that the Real groupoids (G, ρ) and (G, ρ′) are equivalent.

Definition 1.7. We write rG
//
// rX (or ρG when there is a risk of con-

fusion) for the the subgroupoid of G
//
// X by ρ.
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Lemma 1.8. Let G and Γ be Real groupoids, and let φ : Γ −→ G be a Real
groupoid homomorphism, then φ(rΓ) is a full subgroupoid of rG

//
// rX .

If in addition φ is an isomorphism, then rΓ ∼= rG
//
// rX .

In particular, if ρ1 and ρ2 are two conjugate Real structures on G, then
ρ1G ∼= ρ2G.

Proof. This is obvious since φ(γ̄) = φ(γ) for all γ ∈ Γ. �

Remark 1.9. Note that the converse of the second statement of the above
lemma is false in general. For instance, consider the Real group S1 whose
Real structure is given by the complex conjugation, and the Real group Z2

(with the trivial Real structure). We have rS1 = {±1} ∼= Z2 = rZ2.

The following is an example of groupoids with equivalent Real structures.

Example 1.10. Recall ([8, IV.3]) that a Riemannian manifold X is called
globally symmetric if each point x ∈ X is an isolated fixed point of an
involutory isometry sx : X −→ X; i.e., sx is a diffeomorphism verifying
s2
x = IdX and sx(x) = x. Moreover, for every two points x, y ∈ X, sx

and sy are related through the formula sx ◦ sy ◦ sx = ssx(y). Given such
a space, each point x ∈ X defines a Real structure on X which leaves x
fixed. However, let x and y be two different points in X and let z ∈ X
be such that y = sz(x). Then, we get sz ◦ sx ◦ sz = sy which means that
the diffeomorphism sz : X −→ X implements an equivalence sx ∼ sy. But
since x and y are arbitrary, it turns out that all of the Real structures sx
are equivalent. Thus, all of the Real spaces (X, sx) are equivalent to each
others.

Now, recall [8, IV. Theorem 3.3] that if G denotes the identity component
of I(X), where the latter is the group of isometries on X, then the map
σx0 : g 7−→ sx0gsx0 is an involutory automorphism in G, for any arbitrary
x0 ∈ X. It follows that all of the points of X give rise to equivalent Real
groups (G, σx).

From now on, by a Real structure on a groupoid, we will mean a represen-
tative of a conjugation class of Real structures. Moreover, we will sometimes
put ḡ := ρ(g), and write G instead of (G, ρ) when ρ is understood.

Definition 1.11 (Real covers). Let (X, ρ) be a Real space. We say that
an open cover U = {Ui}i∈I of X is Real if U is invariant with respect to
the Real structure ρ; i.e., ρ(Ui) ∈ U, ∀i ∈ I. Alternatively, U is Real if I is
equipped with an involution i 7−→ ī such that Uī = ρ(Ui) for all i ∈ I.

Remark 1.12. Observe that Real open covers always exist for all locally
compact Real space X. Indeed, let V = {Vi′}i′∈I′ be an open cover of the
space X. Let I := I ′ × {±1} be endowed with the involution (i′,±1) 7−→
(i′,∓1). Next, put U(i′,±1) := ρ(±1)(Vi′), where ρ(+1)(g) := g, and ρ(−1)(g) :=
ρ(g) for g ∈ G.
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Definition 1.13 (Real action). Let (Z, τ) be a locally compact Hausdorff
Real space. A (continuous) right Real action of (G, ρ) on (Z, τ) is given by
a continuous open map s : Z −→ X (called the generalized source map) and
a continuous map Z ×s,X,r G −→ Z, denoted by (z, g) 7−→ zg, such that:

(a) τ(zg) = τ(z)ρ(g) for all (z, g) ∈ Z ×s,X,r G.
(b) ρ(s(z)) = s(τ(z)) for all z ∈ Z.
(c) s(zg) = s(g).

(d) z(gh) = (zg)h for (z, g) ∈ Z ×s,X,r G and (g, h) ∈ G(2).
(e) zs(z) = z for any z ∈ Z where we identify s(z) with its image in G

by the inclusion X ↪→ G.

If such a Real action is given, we say that (Z, τ) is a (right) Real G-space.

Likewise a (continuous) left Real action of (G, ρ) on (Z, τ) is determined
by a continuous Real open surjection r : Z −→ X (the generalized range
map of the action) and a continuous Real map G ×s,X,r Z −→ Z satisfying
the appropriate analogues of conditions (a), (b), (c), (d) and (e) above.

Given a right Real action of (G, ρ) on (Z, τ) with respect to s, let

Ψ : Z ×s,X,r G −→ Z × Z
be defined by the formula Ψ(z, g) = (z, zg). Then we say that the action
is free if this map is one-to-one (or in other words if the equation zg = z
implies g = s(z). The action is called proper if Ψ is proper.

Notations 1.14. If we are given such a right (resp. left) Real action of
(G, ρ) on (Z, τ), and if there is no risk of confusion, we will write Z ∗ G
(resp. G ∗ Z) for Z ×s,X,r G (resp. for G×s,X,r Z).

1.2. Real G-bundles.

Definition 1.15. Let (G, ρ) be a Real groupoid. A Real (right) G-bundle
over a Real space (Y, %) is a Real (right) G-space (Z, τ) with respect to a map
s : Z −→ X, together with a Real map π : Z −→ Y satisfying the relation
π(zg) = π(z) for any (z, g) ∈ Z ×s,X,r G, and such that for any y ∈ Y , the
induced map

τy : Zy −→ Z%(y)

on the fibres is G-antilinear in the sense that for (z, g) ∈ Zy×s,X,r G we have

τy(zg) = τy(z)ρ(g)

as an element in Z%(y).
Such a bundle (Z, τ) is said to be principal if:

(i) π : Z −→ Y is locally split (i.e., it is surjective and admits local
sections).

(ii) The map Z ×s,X,r G −→ Z ×Y Z, (z, g) 7−→ (z, zg) is a Real homeo-
morphism.
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Remarks 1.16.

(1) The unit bundle. Given a Real groupoid (G, ρ), its space of arrows

G(1) is a G-principal Real bundle over X. Indeed, the projection is
the range map r : G(1) −→ X, the generalized source map is given by
s and the action is just the partial multiplication on G. This bundle
is denoted by U(G) and is called the unit bundle of G (see [16]).

(2) Pull-back. Let

Z
s //

π
��

X

Y

be a G-principal Real bundle and f : Y ′ −→ Y be a Real continuous
map. Then the pull-back f∗Z := Y ′ ×Y Z equipped with the invo-
lution (%′, τ) has the structure of a G-principal Real bundle over Y ′.
Indeed, the right Real G-action is given by the G-action on Z and
the generalized source map is s′(y′, z) := s(z).

(3) Trivial bundles. From the previous two remarks, we see that if
(Z, τ) is any Real space together with a Real map ϕ : Z −→ X,
then we get a G-principal Real bundle ϕ∗U(G) over Z; its total space
being the space Z ×ϕ,X,r G. A Bundle of this form is called trivial
while a G-principal Real bundle which is locally of this form is called
locally trivial.

1.3. Generalized morphisms of Real groupoids.

Definition 1.17. A generalized morphism from a Real groupoid (Γ, %) to a
Real groupoid (G, ρ) consists of a Real space (Z, τ), two maps

Y Z
roo s // X ,

a left (Real) action of Γ with respect to r, a right (Real) action of G with
respect to s, such that:

(i) The actions commute, i.e., if (z, g) ∈ Z×s,X,rG and (γ, z) ∈ Γ×s,Y,rZ
we must have s(γz) = s(z), r(zg) = r(z) so that γ(zg) = (γz)g.

(ii) The maps s and r are Real in the sense that s(τ(z)) = ρ(s(z)) and
r(τ(z)) = %(r(z)) for any z ∈ Z.

(iii) r : Z −→ Y is a locally trivial G-principal Real bundle.

Example 1.18. Let f : Γ −→ G be a Real strict morphism. Let us consider
the fibre product Zf := Y ×f,X,r G and the maps r : Zf −→ Y, (y, g) 7−→ y
and s : Zf −→ X, (y, g) 7−→ s(g). For (γ, (y, g)) ∈ Γ ×s,Y,r Zf ), we set
γ.(y, g) := (r(γ), f(γ)g) and for ((y, g), g′) ∈ Zf ×s,X,r G we set (y, g).g′ :=
(y, gg′). Using the definition of a strict morphism, it is easy to check that
these maps are well-defined and make Zf into a generalized morphism from
Γ to G. Furthermore, the map τ on Zf defined by τ(y, g) := (%(y), ρ(g)) is
a Real involution and then Zf is a Real generalized morphism.
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Definition 1.19. A morphism between two such morphisms (Z, τ) and
(Z ′, τ ′) is a Γ-G-equivariant Real map ϕ : Z −→ Z ′ such that s = s′ ◦ ϕ
and r = r′ ◦ ϕ. We say that the Real generalized homomorphism (Z, τ) and
(Z ′, τ ′) are isomorphic if there exists such a ϕ which is at the same time a
homeomorphism.

Compositions of Real generalized morphisms are defined by the following
proposition.

Proposition 1.20. Let (Z ′, τ ′) and (Z ′′, τ ′′) be Real generalized homomor-
phisms from (Γ, %) to (G′, ρ′) and from (G′, ρ′) to (G, ρ) respectively. Then

Z = Z ′ ×G′ Z
′′ := (Z ′ ×s′,G′(0),r′′ Z

′′)/(z′,z′′)∼(z′g′,g′−1z′′)

with the obvious Real involution, defines a Real generalized morphism from

Γ //
// Y to G

//
// X .

Proof. Let us first describe the structure maps

Y Z
roo s // X

and the actions.
For (z′, z′′) ∈ Z we set r(z′, z′′) := r′(z′) and s(z′, z′′) := s′′(z′′). These

are well-defined and since

s(z′g′, g′−1z′′) = s′′(g′−1z′′) = s′′(z′′),

r(z′g′, g′−1z′′) = r′(z′g′) = s′(z′),

from Definition 1.17(i). The actions are defined by γ.(z′, z′′) := (γz′, z′′) and
(z′, z′′).g := (z′, z′′g) for (γ, (z′, z′′)) ∈ Γ×s,Y,rZ and ((z′, z′′), g) ∈ Z×s,X,r G

while the Real involution is the obvious one:

τ(z′, z′′) := (τ ′(z′), τ ′′(z′′)).

Now to show the local triviality of Z, notice that from (3) of Remarks 1.16,
Z ′ and Z ′′ are locally of the form U×ϕ′,G′(0),r′G

′ and V ×ϕ′′,X,rG respectively,

where ϕ′ : U −→ G′(0) and ϕ′′ : V −→ X are Real continuous maps, U and
V subspaces of Y and G′(0) respectively. It turns out that by construction,
Z is locally of the form W ×ϕ,G′(0),r G where W = U ×ϕ′,G′(0) V . �

Definition 1.21. Given two Real generalized morphisms (Γ, %)
(Z,τ)−→ (G′, ρ′)

and (G′, ρ′)
(Z′,τ ′)−→ (G, ρ), we define their composition

(Z ′ ◦ Z, τ) : (Γ, %) −→ (G, ρ)

to be (Z ×G′ Z
′, τ × τ ′).

Remark 1.22. It is easy to check that the composition of Real generalized
homomorphisms is associative. For instance, if

Γ
(Z1,ρ1)

// G1

(Z2,ρ2)
// G2

(Z3,ρ3)
// G
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are given Real generalized morphisms, we get two Real generalized mor-
phisms Z = Z1 ×G1 (Z2 ×G2 Z3) and Z ′ = (Z1 ×G1 Z2) ×G2 Z3 between
(Γ, %) and (G, ρ); notice that here Z and Z ′ carry the obvious Real invo-
lutions. Moreover, the map Z −→ Z ′, (z1, (z2, z3)) 7−→ ((z1, z2), z3) is a
Γ-G-equivariant Real homeomorphism. Hence, there exists a category RG
whose objects are Real locally compact groupoids and morphisms are iso-
morphism classes of Real generalized homomorphisms.

Lemma 1.23. Let f1, f2 : Γ→ G be two Real strict homomorphisms. Then
f1 and f2 define isomorphic Real generalized homomorphisms if and only if
there exists a Real continuous map ϕ : Y −→ G such that

f2(γ) = ϕ(r(γ))f1(γ)ϕ(s(γ))−1.

Proof. Le Φ : Zf1 −→ Zf2 be a Real Γ-G-equivariant homeomorphism,
where Zfi = Y ×fi,X,r G. Then from the commutative diagrams

Y Zf1

pr1
oo

s◦pr2
//

Φ

��

X

Zf2

pr1

__

s◦pr2

>>

we have Φ(x, g) = (x, h) with s(g) = s(h); and then there exists a unique
element ϕ(x) ∈ G such that h = ϕ(x)g. To see that this defines a continuous
map ϕ : Y −→ G, notice that for any x ∈ Y , the pair (x, f1(x)) is an element
in Zf1 , then ϕ(x) is the unique element in G such that

Φ(x, f1(x)) = (x, ϕ(x)f1(x)).

Furthermore, since Φ is Real,

Φ(%(x), ρ(f1(x))) = (%(x), ρ(ϕ(x))ρ(f1(x))),

which shows that ϕ(%(x)) = ρ(ϕ(x)) for any x ∈ Y ; i.e., ϕ is Real.
Now for γ ∈ Γ, take x = s(γ), then from the Γ-equivariance of Φ, we have

Φ(γ · (s(γ), f1(s(γ)))) = Φ(r(γ), f1(γ)) = γ · Φ(s(γ), f1(s(γ)));

so that
(r(γ), ϕ(r(γ))f1(γ)) = (r(γ), f2(γ)ϕ(s(γ)))

and f2(γ) · r(ϕ(s(γ))) = ϕ(r(γ))f1(γ)ϕ(s(γ)); but r(ϕ(s(γ))) = s(f2(γ)) by
definition of ϕ and this gives the desired relation.

The converse is easy to check by working backwards. �

1.4. Morita equivalence. Let (Γ, %) and (G, ρ) be two Real groupoids.
Suppose that f : (Γ, %) −→ (G, ρ) is an isomorphism in the category RGs.
In this case, we say that (Γ, %) and (G, ρ) are strictly equivalent and we write
(Γ, %) ∼strict (G, ρ). Now, consider the induced Real generalized morphisms
(Zf , τf ) : (Γ, %) −→ (G, ρ) and (Zf−1 , τf−1) : (G, ρ) −→ (Γ, %). Define the

inverse of Zf by Z−1
f := G×r,X,f Y with the obvious Real structure also
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denoted by τf . The map Zf−1 −→ Z−1
f defined by (x, γ) 7−→ (f(γ), f−1(x))

is clearly a G-Γ-equivariant Real homeomorphism; hence, (Zf−1 , τf−1) and

(Z−1
f , τf ) are isomorphic Real generalized morphisms from (G, ρ) to (Γ, %).

Notice that Z−1
f is Zf as space; thus, (Zf , τf ) is at the same time a Real

generalized morphism from (Γ, %) to (G, ρ) and from (G, ρ) to (Γ, %). Fur-
thermore, it is simple to check that Zf ◦ Z−1

f and ZIdG
define isomorphic

Real generalized morphisms from (G, ρ) into itself, and likewise, Z−1
f ◦ Zf

and ZIdΓ
are isomorphic Real generalized morphisms from (Γ, %) into itself.

Definition 1.24. Two Real groupoids (Γ, %) and (G, ρ) are said to be Morita
equivalent if there exists a Real space (Z, τ) that is at the same time a Real
generalized morphism from Γ to G and from G to Γ; that is to say that

Y Z
roo is a G-principal Real bundle and Z

s // X is a Γ-principal
Real bundle.

Remark 1.25. Given a Morita equivalence (Z, τ) : (Γ, %) −→ (G, ρ), its
inverse, denoted by (Z−1, τ), is (Z, τ) as Real space, and if [ : (Z, τ) −→
(Z−1, τ) is the identity map, the left Real G-action on (Z−1, τ) is given by
g · [(z) := [(z · g−1), and the right Real Γ-action is given by [(z) · γ :=
[(γ−1 · z); (Z−1, τ) is the corresponding Real generalized morphism from
(G, ρ) to (Γ, %).

The discussion before Definition 1.24 shows that the Real generalized mor-
phism induced by a Real strict morphism is actually a Morita equivalence.
However, the converse is not true. Moreover, there is a functor

(1.2) RGs −→ RG,

where RGs is the category whose objects are Real locally compact groupoids
and whose morphisms are Real strict morphisms, given by

f 7−→ Zf .

Definition 1.26 (Real cover groupoid). Let G
//
// X be a Real groupoid.

Let U = {Uj} be a Real open cover of X. Consider the disjoint union∐
j∈J Uj = {(j, x) ∈ J ×X : x ∈ Uj} with the Real structure ρ(0) given by

ρ(0)(j, x) := (̄, ρ(x)) and define a Real local homeomorphism given by the
projection π :

∐
j Uj −→ X, (j, x) 7−→ x. Then the set

G[U] := {(j0, g, j1) ∈ J × G× J : r(g) ∈ Uj0 , s(g) ∈ Uj1},

endowed with the involution ρ(1)(j0, g, j1) := (j̄0, ρ(g), j̄1) has a structure
of a Real locally compact groupoid whose unit space is

∐
j Uj . The range

and source maps are defined by r̃(j0, g, j1) := (j0, r(g)) and s̃(j0, g, j1) :=
(j1, s(g)); two triples are composable if they are of the form (j0, g, j1) and

(j1, h, j2), where (g, h) ∈ G(2), and their product is given by (j0, g, j1) ·
(j1, h, j2) := (j0, gh, j2). The inverse of (j0, g, j1) is (j1, g

−1, j0).
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It is a matter of simple verifications to check the following:

Lemma 1.27. Let G
//
// X be a Real groupoid, and U a Real open cover

of X. Then the Real generalized morphism Zι : G[U] −→ G induced from the
canonical Real morphism

ι : G[U] −→ G, (j0, g, j1) 7−→ g,

is a Morita equivalence between (G[U], ρ) and (G, ρ).

Definition 1.28. Let

Z

π
��

s // X

Y

be a locally trivial G-principal Real bundle. A section s : Y −→ Z is said to
be Real if s ◦ % = τ ◦ s. Moreover, given a Real open cover {Uj}j∈J of Y , we
say that a family of local sections sj : Uj −→ Z is globally Real if for any
j ∈ J , we have

(1.3) s̄ ◦ % = τ ◦ sj .
Lemma 1.29. Any locally trivial G-principal Real bundle π : Z −→ Y
admits a globally Real family of local sections {sj}j∈J over some Real open
cover {Uj}.
Proof. Choose a local trivialization (Ui, ϕi)i∈I of Z; i.e., ϕi : Ui −→ X are
continuous maps such that π−1(Ui) =: ZUi

∼= Ui×ϕi,X,r G with τZUi = (%, ρ).
It turns out that ZU(i,ε)

∼= U(i,ε) ×ϕεi ,X,r G, where

ϕεi := ρε ◦ ϕi ◦ %ε : U(i,ε) −→ X

is a well-defined continuous map and U(i,ε) := %ε(Ui) for (i, ε) ∈ I × Z2.
However, for (i, ε) ∈ I × Z2, there is a homeomorphism

U(i,ε) ×ϕεi ,X,r G
(%,ρ)
// U

(i,ε)
×ϕε+1

i ,X,r G .

Now, putting s(i,ε) : U(i,ε) −→ Z, x 7−→ (x, ϕεi(x)), we obtain the desired
sections. �

For the remainder of this subsection we will need the following construc-
tion.

Let (Z, τ) be a Real space and (Γ, %) a Real groupoid together with a
continuous Real map ϕ : Z −→ Y . Then we define an induced groupoid
ϕ∗Γ over Z in which the arrows from z1 to z2 are the arrows in Γ from ϕ(z1)
to ϕ(z2); i.e.,

ϕ∗Γ := Z ×ϕ,Y,r Γ×s,Y,ϕ Z ,

and the product is given by (z1, γ1, z2).(z2, γ2, z3) = (z1, γ1γ2, z3) whenever
γ1 and γ2 are composable, while the inverse is given by

(z, γ, z′)−1 = (z′, γ−1, z).
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Moreover, the triple (ρ, %, ρ) defines a Real structure ϕ∗% on ϕ∗Γ making it
into a Real groupoid (ϕ∗Γ, ϕ∗%) that we will call the pull-back of Γ over Z
via ϕ.

Lemma 1.30. Given a continuous locally split Real open map ϕ : Z −→ Y ,
then the Real groupoids Γ and ϕ∗Γ are Morita equivalent.

Proof. Consider the Real strict homomorphism

ϕ̃ : ϕ∗Γ 3 (z1, γ, z2) 7−→ γ ∈ Γ.

Then by Example 1.18 we obtain a Real generalized homomorphism

Z Zϕ̃
π1oo

s◦π2 // Y

with Zϕ̃ := Z ×ϕ̃,Y,r Γ, π1 and π2 the obvious projections, and where Z ↪→
ϕ∗Γ by z 7−→ (z, ϕ(z), z). Now using the constructions of Example 1.18, it
is very easy to check that Zϕ̃ is in fact a Morita equivalence. �

Proposition 1.31. Two Real groupoids (Γ, %) and (G, ρ) are Morita equiv-
alent if and only if there exist a Real space (Z, τ) and two continuous Real
maps ϕ : Z −→ Y and ϕ′ : Z −→ X such that ϕ∗Γ ∼= (ϕ′)∗G under a Real
(strict) homeomorphism.

Proof. Let Y Z
roo s // X be a Morita equivalence. Let us define

Γ n Z ∗ Z o G := {(γ, z1, z2, g) ∈ (Γ×s,Y,r Z)× (Z ×s,X,r G) | z1g = γz2}.
This defines a Real groupoid over Z whose range and source maps are defined
by the second and the third projection respectively, the product is given by

(γ, z1, z2, g) · (γ′, z2, z3, g
′) = (γγ′, z1, z3, gg

′),

provided that γ, γ′ ∈ Γ(2) and g, g′ ∈ G(2), and the inverse of (γ, z1, z2, g)
is (γ−1, z2, z1, g

−1). Now, for a given triple (z1, γ, z2) ∈ r∗Γ, the relations
r(z1) = r(γ) and r(z2) = s(γ) give r(γz2) = r(z1); then since r : Z −→ Y is
a Real G-principal bundle, there exists a unique g ∈ G such that γz2 = z1g.
This gives an injective homomorphism

Ψ : r∗Γ −→ Γ n Z ∗ Z o G,

(z1, γ, z2) 7−→ (γ, z1, z2, g),

which respects the Real structures. In the other hand, the map

Φ : Γ n Z ∗ Z o G −→ r∗Γ,

(γ, z1, z2, g) 7−→ (z1, γ, z2),

is a well-defined Real homomorphism that is injective and Real. Moreover,
these two maps are, by construction, inverse to each other so that we have a
Real homeomorphism r∗Γ ∼= Γ nZ ∗Z o G. Furthermore, since s : Z −→ X
is a Real Γ-principal bundle, we can use the same arguments to show that
s∗G ∼= Γ n Z ∗ Z o G under a Real homeomorphism.
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Conversely, if ϕ : Z −→ Y and ϕ′ : Z −→ X are given continuous Real
maps and f : ϕ∗Γ −→ (ϕ′)∗X is a Real homeomorphism of groupoids, then
the induced Real generalized homomorphism

ϕ∗Γ
Zf−→ (ϕ′)∗G

is a Morita equivalence and Lemma 1.30 completes the proof. �

The following example provides a characterization of groupoids Morita
equivalent to a given Real space.

Example 1.32. Let (X, ρ), (Y, %) be a locally compact Hausdorff Real spa-
ces, and let π : (Y, %) −→ (X, ρ) be a continuous locally split Real open

map. Form the Real groupoid Y [2] //
// Y , where Y [2] is the fibered-

product Y ×π,X,π Y equipped with the obvious Real structure; the groupoid

structure on Y [2] is:

s(y1, y2) := y2; r(y1, y2) := y1;

(y1, y2)−1 := (y2, y1); (y1, y2) · (y2, y3) := (y1, y3).

Then the Real groupoids Y [2] //
// Y and X //

// X are Morita equiv-
alent. Indeed, we have π∗X ∼Morita X, thanks to Lemma 1.30; but π∗X
clearly identifies with Y [2] as Real groupoids.

Conversely, suppose (Γ, %) is a Real groupoids Morita equivalent to X.
Then in view of Proposition 1.31, there is a Real space (Z, τ), two continuous
locally split Real open maps s : Z −→ X, r : Z −→ Y such that s∗X ∼= r∗Γ
as Real groupoids over Z. In particular, r : Z −→ Y is a principal Real
X-bundle, so that the Real space Y is homeomorphic to the quotient Real
space Z/X = Z. Thus, we have isomorphism of Real spaces

r∗Γ = Z ×Y Γ×Y Z ∼= Y ×Y Γ×Y Y ∼= Γ.

Moreover, we have s∗X ∼= Z [2] as Real spaces. Therefore, the Real groupoids

Γ //
// Y and Z [2] //

// Z as isomorphic.

Proposition 1.33 (Cf. Proposition 2.3 [25]). Any Real generalized mor-
phism

Y Z
roo s // X

is obtained by composition of the canonical Morita equivalence between (Γ, %)
and (Γ[U], %), where U is an open cover of Y , with a Real strict morphism
fU : Γ[U] −→ G (i.e., its induced morphism in the category RG).

Proof. From Lemma 1.30, there is a Real Morita equivalence Zr̃ : r∗Γ −→ Γ
and the Real homeomorphism r∗Γ ∼= Γ n Z ∗ Z o G induces a Real strict
homomorphism f : r∗Γ −→ G given by the fourth projection, and hence a
Real generalized homomorphism Zf : r∗Γ −→ G. Furthermore, by using the
construction of these generalized homomorphisms, it is easy to check that
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the composition Zr̃ ×Γ Z is r∗Γ-G-equivariently homeomorphic to Z (under
a Real homeomorphism); i.e., the diagram

Γ

Z
  

r∗Γ
Zr̃

∼=
oo

Zf
��

G

is commutative in the category RG.
Consider a Real open cover U = {Uj} of Y together with a globally

Real family of local sections sj : Uj −→ Z of r : Z −→ Y . Then, setting
(j0, γ, j1) 7−→ (sj0(r(γ)), γ, sj1(s(γ))) for (j0, γ, j1) ∈ Γ[U], we get a Real
strict homomorphism s̃ : Γ[U] −→ r∗Γ such that the composition Γ[U] −→
r∗Γ −→ Γ is the canonical map ι described in Example 1.26. Then, f ◦ s̃ :
Γ[U] −→ G is the desired Real strict homomorphism. �

This proposition leads us to think of a Real generalized homomorphism
from a Real groupoid (Γ, %) to a Real groupoid (G, ρ) as a Real strict mor-
phism fU : (Γ[U], %) −→ (G, ρ), where U is a Real open cover of Y .

To refine this point of view, given two Real groupoids (Γ, %) and (G, ρ),
let Ω denote the collection of such pairs (U, fU). We say that two pairs
(U, fU) and (U′, fU′) are isomorphic provided that ZfU ◦ Z−1

ιU
∼= ZfU′ ◦ Z

−1
ιU′

,

where ιU : (Γ[U], %) −→ (Γ, %) and ιU′ : (Γ[U′], %) −→ (Γ, %) are the canon-
ical morphisms; this clearly defines an equivalence relation. We denote by
Ω ((Γ, %), (G, ρ)) the set of isomorphism classes of elements of Ω.

Let (U, fU) : (Γ, %) −→ (G′.ρ′) be an equivalence class in Ω ((Γ, %), (G′, ρ′))
and let (V, fV) : (G′, ρ′) −→ (G, ρ) be an element in Ω ((G′, ρ′), (G, ρ)). Let
ιG′ : G′[V] −→ G′ be the canonical morphism, and let Z−1

ιG′
: (G′, ρ′) −→

(G′[V], ρ′) be the inverse of ZιG′ . Next, we apply Proposition 1.33 to the Real

generalized morphism Z−1
ιG′
◦ZfU : Γ[U] −→ G′[V] to get a Real open cover U′

of Y containing U and a Real strict morphism ϕU′ : (Γ[U′], %) −→ (G′[V], ρ′).
Then, we pose

(1.4) (V, fV) ◦ (U, fU) := (U′, fU′),

with fU′ = fV ◦ ϕU′ ; thus we get an element of Ω ((Γ, %), (G, ρ)). It follows
that there exists a category RGΩ whose objects are Real groupoids, and in
which a morphism from (Γ, %) to (G, ρ) is a class (U, fU) in Ω ((Γ, %), (G, ρ)).

Example 1.34. Any Real strict morphism f : (Γ, %) −→ (G, ρ) can be
identified with the pair (Y, f), by considering the trivial Real open cover Y
consisting of one set, and by viewing the groupoid Γ as the cover groupoid
Γ[Y ]. In particular, RGs is a subcategory of RGΩ.

Example 1.35. Suppose that (Z, τ) : (Γ, %) −→ (G, ρ) is a Real general-
ized morphism. Then, Proposition 1.33 provides a unique class (U, fU) ∈
Ω((Γ, %), (G, ρ)).
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Remark 1.36. Note that a class (U, fU) ∈ Ω ((Γ, %), (G, ρ)) is an isomor-
phism in RGΩ if there exists (V, fV) ∈ Ω ((G, ρ), (Γ, %)) such that

(1.5) ZfU ◦ Z
−1
ιU
◦ ZfV ∼= ZιV and ZfV ◦ Z

−1
ιV
◦ ZfU ∼= ZιU ,

where ιU : (Γ[U], %) −→ (Γ, %) and ιV : (G[U], ρ) −→ (G, ρ) are the canonical
morphisms.

Proposition 1.37. Define F : RG −→ RGΩ by

(1.6) F(Z, τ) := (U, fU),

where, if (Z, τ) : (Γ, %) −→ (G, ρ) is a class of Real generalized morphisms,
(U, fU) is the class of pairs corresponding to (Z, τ).

Then F is a functor; furthermore, F is an isomorphism of categories.

Proof. Suppose that (Z, τ) : (Γ, %) −→ (G′, ρ′), (Z ′, τ ′) : (G′, ρ′) −→ (G, ρ)
are morphisms in RG. Let

F(Z ′ ◦ Z, τ × τ ′) = (U, fU) ∈ Ω ((Γ, %), (G, ρ)) ,

F(Z, τ) = (U′, fU′) ∈ Ω
(
(Γ, %), (G′, ρ′)

)
,

F(Z ′, τ ′) = (V, fV) ∈ Ω
(
(G′, ρ′), (G, ρ)

)
.

Consider a Real open cover Ũ of Y containing U′ and a Real morphism
ϕ
Ũ

: (Γ[Ũ], %) −→ (G′[V], ρ′) such that Zϕ
Ũ
◦ Z−1

i
∼= Z−1

ιV
◦ ZfU′ as Real

generalized morphisms from (Γ[U′], %) to (G′[V], ρ′), where

i : (Γ[Ũ], %) −→ (Γ[U′], %) and ιV : (G′[V], ρ′) −→ (G′, ρ′)

are the canonical morphisms. Note that if ι
Ũ

: (Γ[Ũ], %) −→ (Γ, %) is the

canonical morphism, then ι
Ũ

= ιU′ ◦ i; hence, Z−1
ι
Ũ

∼= Z−1
i ◦Z−1

ιU′
by functori-

ality.
On the other hand, F(Z ′, τ ′) ◦ F(Z, τ) = (V, fV) ◦ (U, fU) = (Ũ, f

Ũ
), where

f
Ũ

= fV ◦ ϕŨ
. Henceforth,

Zf
Ũ
◦ Z−1

ι
Ũ

∼= ZfV ◦ ZϕŨ
◦ Z−1

i ◦ Z
−1
ιU′
∼= ZfV ◦ Z

−1
ιV
◦ ZfU′ ◦ Z

−1
ιU′
∼= Z ′ ◦ Z,

which shows that F(Z ′ ◦ Z, τ × τ ′) ∼= F(Z ′, τ ′) ◦ F(Z, τ), and thus F is a
functor.

Now, it is not hard to see that we get an inverse functor for F by defining

(1.7) Z : RGΩ −→ RG, (U, fU) 7−→ (ZfU ◦ Z
−1
ιU
, τ),

where τ is defined in an obvious way. �

1.5. Real graded twists. In this section we define Real graded twists.

Definition 1.38 (Cf. [11, §2]). Let Γ //
// Y be a Real groupoid and let

S be a Real Abelian group. A Real graded S-twist (Γ̃, δ) over Γ consists of
the following data:

(i) a Real groupoid Γ̃ whose unit space is Y , together with a Real strict

homomorphism π : Γ̃ −→ Γ that restricts to the identity in Y ,
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(ii) a (left) Real action of S on Γ̃ compatible with the partial product in

Γ̃ making Γ̃
π // Γ a (left) Real S-principal bundle,

(iii) a strict homomorphism δ : Γ −→ Z2, called the grading, such that
δ(γ̄) = δ(γ) for any γ ∈ Γ.

In this case we refer to the triple (Γ̃,Γ, δ) as a Real graded S-twist, and it is
sometimes symbolized by the “extension”

S // Γ̃
π // Γ

δ

��

Z2

Example 1.39 (The trivial twist). Given Real groupoid Γ, we form the

product groupoid Γ × S and we endow it with the Real structure (γ, λ) :=
(γ̄, λ̄) for. Let S act on Γ×S by multiplication with the second factor. Then
T0 := (Γ× S, 0) is a Real graded twist of Γ, where 0 : Z2 −→ Z2 is the zero
map. This element is called the trivial Real graded S-twist over Γ.

Example 1.40. Let Y be a locally compact Real space and {Ui}i∈I×{±1} be

a good Real open. Let us consider the Real groupoid Y [U] //
//
∐
i Ui , and

the space Y × S together with the Real structure (y, λ) 7−→ (ȳ, λ̄) and the
Real S-action given by the multiplication on the second factor. We write xi0i1
for (i1, x, i1) ∈ Y [U]. There is a canonical Real morphism δ : Y [U] −→ Z2

given by δ(xi0i1) := ε0 + ε1 for i0 = (i′0, ε0), i1 = (i′1, ε1) ∈ I. Then, a Real

graded S-twist (Γ̃, Y [U], δ) consists of a family of principal Real S-bundles

Γ̃ij ∼= Uij × S subject to the multiplication

(xi0i1 , λ1) · (xi1i2 , λ2) = (xi0i2 , λ1λ2ci0i1i2(x)),

where c = {ci0i1i2} is a family of continuous maps ci0i1i2 : Ui0i1i2 −→ S

which is a 2-cocycle such that cī0 ī1 ī2(x̄) = ci0i1i2(x) for all x ∈ Ui0i1i2 =
Ui0 ∩ Ui1 ∩ Ui2 . The pair (δ, c) will be called the Dixmier–Douady class of

(Γ̃, Y [U], δ) (see Section 2.12).

Example 1.41. Let Γ //
// Y be a Real groupoid, and let J : Λ −→ Y

be a Real S-principal bundle. Then the tensor product r∗Λ ⊗ s∗Λ, which
is a Real S-principal bundle over Γ, naturally admits the structure of Real
groupoid over Y , so that (r∗Λ⊗ s∗Λ, 0) is a Real graded S-twist over Γ.

There is an obvious notion of strict morphism of Real graded S-twists. For

instance, two Real graded S-twists (Γ̃1,Γ, δ1) and (Γ̃2,Γ, δ2) are isomorphic

if there exists a Real S-equivariant isomorphism of groupoids f : Γ̃1 −→ Γ̃2



ČECH COHOMOLOGY OF REAL GROUPOIDS 745

such that the diagram

Γ̃1
π1 //

f
��

Γ

Γ̃2

π2

@@

commutes in the category RGs. In particular, we say that (Γ̃, δ) is strictly
trivial if it isomorphic to the trivial Real graded groupoid (Γ × S, 0). By

T̂wR(Γ, S) we denote the set of strict isomorphism classes of Real graded

S-twists over Γ. The class of (Γ̃, δ) in T̂wR(Γ, S) is denoted by [Γ̃, δ].

Definition 1.42 (Cf. [11, 23, 6]). Given two Real graded S-twists T1 =

(Γ̃1, δ1) and T2 = (Γ̃2, δ2) over G, we define their tensor product

T1⊗̂T2 = (Γ̃1⊗̂Γ̃2, δ1 + δ2)

by the Baer sum of T1 and T2 defined as follows. Define the groupoid Γ̃1⊗̂Γ̃2

as the quotient

(1.8) Γ̃1 ×Γ Γ̃2/S := {(γ̃1, γ̃2) ∈ Γ̃1 ×π1,Γ,π2 Γ̃2}/(γ̃1,γ̃2)∼(λγ̃1,λ−1γ̃2),

where λ ∈ S, together with the obvious Real structure. The projection
π1 ⊗ π2 is just πi and δ = δ1 + δ2 is given by δ(γ) = δ1(γ) + δ2(γ).

The product in the Real groupoid Γ̃1⊗̂Γ̃2 is

(1.9) (γ̃1, γ̃2)(γ̃′1, γ̃
′
2) := (−1)δ2(γ2)δ1(γ′1)(γ̃1γ̃′1, γ̃2γ̃′2),

whenever this does make sense and where γi = π2(γ̃i), i = 1, 2.

Lemma 1.43 ([23, p.4]). Given [Γ̃i, δi] ∈ T̂wR(Γ,S), i = 1, 2, set

[Γ̃1, δ1] + [Γ̃2, δ2] := [Γ̃1⊗̂Γ̃2, δ1 + δ2].

Then, under this sum, T̂wR(Γ, S) is an Abelian group whose zero element
is given by the class of the trivial element T0 = (G× S, 0).

Proof. The tensor product defined above is commutative in T̂wR(Γ, S).

Indeed, the groupoid Γ̃2⊗̂Γ̃1 = Γ̃2×ΓΓ̃1/S is endowed with the multiplication

(γ̃2, γ̃1)(γ̃′2, γ̃
′
1) = (−1)δ1(γ1)δ2(γ′2)(γ̃2γ̃′2, γ̃1γ̃′1).

Then the map

Γ̃1⊗̂Γ̃2 −→ Γ̃2⊗̂Γ̃1 , (γ̃1, γ̃2) 7−→ (−1)δ1(γ1)δ2(γ2)(γ̃2, γ̃1)

is a Real S-equivariant isomorphism of groupoids.

Now define the inverse of (Γ̃, δ) is (Γ̃op, δ) where Γ̃op is Γ̃ as a set but,
together with the same Real structure, but the S-principal bundle structure
is replaced by the conjugate one, i.e., λγ̃op = (λ̄γ̃)op, and the product ∗op in

Γ̃op is

γ̃ ∗op γ̃′ := (−1)δ(γ)δ(γ′)γ̃γ̃′.
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Now it is easy to see that the map

Γ× S −→ Γ̃×Γ Γ̃op/S , (γ, λ) 7−→ (λγ̃, γ̃) ,

where γ̃ ∈ Γ̃ is any lift of γ ∈ Γ, is an isomorphism. �

We have the following criteria of strict triviality; the proof is the same as
in [25, Proposition 2.8].

Proposition 1.44. Let (Γ̃, δ) be a Real graded S-twist over the Real groupoid

Γ //
// Y . The following are equivalent:

(i) (Γ̃, δ) is strictly trivial.
(ii) δ(γ) = 0, ∀γ ∈ Γ, and there exists a Real strict homomorphism σ :

Γ −→ Γ̃ such that π ◦ σ = Id.
(iii) δ(γ) = 0, ∀γ ∈ Γ,, and there exists a Real S-equivariant groupoid

homomorphism ϕ : Γ̃ −→ S.

Example 1.45. Let J : Λ −→ Y be a Real S-principal bundle with a
Real (left) Γ-action that is compatible with the S-action; in other words

Y Λ
J
oo // ? is a Real generalized homomorphism from Γ to S. Then,

the Real Γ-action induces an S-equivariant isomorphism Λs(γ) 3 v 7−→ γ ·
v ∈ Λr(γ) for every γ ∈ Γ. Hence, there is a Real S-equivariant groupoid

isomorphism ϕ : r∗Λ ⊗ s∗Λ −→ Γ × S defined as follows. If (v, [(w)) ∈
Λr(γ) ⊗ Λs(γ), there exists a unique λ ∈ S such that γ · w = v · λ. We then
set

ϕ([v, [(w)]) := (γ, λ).

The inverse of ϕ is ϕ′(γ, λ) := [vγ , γ−1 · vγ ], where for γ ∈ Γ, vγ is any lift
of r(γ) through the projection J .

Observe that the set of Real graded S-twists of the from (r∗Λ ⊗ s∗Λ, 0)

over Γ (see Example 1.41) is a subgroup of T̂wR(Γ,S). By êxtR(Γ,S) we

denote the quotient of T̂wR(Γ,S) by this subgroup.

Let us show that êxtR(·,S) is functorial in the category RGs. Let Γ, Γ′

be two Real groupoids, and let f : Γ′ −→ Γ be a morphism in RGs. Suppose

that T = (Γ̃, δ) is a Real graded S-twist over Γ. Then, the pull-back

f∗Γ̃ := Γ̃×π,Γ,f Γ′

of the Real S-principal bundle π : Γ̃ −→ Γ, on which the Real groupoid

structure is the one induced from the product Real groupoid Γ̃×Γ′, defines
a Real graded twist

(1.10) f∗T := S // f∗Γ̃
f∗π

// Γ′

f∗δ

��

Z2
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where f∗π(γ̃, γ′) := γ′, f∗δ(γ′) := δ(f(γ′)) ∈ Z2, and the Real left S-

action on f∗Γ̃ being given by λ · (γ̃, γ′) = (λγ̃, γ′). Suppose now that

Ti = (Γ̃i, δi), i = 1, 2 are representatives in êxtR(Γ, S). Then,

f∗(T1⊗̂T2) = f∗T1⊗̂f∗T2;

indeed,

f∗(Γ̃1⊗̂Γ̃2) =
(

Γ̃1 ×Γ Γ̃2/S
)
×Γ Γ′ ∼=

(
(Γ1 ×Γ Γ′)×Γ (Γ̃2 ×Γ Γ′)

)
/S

= f∗Γ̃1⊗̂f∗Γ̃2.

Moreover, it is easily seen that if T1 and T2 are equivalent in êxtR(Γ, S),
then so are f∗T1 and f∗T2. Thus, f induces a morphism of Abelian groups

f∗ : êxtR(Γ,S) −→ êxtR(Γ′, S). We then have proved this:

Lemma 1.46. The correspondence

êxtR(·,S) : RGs −→ Ab,(1.11)

Γ 7−→ êxtR(Γ, S), f 7−→ f∗,

where Ab is the category of Abelian groups, is a contravariant functor. In

particular, êxtR(G, S) is invariant under Real strict isomorphisms.

1.6. Real graded central extensions. In this subsection we introduce
Real graded central extensions of Real groupoids, by adapting [11, 12, 6, 23]
to our context.

Definition 1.47. Let (Γ̃i,Γi, δi), i = 1, 2, be Real graded S-twists. Then a

Real generalized homomorphism Z : Γ̃1 −→ Γ̃2 is said to be S-equivariant if
there is a Real action of S on Z such that

(λγ̃1) · z · γ̃2 = γ̃1 · (λz) · γ̃2 = γ̃1 · z · (λγ̃2),

for any (λ, γ̃1, z, γ̃2) ∈ S × Γ̃1 × Z × Γ̃2 such that these products make

sense. We refer to Z : (Γ̃1,Γ1, δ1) −→ (Γ̃2,Γ2, δ2) as a generalized morphism
of Real graded S-twists. In particular, if Z is an isomorphism, the two
Real graded S-twists are said to be Morita equivalent ; in this case we write

(Γ̃1,Γ1, δ1) ∼ (Γ̃2,Γ2, δ2).

Lemma 1.48. Let Z : (Γ̃1,Γ1, δ1) −→ (Γ̃2,Γ2, δ2) be a generalized mor-
phism. Then the S-action on Z is free and the Real space Z/S (with the
obvious involution) is a Real generalized homomorphism from Γ1 to Γ2.

Proof. Same as [25, Lemma 2.10]. �

Definition 1.49. Let G be a Real groupoid and S an abelian Real group.

A Real graded S-central extension of G consists of a triple (Γ̃,Γ, δ, P ), where

(Γ̃,Γ, δ) is a Real graded S-twist, and P is a (Real) Morita equivalence
Γ −→ G.
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Definition 1.50. We say that (Γ̃1,Γ1, δ1, P1) and (Γ̃2,Γ2, δ2, P2) are Morita

equivalent if there exists a Morita equivalence Z : (Γ̃1,Γ1, δ1) −→ (Γ̃2,Γ2, δ2)
such that the diagrams

(1.12) Γ1

Z/S
//

P1
  

Γ2

P2

��

G

and

(1.13) Γ1

Z/S
//

δ1   

Γ2

δ2
��

Z2

commute in the category RG. Such a Z is also called an equivalence bimodule
of Real graded S-central extensions. The set of Morita equivalence classes

of Real graded S-central extensions of G is denoted by ÊxtR(G,S).

The set ÊxtR(G,S) admits a natural structure of abelian group described

in the following way. Assume that Ei = (Γ̃i,Γi, δi, Pi), i = 1, 2, are two

given Real graded S-central extensions of G, then Y1 Z
roo s // Y2 is

a Morita equivalence between Γ1 and Γ2, where Z = P1 ×G P2. But from
Proposition 1.31 there exists a Real homeomorphism f : s∗Γ2 −→ r∗Γ1. Now

one can see that the maps π : r∗Γ̃1 −→ r∗Γ1, (z, γ̃1, z
′) 7−→ (z, π1(γ̃1), z′) and

π′ : s∗Γ̃2 −→ r∗Γ1(z, γ̃2, z
′) 7−→ π ◦ f(z, γ̃2, z

′) define two Real S-principal

bundles and then (r∗Γ̃1, δ) and (s∗Γ̃2, δ), where δ := δ1 ◦pr2, define elements

of êxtR(r∗Γ1,S). Therefore, we can form the tensor product (r∗Γ̃1⊗̂s∗Γ̃2, δ⊗
δ) are Real graded S-groupoid over r∗Γ1. Moreover, r∗Γ1 ∼Morita Γ1; then,
if P : r∗Γ1 −→ G is a Real Morita equivalence, we obtain a Real graded
S-central extension of G by setting

(1.14) E1⊗̂E2 := (r∗Γ̃1⊗̂s∗Γ̃2, r
∗Γ1, δ, P ),

that we will call the tensor product of E1 and E2. Thus, we define the sum

[E1] + [E2] := [E1⊗̂E2],

which is easily seen to be well-defined in ÊxtR(G,S). The inverse Eop of E is

(Γ̃op,Γ, δ, P ). Notice that êxtR(G,S) is naturally a subgroup of ÊxtR(G,S)

by identifying a Real graded S-twist (Γ̃,G, δ) with the Real graded S-central

extension (Γ̃,G, δ,G). We summarize this in the next lemma.

Lemma 1.51. Under the sum defined above, ÊxtR(G,S) is an abelian group
whose zero element is the class of the trivial Real graded S-central extension
(G× S,G, 0,G).
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When the Real structure is trivial, then we recover the usual definition of
graded central extensions (see [6] for instance) of G by the group Z2.

Proposition 1.52. Suppose that G
//
// X is equipped with a trivial Real

structure. Then

ÊxtR(G, S1) ∼= Êxt(G,Z2).

Example 1.53. Suppose G reduces to a Real space X. Then following

Example 1.32, a Real graded S-central extension of X is a triple (Γ̃, Y [2], δ),
where Y is a Real space together with a continuous locally split Real open
map π : Y −→ X, and δ : Y [2] −→ Z2 is a Real morphism.

In particular, suppose ρ is trivial. Then, by Proposition 1.52, giving a
Real graded S1-central extension of X amounts to giving a real bundle gerbe

Z2
// Γ̃

��

Y [2] //
// Y

π

��

X

in the sense of Mathai, Murray, and Stevenson [14], together with an aug-

mentation δ : Y [2] −→ Z2.

1.7. Functoriality of ÊxtR(·,S). The aim of this subsection is to show

that ÊxtR(·,S) is functorial in the category RG, and hence that the group

ÊxtR(G, S) invariant under Morita equivalence. To do this, we will need the
following:

Proposition 1.54. Let G
//
// X be a Real groupoid. Then, there is an

isomorphism of abelian groups

(1.15) ÊxtR(G, S) ∼= lim−→
U

êxtR(G[U],S).

Before giving the proof of this proposition, we have to describe the sum
in the inductive limit

lim−→
U

êxtR(G[U],S).

Let U1 and U2 be two Real open covers of X, and let Ti = (G̃i,G[Ui], δi) be
Real graded S-groupoids over G[Ui], i = 1, 2. Let (V, fV) ∈ Ω (G[U1],G[U2])
be the unique class corresponding to the Real Morita equivalence Z−1

ιU1
◦ZιU2

from G[U1] to G[U2]. V is a Real open cover of X containing U1, and

fV : G[V] −→ G[U2]
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is a Real strict morphism. Denote by ιV,U1 the canonical Real morphism
G[V] −→ G[U1]. Then, the tensor product of T1 and T2 is

(1.16) T1⊗̂T2 := ι∗V,U1
T1⊗̂f∗VT2,

which defines a Real graded S-groupoids over the Real groupoid G[V].

Proof of Proposition 1.54. For a Real graded S-central extension E =

(Γ̃,Γ, δ, P ) of G , let (V, fV) ∈ Ω (G,Γ) be the isomorphism in RGΩ corre-
sponding to the Morita equivalence P−1 : G −→ Γ. Setting

(1.17) TE := S // f∗VΓ̃
f∗
V
π
// G[V]

δ◦fV
��

Z2

we get a Real graded S-groupoid over G[V]. It is not hard to check that this
provides us the desired isomorphism of abelian groups; the inverse is given
by the formula

(1.18) ET := (G̃,G[U], δ, ZιU),

for a Real graded S-twist T = (G̃,G[U], δ). �

From this proposition, it is now possible to define the pull-back of a Real
graded S-central extension via a Real generalized morphism. More precisely,
we have

Definition and Proposition 1.55. Let G and G′ be Real groupoids, and

let Z : G′ −→ G be a Real generalized morphism. Let E = (Γ̃,Γ, δ, P ) is

be a representative in ÊxtR(G,S), and TE = (f∗VΓ̃,G[V], δ ◦ fV) its image in

lim−→
U

êxtR(G[U],S) (see the proof of Proposition 1.54). Let

(W, fW) ∈ Ω
(
G′,G[V]

)
be the morphism in RGΩ corresponding to the Real generalized morphism
Z−1
ιV
◦ Z : G′ −→ G[V]. Then

(1.19) Z∗E := Ef∗
W
TE .

is a Real graded S-central extension of the Real groupoid G′; it is called the
pull-back of E along Z

Now the following is straightforward.

Corollary 1.56. There is a contravariant functor

(1.20) ÊxtR(·, S) : RG −→ Ab,

which sends a Real groupoid G to the abelian group ÊxtR(G, S). In particular,

ÊxtR(G, S) is invariant under Morita equivalences.
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2. Real Čech cohomology

2.1. Real simplicial spaces. We start by recalling some preliminary no-
tions. For each zero integer n ∈ N, we set [n] = {0, . . . , n}. Recall [21] that
the simplicial (resp. pre-simplicial) category ∆ (resp. ∆′) is the category
whose objects are the sets [n], and whose morphisms are the nondecreasing

(resp. increasing) maps f : [m] −→ [n]. For n ∈ N, we denote by ∆(N) the
N -truncated full subcategory of ∆ whose objects are those [k] with k ≤ N .

Definition 2.1. A Real simplicial (resp. pre-simplicial, N -simplicial) topo-

logical space consists of a contravariant functor from ∆ (resp. ∆′, ∆(N))
to the category RTop whose objects are topological Real spaces and mor-
phisms are continuous Real maps. A morphism of Real simplicial (resp. pre-
simplicial, . . . ) spaces is a morphism of such functors.

More concretely, a Real (pre-)simplicial space is given by a family

(X•, ρ•) = (Xn, ρn)n∈N

of topological Real spaces, and for every map f : [m] −→ [n] we are given
a continuous Real map (called face or degeneracy map depending which

of m and n is larger) f̃ : (Xn, ρn) −→ (Xm, ρm) , satisfying the relation

f̃ ◦ g = g̃ ◦ f̃ whenever f and g are composable.

Definition 2.2. Let (X•, ρ•) be a Real simplicial space. For any N ∈ N, the
N -skeleton of (X•, ρ•) is the Real simplicial space (X•, ρ•)

N “of dimension
N”; that is, (Xn, ρn)N = (Xn, ρn) for n ≤ N , and (Xn, ρn)N = (XN , ρN )
for all n ≥ N + 1.

Let εni : [n− 1] −→ [n] be the unique increasing injective map that avoids
i, and let ηni : [n + 1] −→ [n] be the unique nondecreasing surjective map
such that i is reached twice; that is,

εni (k) =

{
k, if k ≤ i− 1,

k + 1, if k ≥ i,
(2.1)

ηni (k) =

{
k, if k ≤ i;
k − 1, if k ≥ i+ 1.

We will omit the superscript n if there is no ambiguity.
If (X•, ρ•) is a Real simplicial space, it is straightforward to check that

the face and degeneracy maps

ε̃ni : (Xn, ρn) −→ (Xn−1, ρn−1),

η̃ni : (Xn, ρn) −→ (Xn+1, ρn+1),

i = 0, . . . , n satisfy the following simplicial identities:

ε̃n−1
i ε̃nj = ε̃n−1

j−1 ε̃
n
i if i ≤ j − 1,(2.2)

η̃n+1
i η̃nj = η̃n+1

j+1 η̃
n
i if i ≤ j,



752 EL-KAÏOUM M. MOUTUOU

ε̃n+1
i η̃nj = η̃n−1

j−1 ε̃
n
i if i ≤ j − 1,

ε̃n+1
i η̃nj = η̃n−1

j ε̃ni−1 if i ≥ j + 2,

ε̃n+1
j η̃nj = ε̃n+1

j+1 η̃
n
j = IdXn .

Conversely, let (Xn, ρn)n∈N be a sequence of topological Real spaces to-
gether with maps satisfying (2.2). Then thanks to [13, Theorem 5.2], there
is a unique Real simplicial structure on (X•, ρ•) such that ε̃i and η̃i are the
face and degeneracy maps respectively.

Example 2.3 (Cf. [24, §2.3]). Consider the pair groupoid

[n]× [n] //
// [n];

that is, the product is (i, j)(j, k)) := (i, k) and the inverse of (i, j) is (j, i).
If (G, ρ) is a topological Real groupoid, we define

Gn := Hom([n]× [n],G)

as the space of strict morphisms from the groupoid [n]× [n] //
// [n] to

G
//
// X . We obtain a Real structure on Gn by defining ρn(ϕ) := ρ ◦ ϕ,

for ϕ ∈ Gn. Any f ∈ Hom∆([m], [n]) (or f ∈ Hom∆′([m], [n])) naturally
gives rise to a strict morphism f ×f : [m]× [m] −→ [n]× [n], which, in turn,

induces a Real map f̃ : (Gn, ρn) −→ (Gm, ρm) given by f̃(ϕ) := ϕ ◦ (f × f)
for ϕ ∈ Gn. Hence, we obtain a Real simplicial space (G•, ρ•).

Notice that the groupoid

[n]× [n] //
// [n]

is generated by elements (i−1, i), 1 ≤ i ≤ n; indeed, given an element (i, j) ∈
[n] × [n], we can suppose that i ≤ j (otherwise, we take its inverse (j, i)),
and then (i, j) = (i, i+1) . . . (j−1, j). It turns out that any strict morphism
ϕ : [n]× [n] −→ G is uniquely determined by its images ϕ(i−1, i) ∈ G; hence,
the well-defined Real map

Gn −→ G(n), ϕ 7−→ (g1, . . . , gn),

where gi := ϕ(i− 1, i), 1 ≤ i ≤ n, and

G(n) := {(h1, . . . , hn) | s(hi) = r(hi−1), i = 1, . . . , n},

identifies (Gn, ρn) with (G(n), ρ(n)), where ρ(n) is the obvious Real structure

on the fibred product G(n). Therefore, using this identification, the face
maps ε̃ni : (Gn, ρn) −→ (Gn−1, ρn−1) of (G•, ρ•) are given by:

ε̃n0 (g1, g2, . . . , gn) = (g2, . . . , gn),(2.3)

ε̃ni (g1, g2, . . . , gn) = (g1, . . . , gigi+1, . . . , gn), 1 ≤ i ≤ n− 1,

ε̃nn(g1, g2, . . . , gn) = (g1, . . . , gn−1),
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and for n = 1, by ε̃1
0(g) = s(g), ε̃1

1(g) = r(g); while the degeneracy maps
η̃ni : (Gn, ρn) −→ (Gn+1, ρn+1) are given by:

η̃n0 (g1, g2, . . . , gn) = (r(g1), g1, . . . , gn),(2.4)

η̃ni (g1, g2, . . . , gn) = (g1, . . . , s(gi), gi+1, . . . , gn), 1 ≤ i ≤ n,

and η̃0
0 : G0 −→ G1 is the unit map of the Real groupoid.

Now for n ∈ N, we define the space (EG)n of (n + 1)-tuples of elements
of G that map to the same unit; i.e.,

(EG)n := {(γ0, . . . , γn) ∈ Gn+1 | r(γ0) = r(γ1) = · · · = r(γn)}.
Suppose we are given (g1, . . . , gn) ∈ Gn. Then we can choose an (n + 1)-
tuple (γ0, . . . , γn) ∈ (EG)n such that gi = γ−1

i−1γi for each i = 1, . . . , n. If
(γ′0, . . . γ

′
n) is another (n+ 1)-tuple satisfying these identities, then

s(γ′i) = s((γ′i−1)−1γ′i) = s(γ−1
i−1γi) = s(γi),

for all i = 1, . . . , n, and that means that there exists a unique g ∈ G, such
that s(g) = r(γi) and γ′i = g · γi. This hence gives us a well-defined injective
map

Gn −→ (EG)n/∼, (g1, . . . , gn) 7−→ [γ0, . . . , γn],

where (γ0, . . . , γn) ∼ (g · γ0, . . . , g · γn). Moreover, this map is surjective,
for if (γ0, . . . , γn) ∈ (EG)n, one can consider morphisms gi from s(γi) to
s(γi−1), i = 1, . . . , n, so that we have

γ1 = γ0g1, γ2 = γ1g2 = γ0g1g2, . . . , γn = γ0g1 · · · gn,
and then

[γ0, . . . , γn] = [r(g1), g1, g1g2, . . . , g1 · · · gn]

which gives the inverse (EG)n/∼ 3 [γ0, . . . , γn] 7−→ (g1, . . . , gn) ∈ Gn. It
hence turns out that we can identify Gn with the quotient (EG)n. Note that
the quotient space (EG)n/∼ naturally inherits the Real structure ρn+1 and
that the isomorphism defined above is compatible with the Real structures.

Henceforth, an element of Gn will be represented by a vector
−→g = (g1, . . . , gn),

where we view −→g as a morphism [n] × [n] −→ G, and gi = −→g (i − 1, i),
i = 1, . . . , n, or −→g = [γ0, . . . , γn] as a class in (EG)n/∼. For the first picture,

if f ∈ Hom∆([m], [n]), then the Real face/degeneracy map f̃ : (Gn, ρn) −→
(Gm, ρm) is given by:

(2.5) f̃(−→g ) = (−→g (f(0), f(1)) , . . . ,−→g (f(m− 1), f(m))) .

For instance, if f in injective, then
−→g (f(i− 1), f(i)) = −→g (f(i− 1), f(i− 1) + 1) · · · −→g (f(i)− 1, f(i))

for f(i) ≥ 1, and thus

(2.6) f̃(−→g ) = (g
f(0)+1

· · · g
f(1)

, . . . , g
f(m−1)+1

· · · g
f(m)

).
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However, the second picture offers a more general formula for the face and
degeneracy maps; roughly speaking, for any f ∈ Hom∆([m], [n]), we have
−→g (i, j) = γ−1

i γj for every (i, j) ∈ [n]× [n]. In particular,

−→g (f(k − 1), f(k)) = γ−1
f(k−1)γf(k),

for every k ∈ [m]; then (2.5) gives:

(2.7) f̃(−→g ) = [γf(0), . . . , γf(m)].

2.2. Real sheaves on Real simplicial spaces. In this subsection we
closely follow [21, §3] to study Real sheaves on Real (pre-)simplicial spaces.
We start by introducing some preliminary notions.

Let C be a topological category. We define the category CR by setting:

• Ob(CR) consists of triples (A, σA, A
′), where A, A′ ∈ Ob(C) and

σA ∈ HomC(A,A′);

• HomCR ((A, σA, A
′), (B, σB, B

′)) consists of pairs (f, f̃) of morphisms

f : A −→ B, f̃ : A′ −→ B′ in C such that the diagrams

A

σA
��

f
// B

σB
��

A′
f̃
// B′

commute.

Now, let φ : C −→ C be a functor. Then we define the subcategory Cφ
of CR whose objects are pairs (A, φ(A)), where A ∈ Ob(C), and in which

a morphism from (A, φ(A)) to (B,φ(B)) is a pair (f, f̃) of morphisms f :

A −→ B, f̃ : φ(A) −→ φ(B) such that f̃ ◦φ = φ◦f . A fundamental example
of this is the category OB(X) of open subsets of a given topological Real
space (X, ρ). Recall that objects of this category are the collection of the
open sets U ⊂ X, and morphisms are the canonical injections V ↪→ U when
V ⊂ U . Given such a Real space (X, ρ), the map ρ induces a functor (which
is an isomorphism) ρ : OB(X) −→ OB(X) given by(

V
� � ι // U

)
7−→

(
ρ(V )

� � ρ◦ι◦ρ // ρ(U)

)
.

Definition 2.4 (Real presheaves). Let (X, ρ) be a topological Real space,
and let C be a topological category. A Real presheaf (F, σ) on (X, ρ) with
values in C is a contravariant functor from OB(X)ρ to CR; a morphism of
Real presheaves is a morphism of such functors.

Specifically, from the fact that ρ : X −→ X is a homeomorphism and from
the canonical properties of the injections V ↪→ U of open sets V ⊂ U ⊂ X, a
Real presheaf on (X, ρ) with values in C assigns to each open subset U ⊂ X
a triple (F(U), σU ,F(ρ(U))), where F(U), F(ρ(U)) are objects of C, and
σU ∈ IsomC(F(U),F(ρ(U))), and for V ⊂ U we are given two morphisms
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ϕV,U : F(U) −→ F(V ) and ϕ
ρ(V ),ρ(U)

: F(ρ(U)) −→ F(ρ(V )), called the
restriction morphisms, such that:

• ϕU,U = Id
F(U)

.
• σV ◦ ϕV,U = ϕ

ρ(V ),ρ(U)
◦ σU .

• ϕW,U = ϕW,V ◦ ϕV,U , and ϕ
ρ(W ),ρ(U)

= ϕ
ρ(W ),ρ(V )

◦ ϕ
ρ(V ),ρ(U)

.

A morphism of Real presheaves φ : (F, σF) −→ (G, σG) is then a family
of φU ∈ HomC(F(U),G(U)) such that, for all pairs of open sets U, V with
V ⊂ U , the diagrams below commute:

(2.8) F(ρ(U))

φ
ρ(U)

��

F(U)
σF
Uoo

φ
U

��

ϕF
V,U
// F(V )

φ
V

��

G(ρ(U)) G(U)
σG
Uoo

ϕG
V,U
// G(V ).

As in the standard case, if (F, σ) is a Real presheaf over X, and if U is
an open subset of X, an element s ∈ F(U) is called a section of (F, σ) on U ,
and for x ∈ X. If V is an open subset of U , and s ∈ F(U), one often writes
s|V for ϕV,U (s).

Definition 2.5 ([10, Definition 2.2]). A Real sheaf over (X, ρ) with values
in C is a Real presheaf (F, σ) satisfying the following conditions:

(i) For any open set U ⊂ X, any open cover U =
⋃
i∈I Ui, any section

s ∈ F(U), s|Ui = 0 for all i implies s = 0.

(ii) For any open set U ⊂ X, any open cover U =
⋃
i∈I Ui, any fam-

ily of sections si ∈ F(Ui) satisfying si|Uij = sj |Uij for all nonempty

intersection Uij , there exists s ∈ F(U) such that s|Ui = si for all i.

A morphism of Real sheaves is a morphism of the underlying presheaves.
We denote by CR(X) (or simply by Shρ(X) if there is no risk of confusion)
for the category of Real sheaves on (X, ρ) with values in C.

Notice that if (F, σ) is a Real sheaf (resp. presheaf) on (X, ρ), then F is
a sheaf (resp. presheaf) on X in the usual sense. Recall that the stalk of
F at a point x ∈ X, denoted by Fx, is the direct limit of the direct system
(F(U), ϕV,U ) where U runs along the family of open neighborhoods of x; i.e.,

Fx := lim−→
x∈U

F(U),

The image of a section s ∈ F(U) in Fx by the canonical morphism

F(U) −→ Fx

(where x ∈ U) is called the germ of s at x and denoted by sx.
Note that if U is an open neighborhood of x, ρ(U) is an open neighborhood

of ρ(x), and the isomorphism σU : F(U) 3 s 7−→ σU (s) ∈ F(ρ(U)) extends
to an isomorphism σx : Fx −→ Fρ(x), defined by σx(sx) = (σU (s))ρ(x), whose
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inverse is σρ(x). We thus have a well-defined 2-periodic isomorphism, also

denoted by σ, on the topological 2 space F :=
∐
x∈X Fx, given by

(2.9) σ : F −→ F, (x, sx) 7−→ (ρ(x), σx(sx))

which gives a Real space (F, σ).

Example 2.6. Let (X, ρ) be a Real space. Then the space C (X) of continu-
ous complex values functions on X defines a Real sheaf of abelian groups on
(X, ρ) by (U, ρ(U)) 7−→ (C (U), ρ̃U ,C (ρ(U))), where ρ̃U (f)(ρ(x)) := f(x).

Definition 2.7 (Pushforward, pullback). Let (X, ρ), (Y, %) be topological
Real spaces, f : (Y, %) −→ (X, ρ) a continuous Real map. Suppose that
(F, σ) and (G, ς) are Real sheaves on (X, ρ) and (Y, %) respectively, with
values in the same category C.

(i) The pushforward of (G, ς) by f , denoted by (f∗G, f∗ς), is the Real
sheaf on (X, %) defined by the contravariant functor:

(2.10) OB(X)ρ −→ CR, (U, ρ(U)) 7−→ (f∗G(U), f∗ςU , f∗G(ρ(U))) ,

where f∗G(U) := G(f−1(U)), f∗ςU := ς
f−1(U)

, and

f∗G(ρ(U)) = G(f−1(ρ(U))) ∼= G(%(f−1(U))).

(ii) The pullback of (F, σ) along f , denoted by (f∗F, f∗σ), is the Real
sheaf on (Y, %) associated to the Real presheaf defined by:

(2.11) OB(Y )% −→ CR, (V, %(V )) 7−→ (f∗F(V ), f∗σV , f
∗F(%(V ))),

where f∗F(V ) := lim−→
f(V )⊂U⊂X

U open

F(U), and f∗σV : f∗F(V ) −→ f∗F(%(V ))

is the morphism in C extending functorially σU : F(U) −→ F(ρ(U))
along the family of open neighborhoods of f(V ) in X.

It immediately follows from this definition that we have a covariant func-
tor

RTop −→ RSh,(2.12) (
(Y, %)

f
// (X, ρ)

)
7−→

(
Sh%(Y )

f∗
// Shρ(X)

)
,

and a contravariant functor

RTop −→ RSh,(2.13) (
(Y, %)

f
// (X, ρ)

)
7−→

(
Shρ(X)

f∗
// Sh%(Y )

)
,

2Recall that if F is a presheaf over X, any section s ∈ F(U) induces a map [s] :
U −→

∐
x Fx, y 7−→ sy. We give F :=

∐
x∈X Fx the largest topology such that all the

maps [s] are continuous. On the other hand, associated to F, there is a sheaf F̂ given by

F̂(U) := Γ(U,F), and we have that F(U) ∼= Γ(U,F) if and only if F is a sheaf. Then, given
a Real presheaf (F, σ), one can define its associated Real sheaf in the same fashion.
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where RSh is the category whose objects are the categories of Real sheaves
on given Real spaces and morphisms are functors of such categories.

We will also need the following proposition.

Proposition 2.8. Let f : (Y, %) −→ (X, ρ) be a a continuous Real map.
Suppose that (F, σ) and (G, ς) are Real sheaves on (X, ρ) and on (Y, %) re-
spectively, with values in the same category C. Then

(2.14) HomShρ(X) ((F, σ), (f∗G, f∗ς)) ∼= HomSh%(Y )((f
∗F, f∗σ), (G, ς)).

Proof. The proof is the same as in the general case where Real structures
are not concerned (see for instance [10, Proposition 2.3.3]). �

Definition 2.9. Given a continuous Real map f : (Y, %) −→ (X, ρ) and
Real sheaves (F, σ) and (G, ς) as above, we define the set Homf (F,G)σ,ς of
Real f -morphisms from (F, σ) to (G, ς) to be

HomShρ(X) ((F, σ), (f∗G, f∗ς)) = HomSh%(Y ) ((f∗F, f∗σ), (G, ς)) .

Definition 2.10. Let (X•, ρ•) be a Real simplicial (resp. pre-simplicial)
space. A Real sheaf on (X•, ρ•) is a family (Fn, σn)n∈N such that (Fn, σn) is a
Real sheaf on (Xn, ρn) for all n, and such that for each morphism f : [m] −→
[n] in ∆ (resp. ∆′) we are given Real f̃ -morphisms f̃∗ ∈ Homf̃ (Fm,Fn)σm,σn

such that

(2.15) f̃ ◦ g
∗

= f̃∗ ◦ g̃∗,
whenever f and g are composable.

One can use the definition of the push-forward to give a concrete inter-
pretation of this definition. Roughly speaking, a sequence (Fn, σn)n∈N is a
Real sheaf on a Real simplicial (resp. pre-simplicial, . . . ) space (X•, ρ•), if
for a given morphism f : [m] −→ [n] in ∆ (resp. ∆′, . . . ), then for any pair

of open sets U ⊂ Xn and V ⊂ Xm such that f̃(U) ⊂ V there is a restriction

map f̃∗ : Fm(V ) −→ Fn(U) such that the diagram

(2.16) Fm(V )

σm
V

��

f̃∗
// Fn(U)

σn
U

��

Fm(ρ(V ))
f̃∗
// Fn(ρ(U))

commutes, and f̃∗ ◦ g̃∗ = f̃ ◦ g
∗

: Fk(W ) −→ Fn(U) whenever g̃(V ) ⊂ W ⊂
Xk. Morphisms of Real sheaves over (X•, ρ•) are defined in the obvious way;
we denote by Shρ•(X•) for the category of Real sheaves over (X•, ρ•).
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2.3. Real G-sheaves and reduced Real sheaves.

Definition 2.11.

(i) A Real space (Y, %) is said to be étale over (X, ρ) if there exists an
étale Real map f : (Y, %) −→ (X, ρ); that is to say, every point
y ∈ Y has an open neighborhood V such that fV : V −→ U is
homeomorphism, where U in an open neighborhood of f(y) in X.

(ii) A Real groupoid (G, ρ) is étale if the range (equivalently the source)
map is étale.

(iii) A morphism π• : (Y•, %•) −→ (X•, ρ•) of Real (pre-)simplicial spaces
is étale if for all n, πn : (Yn, %n) −→ (Xn, ρn) is étale.

Example 2.12. Any Real sheaf (F, σ) on (X, ρ) can be viewed as an étale
Real space over (X, ρ). Indeed, considering the underlying topological Real
space (F, σ), it is easy to check that the canonical projection

F −→ X, (x, sx) 7−→ x

is an étale Real map.

Definition 2.13. Let (G, ρ) be a topological Real groupoid. A Real G-sheaf
(or an étale Real G-space) is an étale Real space (E0, ν0) over (X, ρ) equipped
with a continuous Real G-action.

We say that (E0, ν0) is an Abelian Real G-sheaf if in addition it is an
Abelian Real sheaf on (X, ρ) such that the action αg : (E0)s(g) −→ (E0)r(g)
is a group homomorphism, for any g ∈ G.

A morphism of Real G-sheaves (E0, ν0) and (E′0, ν
′
0) is a G-equivariant

continuous Real map ψ : (E0, ν0) −→ (E′0, ν
′
0) such that p′ ◦ ψ = p.

The category of Real G-sheaves is denoted by BρG, and is called the
classifying topos of (G, ρ).

Examples 2.14.

(1) Considering a Real space (X, ρ) as a Real groupoid, a Real X-sheaf
is the same thing as a Real sheaf over (X, ρ); in other words we have
that BρX ∼= Shρ(X).

(2) If (G, ρ) is a Real group, then a Real G-sheaf is just a Real space
equipped with a continuous Real G-action.

Lemma 2.15. Any generalized Real morphism (Z, τ) : (Γ, %) −→ (G, ρ)
induces a morphism of toposes

Z∗ : Bρ(G) −→ B%(Γ).

Consequently, there is a contravariant functor

B : RG −→ RBG,

defined by

( (Γ, %)
(Z,τ)

// (G, ρ) ) 7−→ ( BρG
Z∗ // B%Γ ),
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where RBG is the category whose objects are classifying toposes of Real
groupoids.

Proof. As noted in [15, 2.2] for the usual case, any Real morphism f :
(Γ, %) −→ (G, ρ) gives rise to a functor f∗ : BρG −→ B%Γ. Indeed, if
(E0, ν0) is a Real G-sheaf through an étale Real G-map p : (E0, ν0) −→ (X, ρ),
then we obtain a Real Γ-sheaf (f∗E0, f

∗ν0) by pulling back (E0, ν0) along
f ; i.e., f∗E0 = Y ×f,X,p E0, f

∗ν0 = % × ν0, f
∗p(y, e) := y, and the right

Real Γ-action is γ · (s(γ), e) := (r(γ), f(γ) · e) when p(e) = s(f(γ)). If
ψ : (E0, ν0) −→ (E′0, ν

′
0) is a morphism of Real G-sheaves, then the map

f∗ψ : (f∗E0, f
∗ν0) −→ (f∗E′0, f

∗ν ′0) defined by f∗ψ(y, e) := (y, ψ(e)) is
obviously a morphism a Real Γ-sheaves. It follows that any (U, fU) ∈
HomRGΩ

((Γ, %), (G, ρ)) gives rise to a covariant functor f∗U : BρG −→ B%Γ[U].
Now if (Z, τ) corresponds to (U, fU), and if as in the previous chapter,
ι : Γ[U] −→ Γ is the canonical Real morphism, then we can push forward
(f∗UE0, f

∗
Uν0) through ι to get a Real Γ-sheaf (Z∗E0, Z

∗ν0); i.e.,

(2.17) Z∗E0 := ι∗f
∗
UE0,

and the Real structure Z∗ν0 is the obvious one. �

Lemma 2.16. Let (G, ρ) be a topological Real groupoid. Then, a Real G-sheaf
canonically defines a Real sheaf over the Real simplicial space (Gn, ρn)n∈N.

To prove this Lemma, we need some more preliminary notions.

Definition 2.17. [21]] A morphism π• : (E•, ν•) −→ (X•, ρ•) of Real sim-
plicial spaces is called reduced if for all m, n and for all f ∈ Hom∆([m], [n]),

the morphism f̃ induces an isomorphism

(En, νn) ∼= (Xn ×f̃ ,Xm,πm Em, ρn × νm).

In this case, we say that (E•, ν•) is a reduced Real simplicial space over
(X•, ρ•).

Morphisms of reduced Real simplicial spaces over (X•, ρ•) are defined in
the obvious way.

Definition 2.18 ([21]). We say that a Real sheaf (F•, σ•) over a Real sim-
plicial space (X•, ρ•) is reduced if for all m, n and all f ∈ Hom∆([m], [n]),

f̃∗ ∈ Hom
(

(f̃∗Fm, f̃∗σm), (Fn, σn)
)

is an isomorphism.

Lemma 2.19 ([21, Lemma 3.5]). Let (X•, ρ•) be a Real simplicial space.
Then, there is a one-to-one correspondence between reduced Real sheaves
over (X•, ρ•) and reduced étale Real simplicial spaces over (X•, ρ•).

Proof. Suppose that we are given a Real sheaf (F•, σ•) over the Real simpli-
cial space (X•, ρ•), and let (Fn, σn)n∈N be its underlying sequence of topolog-
ical Real spaces. We already know from Example 2.12 that each of the canon-
ical projection maps πn : (Fn, σn) −→ (Xn, ρn) is étale. Now suppose that
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(F•, σ•) is reduced; that is to say that for any morphism f ∈ Hom∆([m], [n]),

and every open set V ⊂ Xm, f̃∗ : Fm(V ) −→ Fn(f̃−1(V )) is an isomorphism,
so that we have a commutative diagram

(2.18) Fm(V )

σm
V

��

f̃∗
Fn(f̃−1(V ))

σn
f−1(V )
��

Fm(ρm(V ))
f̃∗

Fn(ρn(f̃−1(V ))).

Let x ∈ Xn, y ∈ Xm such that f̃(x) = y, and let U ⊂ Xn and V ⊂ Xm be

open neighborhoods of x and y respectively such that f̃(U) ⊂ V . Then, for
a section sm ∈ Fm(V ), we have an element (x, (y, smy )) ∈ Xn×f̃ ,Xm,πm Fm to

which we assign an element (x, snx) ∈ Fn as follows: since U ⊂ f̃−1(V ), the

section sm ∈ Fm(V ) ∼= Fn(f̃−1(V )) has a restriction sn := smU ∈ Fn(U). In
this way we get a well-defined map Xn ×f̃ ,Xm,πm Fm −→ Fn. Moreover, it

is easy to check that this map is an isomorphism; the inverse is the map

Fn 3 (x, snx) 7−→ (x, (f̃(x), (f̃∗sn)f̃(x))) ∈ Xn ×f̃ ,Xm,πm Fm,

where if x ∈ U ⊂ Xn and f̃(U) ⊂ V ⊂ Xm, f̃∗sn is any section in Fm(V ) ∼=
Fn(f̃−1(V )) that has the same class as sn at the point x when restricted to

Fn(U) through the restriction map Fn(f̃−1(V )) −→ Fn(U). Furthermore, for

every f ∈ Hom∆([m], [n]), there is a face/degeneracy map f̃ : (Fn, σn) −→
(Fm, σm) given by f̃(x, sx) := (f̃(x), (f̃∗s)

f̃(x)
); hence (F•, σ•) is a reduced

étale Real simplicial space over (X•, ρ•).
Conversely, if π• : (E•, ν•) −→ (X•, ρ•) is a reduced étale morphism

of Real simplicial spaces, we let Fn(U) be the space C(U,En) of continu-
ous sections over U (where U is an open subset of Xn) of the projection
πn : (En, νn) −→ (Xn, ρn). Next we define σn

U
: Fn(U) −→ Fn(ρn(U)) by

σn
U

(s)(ρn(x)) := νn(s(x)). Notice that since the πn’s are étale, one can re-
cover the Real spaces (En, νn) by considering the underlying Real spaces of
the Real sheaves (Fn, σn). Now for any f ∈ Hom∆([m], [n]) and for any
open set V ⊂ Xm, we have an isomorphism

f̃∗ : Fm(V ) −→ Fn(f̃−1(V )),

s 7−→ f̃∗s,

where (f̃∗s)(x) = (x, s(f̃(x))) ∈ Xn ×f̃ ,Xm,πm Em ∼= Em. �

Using the same construction as in the second part of this proof, we deduce
the following:

Lemma 2.20. Any reduced Real simplicial space over (X•, ρ•), étale or not,
determines a Real sheaf over (X•, ρ•).
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Proof of Lemma 2.16. Let (Z, τ) be a Real G-sheaf, and let

π : (Z, τ) −→ (X, ρ)

be an étale Real map. Put for all n ≥ 0, En := (G n Z)n := Gn ×π̃n,X,π Z,
where π̃n(g1, . . . , gn) = π̃n[γ0, . . . , γn] = s(γn) = s(gn). Define νn := ρn × τ .
We thus obtain a Real simplicial space (En, νn): the simplicial structure is
given by

(2.19) En 3 ([γ0, . . . , γn], z) 7−→
(

(γf(0), . . . , γf(m)), γ
−1
f(m)γn · z

)
∈ Em,

for f ∈ Hom∆([m], [n]). Furthermore, it is straightforward to see that the
projections πn : En −→ Gn are compatible with the Real structures νn
and ρn, and that they define a morphism of Real simplicial spaces. If f ∈
Hom∆([m], [n]), then the assignment

([γ0, . . . , γn], z) 7−→
(

[γ0, . . . , γn], ([γf(0), . . . , γf(m)], γ
−1
f(m)γn · z)

)
obviously defines a Real homeomorphism En ∼= Gn×f̃ ,Gm,πm Em which shows

that (E•, ν•) is a reduced Real simplicial space over (Gn, ρn). It follows from
Lemma 2.20 that (E•, ν•) determines an object of Shρ•(G•). �

Remark 2.21. Notice that in the proof above we did not use the fact that
(Z, τ) is étale. In fact, the Real G-action suffices for (Z, τ) to give rise
to a Real sheaf over (G•, ρ•). However, the property of being étale will be
necessary to show that the Real sheaf obtained is reduced (as it is mentioned
in the following corollary).

Corollary 2.22. Let (G, ρ) be a topological Real groupoid. Then there is a
functor

E : BρG −→ redShρ•(G•),

where redShρ•(G•) is the full subcategory of Shρ•(G•) consisting of all reduced
Real sheaves over (G•, ρ•).

Proof. Let us keep the same notations as in the proof of Lemma 2.16. Since
π is étale, so is πn for all n. The reduced Real simplicial space (E•, ν•) is
then étale over (G•, ν•). Now, it suffices to apply Lemma 2.19. �

2.4. Real G-modules.

Definition 2.23 (Cf. [21, Definition 3.9]). Let (G, ρ) be a topological Real
groupoid. A Real G-module is a topological Real groupoid (M, −), with
unit space (X, ρ), and with source and range maps equal to a Real map
π : (M, −) −→ (X, ρ), such that:

• Mx (= Mx = Mx
x) is an abelian group for all x ∈ X.

• For all x ∈ X, the map (−) : Mx −→Mρ(x) is a group morphism.

• As a Real space, (M, −) is endowed with a Real G-action

α : G×s,π M −→M.
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• For each g ∈ G, the map αg : Ms(g) −→Mr(g) given by the action is
a group morphism.

By Remark 2.21, any Real G-module (M, −) determines an abelian Real
sheaf (F•, σ•) on (G•, ρ•) constructed as follows: consider the reduced Real
simplicial space (E•, ν•) = ((G n M)n, ρn × (−)), where the Real simplicial
structure is given by:

f̃ ([γ0, . . . , γn], t) =
(

[γf(0), . . . , γf(m)], γ
−1
f(m)γn · t

)
,

for any f ∈ Hom∆([m], [n]). Next, (F•, σ•) is defined as the sheaf of germs
of continuous sections of the projections π• : (E•, ν•) −→ (G•, ρ•).

Example 2.24. Let (G, ρ) be a topological Real groupoid. Let M = X×S1

be endowed with the canonical Real structure (x, λ)) := (ρ(x), λ̄), and Real
G-action g · (s(g), λ) = (r(g), λ). Then (M,−) is a Real G-module. The
corresponding Real sheaf is called the constant sheaf of germs of S1-valued
functions and denoted (abusively) S1. More generally, if S is any Real group,
X×S is a Real G-module, and the induced Real sheaf over (G•, ρ•) is denoted
by S.

2.5. Pre-simplicial Real covers.

Definition 2.25 (Cf. [21, Definition 4.1]). Let (X•, ρ•) be a Real pre-
simplicial space. A Real open cover of (X•, ρ•) is a sequence U• = (Un)n∈N
such that Un = (Unj )j∈Jn is a Real open cover of (Xn, ρn).

We say that U• is pre-simplicial if (J•,
−) = (Jn,

−)n∈N is a Real pre-
simplicial set such that for all f ∈ Hom∆′([m], [n]) and for all j ∈ Jn, one

has f̃(Unj ) ⊆ Um
f̃(j)

. In the same way, one defines the notions of simplicial

Real cover and N -simplicial Real cover.

We will use the same construction as in [21, §4.1] to show the following
lemma.

Lemma 2.26. Any Real open cover U• of a Real (pre-)simplicial space
(X•, ρ•) gives rise to a pre-simplicial Real open cover \U•.

Proof. For each n ∈ N, let Pn =
⋃n
k=0 P

k
n, where Pkn = Hom∆′([k], [n]). Let

P =
⋃
n Pn, and let Λn (or Λn(J•) if there is a risk of confusion) be the set

of maps

(2.20) λ : P −→
⋃
k

Jk such that λ(Pkn) ∈ Jk, for all k.

It is immediate to see that Λn is non-empty; indeed, for each k ∈ N, we fix
a map −→ k : [n] −→ Jk which can be written as −→ k = (jk0 , . . . , j

k
n). Next, we

define −→ = (−→ k)k∈N. Then the map λ : P −→
⋃
k Jk given by λ(ϕ) := −→ ◦ϕ

lies in Λn. Moreover, Λn has a Real structure defines as follows: if ϕ ∈ Pkn,
then we set

(2.21) λ̄(ϕ) := λ(ϕ) ∈ Jk.
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Now, for all λ ∈ Λn, we let

(2.22) Unλ :=
⋂
k≤n

⋂
ϕ∈Pkn

ϕ̃−1(Ukλ(ϕ)).

Let x ∈ Xn. For each k ≤ n and ϕ ∈ Pkn, there is jkϕ ∈ Jk such that

ϕ̃(x) ∈ Uk
jkϕ
⊂ Xk. Define the map λx : P −→

⋃
k Jk by λx(ϕ) := (jkϕ)k.

Then, one can see that x ∈
⋂
k≤n

⋂
ϕ∈Pkn ϕ̃

−1(Ukλx(ϕ)) = Unλx . Furthermore,

ρn(Unλ ) = Un
λ̄

; hence, (Unλ )λ∈Λn is a Real open cover of (Xn, ρn). If for any

f ∈ Hom∆′([m], [n]), we define a map f̃ : Λn −→ Λm by

(f̃λ)(ϕ) := λ(f ◦ ϕ), for all λ ∈ Λn, and ϕ ∈ Pkn,

one sees that f̃(Unλ ) ⊆ Um
f̃(λ)

. Thus, \U• = ((Unλ )λ∈Λn)n∈N is a pre-simplicial

Real open cover of (X•, ρ•). �

In the same way, for N ∈ N and n ≤ N , we denote by ΛNn the set of all
maps

λ :
⋃
k≤n

Hom∆([k], [n]) −→
⋃
k≤n

Jk

that satisfy λ(Hom∆([k], [n])) ⊂ Jk, and we set

Unλ :=
⋂
k≤n

⋂
ϕ∈Hom∆([k],[n])

ϕ̃−1(Unλ(ϕ)).

Then we equip ΛN• with the Real structure defined in the same fashion,
and we give it the N -simplicial structure defined as follows: for any f ∈
Hom∆N ([m], [n]), the map f̃ : ΛNn −→ ΛNm is given by (f̃λ)(ϕ) := λ(f ◦ ϕ).
We thus obtain a N -simplicial Real cover \NU• = (\NUn)n∈N of the N -
skeleton of (X•, ρ•), where \NUn = (Unλ )λ∈ΛNn

.

We endow the collection of Real open covers of (X•, ρ•) with the partial
pre-order given by the following definition.

Definition 2.27. Let U• and V• be Real open covers of a Real simplicial
space (X•, ρ•), with Un = (Unj )j∈Jn and Vn = (V n

i )i∈In . We say that V• is
finer than U• if for each n ∈ N, there exists a Real map

θn : (In,
−) −→ (Jn,

−)

such that V n
i ⊆ Unθn(i) for every i ∈ In. The Real map θ• = (θn)n∈N

is required to be pre-simplicial (resp. N -simplicial) if U• and V• are pre-
simplicial (resp. N -simplicial).

2.6. “Real” Čech cohomology.

Definition 2.28 (Real local sections). Let (F, σ) be an abelian Real (pre-)
sheaf over (X, ρ) and let U = (Uj)j∈J be a Real open cover of (X, ρ). We say
that a family sj ∈ F(Uj) is a globally Real family of local sections of (F, σ)
over U if for every j ∈ J , s̄ is the image of sj in F(U̄) by σUj .
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We define CRss(U,F)ρ,σ to be the set of all globally Real families of local
sections of (F, σ) relative to U; i.e.,

CRss(U,F)ρ,σ :=

{
(sj)j∈J ⊂

∏
j∈J

F(Uj)

∣∣∣∣∣ s̄ = σUj (sj), ∀j ∈ J

}
.

To avoid irksome notations, we will write CRss(U,F) or CRss(U,F)σ in-
stead of CRss(U,F)ρ,σ. It is clear that CRss(U,F) is an abelian group.

Now let (X•, ρ•) be a Real simplicial space, and let U• be a pre-simplicial
Real open cover of (X•, ρ•). Suppose (F•, σ•) is a (pre-simplicial) abelian
Real (pre-)sheaf over (X•, ρ•).

Definition 2.29. We define the complex CR∗ss(U•,F
•)ρ•,σ• by

(2.23) CRnss(U•,F
•) := CRss(Un,F

n)ρn,σn ,

for n ∈ N. We will also write CR∗ss(U•,F
•) if there is no risk of confusion.

A Real n-cochain of (X•, ρ•) relative to a pre-ssimplicial Real open cover
U• with coefficients in (F•, σ•) is an element in CRnss(U•,F

•).

Let us consider again the maps εk : [n] −→ [n + 1] defined by (2.1),
for k = 0, . . . , n + 1. We have Real maps ε̃k : (Jn+1,

−) −→ (Jn,
−),

ε̃k : (Xn+1, ρn+1) −→ (Xn, ρn), and ε̃k : (Fn+1, σn+1) −→ (Fn, σn); and
since ε̃k(U

n+1
j ) ⊆ Unε̃k(j) for every j ∈ Jn+1, we have a restriction map

ε̃∗k : Fn(Unε̃(j)) −→ Fn+1(Un+1
j )

such that σn+1

Un+1
j

◦ ε̃∗k = ε̃∗k ◦ σnUn
ε̃k(j)

.

Definition 2.30. Let U• be a pre-simplicial Real open cover of (X•, ρ•).
For n ≥ 0, we define the differential map

(2.24) dn : CRnss(U•,F
•) −→ CRn+1

ss (U•,F
•)

also denoted by d, by setting for c = (cj)j∈Jn ∈ CRnss(U•,F•) and for j ∈
Jn+1:

(2.25) (dc)j :=

n+1∑
k=0

(−1)kε̃∗k(cε̃k(j)).

Remark 2.31. The differential d of (2.25) does indeed map CRnss(U•,F
•)

to CRn+1
ss (U•,F

•); combining the fact that the ε̃k are Real maps and the
discussion preceeding the last definition, one has

(dc)̄ =
n+1∑
k=0

(−1)kε̃∗k(cε̃k(̄)) =
n+1∑
k=0

(−1)kε̃∗k(σ
n
Un
ε̃k(j)

cε̃k(j)) = σUn+1
j

((dc)j).

Lemma 2.32. The differential maps d are group homomorphisms that sat-
isfy dn ◦ dn−1 = 0 for n ≥ 1.



ČECH COHOMOLOGY OF REAL GROUPOIDS 765

Proof. That for any n ∈ N, dn is a group homomorphism is straightforward.
Let (cj′)j′∈Jn−1 ∈ CRn−1

ss (U•,F
•). Then, for j ∈ Jn+1 one has

(dndn−1c)j =
n+1∑
l=0

(−1)l(ε̃n+1
l )∗

(
n∑
k=0

(−1)k(ε̃nk)∗(cε̃nk◦ε̃
n+1
l (j))

)

=
n+1∑
l=0

n∑
k=0

(−1)l+k(ε̃n+1
l )∗ ◦ (ε̃nk)∗(cε̃nk◦ε̃

n+1
l (j))

=
n∑
p=0

n∑
k=0,k≤2p

(ε̃n+1
2p−k)

∗(ε̃nk)∗(cε̃nk◦ε̃
n+1
2p−k(j))

−
n∑
p=0

n∑
k=0,k≤2p+1

(ε̃n+1
2p+1−k)

∗ ◦ (ε̃nk)∗(cε̃nk◦ε̃
n+1
2p+1−k(j))

= 0,

since εn+1
r ◦ εnq = εn+1

r+1 ◦ εnq , for any r, q ≤ n. �

We thus can give the following:

Definition 2.33. A Real n-cochain c in the kernel of dn is called a Real n-
cocycle relative to the pre-simplicial Real open cover U• with coefficients in
(F•, σ•); the Real n-cocyles form a subgroup ZRnss(U•,F

•) of CRnss(U•,F
•).

The Real n-cochains belonging to the image of dn−1 are called Real n-
coboundaries relative to U• and form a subgroup BRnss(U•,F

•) (since d2 =
0). The nth Real cohomology group of the pre-simplicial Real open cover U•
with coefficients in (F•, σ•) is defined by the nth cohomology group of the
complex

· · · d
n−2
// CRn−1

ss (U•,F
•)

dn−1
// CRnss(U•,F

•)
dn // CRn+1

ss (U•,F
•)

dn+1
// · · ·

That is,

HRnss(U•,F
•) :=

ZRnss(U•,F
•)

BRnss(U•,F
•)

:=
ker dn

Im dn−1
.

Example 2.34 (Cf. [21, Example 4.3]). Let (X•, ρ•) be the constant Real
simplicial space associated with a topological Real space (X, ρ); that is
(Xn, ρn) = (X, ρ) for every n ≥ 0. Suppose U =: U0 = (U0

j )j∈J0 is a

Real open cover of (X, ρ). Define Jn := Jn+1
0 together with the obvious

Real structure. Then (Jn,
−) is admits a simplicial structure by

f̃(j0, . . . , jn) := (jf(0), . . . , jf(m)), for all f ∈ Hom∆([m], [n]).

Let Un(j0,..,jn) := U0
j0
∩ · · · ∩ U0

jn
and Un = (Unj )j∈Jn . Of course Un is

a Real open cover of (Xn, ρn), and for any f ∈ Hom∆([m], [n]) one has

f̃(Un(j0,...,jn)) = Un(j0,...,jn) ⊆ U0
f(0) ∩ · · · ∩ U

0
f(m) = Um

f̃(j0,...,jn)
; hence U• is a

simplicial Real open cover of (X•, ρ•).
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Let (F, σ) be an Abelian Real sheaf on (X, ρ) and let (Fn, σn) := (F, σ)
for all n ≥ 0. Then, HR∗ss(U•,F

•) can be viewed as the “Real” analogue of
the usual (i.e., when all the Real structures are trivial) cohomology group
H∗(U0,F) and is denoted by HR∗(U,F). A Real 0-cochain is a globally
Real family (sj)j∈J of local sections. Given such a family, the differential
d0 gives: (d0s)(j0,j1) = sj1|Uj0j1

− sj0|Uj0j1
; it hence defines a Real 0-cocycle

if there exists a Real global section f ∈ Γ(X,F) such that sj = fUj for all
j ∈ J .

A Real 1-coboundary is then a family (cj0j1)j0,j1∈J of sections cj0j1 ∈
F(Uj0j1) ∼= Γ(Uj0j1 ,F) verifying c̄0 ̄1(ρ(x)) = σ(cj0j1(x)) for every x ∈ Uj0j1 ,
and such that there exists a globally Real family (sj)j∈J of sections sj ∈
Γ(Uj ,F) such that cj0j1 = sj1 − sj0 over all non-empty intersection Uj0j1 .

Finally, a Real 1-cochain c = (cj0j1) ∈ CR1
ss(U,F) can be seen as a family

of sections cj0j1 ∈ Γ(Uj0j1 ,F) satisfying c̄0 ̄1(ρ(x)) = σ(cj0j1(x)). Such a
cocyle is 1-cocyle if and only if one has (dc)j0j1j2 = 0 for all j0, j1, j2 ∈ J ; in
other words, cj0j1 + cj1j2 = cj0j2 over all non-empty intersection Uj0j1j2 .

We can apply Lemma 2.26 to generalize the definition of the Real coho-
mology groups relative to pre-simplicial Real open covers to arbitrary Real
open covers of (X•, ρ•).

Definition 2.35. Let (X•, ρ•) be a Real (pre-)simplicial space and let
(F•, σ•) ∈ Ob(Shρ•(X•)). For any Real open cover U• of (X•,F

•), we let

(2.26) CR∗(U•,F
•) := CR∗ss(\U•,F

•),

and we define the Real cohomology groups of U• with coefficients in (F•, σ•)
by

(2.27) HR∗(U•,F
•) := HR∗ss(\U•,F

•).

We head now toward the definition of the Real Čech cohomology ; roughly
speaking, given an Abelian Real (pre-)sheaf (F•, σ•) over a Real simplicial
space (X•, ρ•) , we want to define the Real cohomology groups HRn(X•,F

•)
as the inductive limit of the groups HRn(U•,F

•) over some category of Real
open covers of (X•, ρ•). To do this, we need some preliminaries elements.

Lemma 2.36. Let (X•, ρ•) and (F•, σ•) be as above. Assume U• and V• are
Real open covers of (X•, ρ•), with Un = (Unj )j∈Jn and Vn = (V n

i )i∈In. Then

all refinements θ• : (I•,
−) −→ (J•,

−) induces group homomorphisms

(2.28) θ∗n : HRn(U•,F
•) −→ HRn(V•,F

•).

Proof. In virtue of Lemma 2.26, one can assume that U• and V• are pre-
simplicial, and so that θ• is a pre-simplicial Real map. Define

θ∗n : CRn(U•,F
•) −→ CRn(V•,F

•)

as follows: for any c = (cj)j∈Jn ∈ CRn(U•,F
•), we put

(θ∗nc)i := c
θn(i)|V ni ;
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i.e., (θ∗nc)i is the image of cθn(i) by the canonical restriction

Fn(Unθn(i)) −→ Fn(V n
i ).

A straightforward calculation shows that this does define an element in
CRn(V•,F

•). Moreover, it is clear that θ∗n is a group homomorphism for
any n. Moreover, since θ• is pre-simplicial, ε̃k ◦ θn+1 = θn ◦ ε̃k. Then, for
i ∈ In+1, one has

(dθ∗n(c))i =
n+1∑
k=0

(−1)kε̃∗k(cθn◦ε̃k(i)|V nε̃k(i)
)

=

n+1∑
k=0

(−1)kε̃∗k(cε̃k◦θn+1(i)
)|V n+1

i

= (θ∗n+1d(c))i,

then dn◦θ∗n = θ∗n+1◦dn for all n ∈ N. It turns out that θ∗n maps ZRn(U•,F
•)

into ZRn(V•,F
•) and maps BRn(U•,F

•) into BRn(V•,F
•). Consequently,

θ∗n passes through the quotients: θ∗n([c]) := [θ∗n(c)], for c ∈ ZRn(U•,F
•). �

As noted in [21], the map HR∗(U•,F
•) −→ HR∗(V•,F

•) may depend on
the choice of the given refinement.

Definition 2.37. Let (X•, ρ•) and (F•, σ•) be as previously. Let U• and V•
be Real open covers of (X•, ρ•). Let φn, ψn : CRn(U•,F

•) −→ CRn(V•,F
•)

be two families of group homomorphisms commuting with d. We say that
(φn)n∈N and (ψn)n∈N are equivalent (resp. N -equivalent, for a given N ∈ N
such that the N -keleton of V• admits an N -simplicial Real structure) if for
all n ∈ N (resp. for all n ≤ N), there exists a group homomorphism hn :
CRn(U•,F

•) −→ CRn−1(V•,F
•), with the convention that CR−1(V•,F

•) =
{0} (and hN+1 = hN in case of N -equivalence), such that

(2.29) φn − ψn = dn−1 ◦ hn + hn+1 ◦ dn, ∀n ∈ N (resp. ∀n ≤ N).

Observe that such N -equivalent families φ• and ψ• induces group homo-
morphisms

HRn(U•,F
•) −→ HRn(V•,F

•),

also denoted by φn and ψn respectively, and given by φn([c]) := [φn(c)], and
ψn([c]) := [ψn(c)] for all c ∈ ZRn(U•,F

•). Assume

hn : CRn(U•,F
•) −→ CRn−1(V•,F

•)

is such that (2.29) holds for all n ≤ N , then for all c ∈ ZRn(U•,F
•), one

has
(φn − ψn)([c]) = [dn−1(hnc)] + [hn+1(dnc)] = 0;

in other words, φn and ψn define the same homomorphism fromHRn(U•,F
•)

to HRn(V•,F
•) when n ≤ N .

It is clear that (N -)equivalence of morphisms

φn : CRn(U•,F
•) −→ CRn(V•,F

•)
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is an equivalence relation. We also denote by φ• for the (N -)class of φ•.

Definition 2.38. Denote by N the collection of all Real open covers of
(X•, ρ•). Let U•, V• ∈ N. We say that V• is h-finer than U• if V• is finer
than U• in the sense of Definition 2.27, and if there exists N ∈ N such that
the N -skeleton of V• admits an N -simplicial Real strucutre. In this case,
we will write U• �N V• or U• �h V•.

We refer to [21, Lemma 4.5]) for the proof of the following:

Lemma 2.39. Let U• and V• be Real open covers of (X•, ρ•) such that
U• �N V•. If θ•, θ

′
• : (I•,

−) −→ (J•,
−) are two arbitrary refinements,

then their induced group homomorphisms θ∗• and (θ′•)
∗ are N -equivalent.

Consequently, there is a canonical morphism

HRn(U•,F
•) −→ HRn(V•,F

•)

for each n ≤ N .

Example 2.40. By Lemma 2.26, from anyy Real open cover U• of (X•, ρ•)
and anyy N ∈ N, one can form an N -simplicial Real open cover \NU• of

the N -skeleton of (X•, ρ•). Next, we define a new Real open cover \U
N
• by

setting

(2.30) \U
N
n :=

{
\NUn, if n ≤ N,
Un, if n ≥ N + 1.

It is clear that the N -skeleton of \U
N
• admits an N -simplicial Real structure.

Recall that \U
N
• is indexed by I•, with In = ΛNn if n ≤ N and In = Jn if

n ≥ N + 1. Now we get a refinement Nθ• : (I•,
−) −→ (J•,

−) by setting

(2.31) Nθn :=

{
ΛNn −→ Jn, λ 7−→ λ(Id[n]), if n ≤ N,
Id : Jn −→ Jn, if n ≥ N + 1,

hence U• �N \U
N
• for all N ∈ N. In particular, U• �0 U•.

We deduce from the example above that “�h” is a pre-order in the collec-

tion N. Suppose that U• �h V• �h W and K•
θ′•−→ I•

θ•−→ J• are refinements.
Then it is easy to check that the maps θ∗• and (θ′•)

∗ defined by (2.28) verify
the relation (θn ◦ θ′n)∗ = (θ′n)∗ ◦ θ∗n for all n ∈ N.

For n ∈ N, we denote by N(n) the collection of all elements U• ∈ N
such that U• �N U• for some N ≥ n + 1; i.e., U• ∈ N(n) if there is
N ≥ n + 1 such that the N -skeleton of U• admits an N -simplicial Real
structure. It is obvious that “�h” is also a preorder in N(n). Furthermore,
Lemma 2.39, states that if U• �h V• in N(n), there is a canonical map
HRn(U•,F

•) −→ HRn(V•,F
•). It follows that for all n ∈ N, the collection

{HRn(U•,F
•) | U• ∈ N(n)}

is a directed system of groups; this allows us to give the following definition.
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Definition 2.41. We define the nth Čech cohomology group of (X•, ρ•) with
coefficients in (F•, σ•) to be the direct limit

(2.32) ȞRn(X•,F
•) := lim−→

U•∈N(n)

HRn(U•,F
•).

Lemma 2.42. For every U• ∈ N, pre-simplicial or not, there is a canonical
group homomorphism

θU• : HRn(U•,F
•) −→ ȞRn(X•,F

•),

for all n ∈ N.

Proof. For every U• ∈ N (simplicial or not), and for every n ∈ N, we define
the map

θU• : HRn(U•,F
•) −→ ȞRn(X•,F

•)

by composing the canonical homomorphism

Nθ
∗
n : HRn(U•,F

•) −→ HRn(\U
N
• ,F

•)

with the canonical projection

pNU• : HRn(\U
N
• ,F

•) −→ ȞRn(X•,F
•),

for some N ≥ n + 1; i.e., θU• = pNU• ◦ Nθ
∗
n (recall that Nθn is defined

by (2.31)). �

Let (F•, σ•) and (G•, ς•) be Abelian Real sheaves on a Real simplicial
space (X•, ρ•). Suppose that φ• = (φn)n∈N : (F•, σ•) −→ (G•, ς•) is a
morphism of Abelian Real (pre)sheaves, and that U• is a Real open cover of
(X•, ρ•). Consider the pre-simplicial Real open cover \U• associated to U•.
Then for any n ∈ N, and any λ ∈ Λn, there is a morphism of Abelian groups

(2.33) φ̃n : Fn(Unλ ) −→ Gn(Unλ ), sλ 7−→ φn|Unλ (sλ),

satisfying ςnUnλ
◦ φ̃n = φ̃n ◦ σUn

λ̄
. This gives a group homomorphism

φ̃n : CRnss(\U•,F
•)σ• −→ CRnss(\U•,G

•)ς• .

Moreover, for any λ ∈ Λn+1 and any k ∈ [n + 1], one has a commutative
diagram

Fn(Unε̃k(λ))

ε̃∗k
��

φn|Un
ε̃k(λ)
// Gn(Unε̃k(λ))

ε̃∗k
��

Fn+1(Un+1
λ )

φ
n+1|Un+1

λ // Gn+1(Un+1
λ ).
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Thus, dn ◦ φ̃n = φ̃n+1 ◦ dn; i.e., one has a commutative diagram

(2.34) CRnss(\U•,F
•)σ•

φ̃n
��

dn // CRn+1
ss (\U•,F

•)σ•

φ̃n+1

��

CRnss(\U•,G
•)ς•

dn // CRn+1
ss (\U•,G

•)ς•

that shows that φ gives rise to a homomorphism of Abelian groups

(φU•)∗ : HRn(U•,F
•)σ• −→ HRn(U•,G

•)ς• ,(2.35)

[c] 7−→ [φ̃n(c)];

and therefore a group homomorphism

φ∗ : ȞRn(X•,F
•)σ• −→ ȞRn(X•,G

•)ς•

defined in the obvious way. We thus have shown that ȞR∗ is functorial in
the category Shρ•(X•).

Proposition 2.43. Suppose (X•, ρ•) is a Real simplicial space such that
each Xn is paracompact. If

0 −→ (F′•, σ′•)
φ′•−→ (F•, σ•)

φ•−→ (F”•, σ”•) −→ 0

is an exact sequence of Real (pre-)sheaves over (X•, ρ•), then there is a long
exact sequence of Abelian groups

0 −→ ȞR0(X•,F
′•)

φ′∗−→ ȞR0(X•,F
•)

φ∗−→ ȞR0(X•,F”•)

∂−→ ȞR1(X•,F
′•)

φ′∗−→ · · ·

The proof of this proposition is almost the same as in [21, §4].

2.7. Comparison with usual groupoid cohomologies. In this subsec-
tion we compare our cohomology with the usual cohomology theory in some
special cases, especially with that developed in [21].

Proposition 2.44. Suppose S is an Abelian Real group. Let rS be the fixed
point subgroup of S. Let (G, ρ) be a Real groupoid. Then if ρ is trivial , we
have

ȞR∗(G•,S) = Ȟ∗(G•,
rS).

In particular, if S has no non-trivial fixed point, we have ȞR∗(G•,S) = 0.

Notice that this result generalizes easily to the Real cohomology with
coefficients in a Real sheaf induced from a Real G-module.

Proof. Let (cλ) ∈ ZRn(U•, S). Since ρ = Id, we may take the involution
on J• to be trivial. For every −→g ∈ Unλ , we have

cλ(−→g ) = cλ(−→g ) = cλ(−→g ) ∈ rS.

Thus cλ ∈ ZRn(U•,
rS).
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Conversely, we obviously have Ȟn(G•,
rS) ⊂ ȞRn(G•,S) since ρ is trivial.

�

Corollary 2.45. If ρ and the Real structure of S are trivial, then

Ȟ∗(G•,S) = Ȟ∗(G•,S).

Focus now on the case where G reduces to a Real space (X, τ) and S = Z0,1.
Then τ induces an action of Z2 on X by (−1) · x := τ(x), (+1) · x := x.

Proposition 2.46. We have the following group isomorphisms:

(i) ȞR∗(X,Z0,1) ∼= Ȟ∗(Z2,−)(X,Z), where the sign “−” stands for the

Z2-equivariant cohomology with respect to the action of Z2 on Z given
by (−1) · n := −n, (+1) · n := n.

(ii) Ȟ∗(X,Z) ∼=Q Ȟ∗(Z2,−)(X,Z) ⊕ Ȟ∗(Z2,+)(X,Z), where the sign “+”

means the trivial Z2-action on Z.

Proof. (i) Let c ∈ ȞRn(X,Z0,1) be represented on the Real open cover (Uj)
of X. Then c̄0...̄n(τ(x)) = −cj0...jn(x) implies τ∗cj0...jn(x) = −cj0...jn(x),
∀x ∈ X; in other words, c is Z2-equivariant with respect to the Z2-action
“−” on Z. The converse is easy to check.

(ii) We define the involution τ̃ on Ȟn(X,Z) by τ̃(c) := −τ∗c. Then it
is straightforward that the Real part rȞn(X,Z) ∼= ȞRn(X,Z0,1), while the
imaginary part IȞn(X,Z) is exactly Ȟn

(Z2,+)(X,Z). �

2.8. The group ȞR0. We shall recall the notations of [21, Section 4] that
we will use throughout the rest of the section. Let U• be a Real open cover
of a Real simplicial space (X•, ρ•) and let \U• be its associated pre-simplicial

Real open cover. Recall that any ϕ ∈ Pkn is represented by its image in [n];
i.e., ϕ = {ϕ(0), . . . , ϕ(k)}. Then Pn is nothing but the collection of all non
empty subsets of [n]. Henceforth, any subset S = {i0, . . . , ik} ⊆ [n], with
i0 ≤ · · · ≤ ik, designates the maps ϕ ∈ Pkn such that ϕ(0) = i0, . . . , ϕ(k) =
ik.

Notations 2.47. With the above observations, any element λ ∈ Λn is rep-
resented by a (2n+1−1)− tuple (λS)∅6=S⊆[n], where the subsets S are ordered
first by cardinality, then by lexicographic order; i.e.,

S ∈
{
{0}, . . . , {n}, {0, 1}, . . . , {0, n}, {1, 2}, . . . , {1, n},

. . . , {0, 1, 2}, . . . , {0, . . . , n}
}
,

and λS := λ(S). For instance, any element λ ∈ Λ1 is represented by a triple
(λ0, λ1, λ01), with λ0 = λ({0}), λ1 = λ({1}) and λ01 = λ({0, 1}).

Recall that if (F•, σ•) is an abelian Real sheaf over (X•, ρ•), we are given
two “restriction” maps on the space of global Real sections

ε̃∗0, ε̃
∗
1 : F0(X0)σ0 −→ F1(X1)σ1 .
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Let us set

Γinv(F•)σ• := ker
(
F0(X0)σ0

//ε̃∗0

ε̃∗1

// F1(X1)σ1

)
=
{
s ∈ F0(X0)σ0 | ε̃∗0(s) = ε̃∗1(s)

}
.

Proposition 2.48 ([21, Proposition 5.1]). Let (F•, σ•) be an abelian Real
sheaf over (X•, ρ•) and let U• be a Real open cover of (X•, ρ•). Then

(2.36) ȞR0(X•,F
•)σ• ∼= HR0(U•,F

•)σ• ∼= Γinv(F•)σ• .

Proof. One identifies Λ0 with J0. Note that P1 = {ε1
0, ε

1
1, Id[1]}, and that for

any λ = (λ0, λ1, λ01) in Λ1 one has ε̃0(λ) = λ(ε0) = λ1, ε̃1(λ) = λ(ε1) = λ0.
We thus have U1

λ = U1
λ01
∩ ε̃−1

0 (U0
λ1

) ∩ ε̃−1
1 (U0

λ0
). Now, let (sλ0)λ0∈J0 ∈

ZR0(U•,F
•)σ• . Then

(2.37) 0 = (ds)(λ0,λ1,λ01) = ε̃∗0(sλ1)− ε̃∗1(sλ0), on U1
λ ,

Therefore, ε̃∗0(sλ1) = ε̃∗1(sλ0) on ε̃−1
0 (U0

λ1
)∩ ε̃−1

1 (U0
λ0

), and ε̃∗0(sλ̄1
) = ε̃∗1(sλ̄0

)

on ε̃−1
0 (U0

λ̄1
) ∩ ε̃−1

1 (U0
λ̄0

), for all λ0, λ1 ∈ J0. Applying η̃∗0 to both sides of

the above identity, we get that sλ0 = sλ1 and sλ̄0
= sλ̄1

; in other words,

sλ0 = sλ1 on U0
λ0
∩ U0

λ1
for all λ0, λ0 ∈ J0. Since (F0, σ0) is a Real sheaf on

(X0, ρ0), there exists a global Real sections s ∈ F0(X0)σ0 such that sU0
λ0

= sλ0

for all λ0 ∈ J0. Now, equation (2.37) is equivalent to ε̃∗0(s) = ε̃∗1(s); i.e.,
s ∈ Γinv(F•)σ• and this ends the proof. �

2.9. ȞR1 and the Real Picard group. Let us consider the same data
as in the previous subsection. Let U• be a Real open cover of (X•, ρ•). For
λ = (λ0, λ1, λ2, λ01, λ02, λ12, λ012) ∈ Λ2, one has

(2.38) U2
λ =

ϕ̃−1
00 (U0

λ0
)∩ϕ̃−1

01 (U0
λ1

)∩ϕ̃−1
02 (U0

λ2
)∩ε̃−1

2 (U1
λ01

)∩ε̃−1
1 (U1

λ02
)∩ε̃−1

0 (U1
λ12

)∩U2
λ012

,

where ϕ00 = ε2
1 ◦ ε1

1, ϕ01 = ε2
0 ◦ ε1

0 and ϕ02 = ε2
1 ◦ ε1

0.
Let c = (cλ)λ∈Λ1 ∈ ZR1(U•,F

•)σ• . Then

(2.39) 0 = (dc)λ0λ1λ2λ01λ02λ12λ012 = ε̃∗0cλ1λ2λ12 − ε̃∗1cλ0λ2λ02 + ε̃∗2cλ0λ1λ02 ,

on U2
λ , and of course we get a similar identities for (dc)λ̄0λ̄1λ̄2λ̄01λ̄02λ̄12λ̄012

on

U2
λ̄
. Now applying η̃∗1 to (2.39), we obtain

cλ0λ1λ01 = cλ0λ1λ02 − cλ1λ2λ12

on ε̃−1
1 (U0

λ0
) ∩ ε̃−1

0 (U0
λ1

) ∩ ε̃−1
0 (U0

λ2
) ∩ U1

λ01
∩ U1

λ02
∩ U1

λ12
∩ η̃−1

1 (U2
λ012

), which
means that for any λ0, λ1, λ01 ∈ J0, sλ0λ1λ01 does not depends on the choice
of λ01. Therefore, there exists a Real family

(fλ0λ1) ∈
∏

λ0,λ1∈Λ0

F1
(
ε̃−1

1 (U0
λ0

) ∩ ε̃−1
0 (U0

λ1
)
)
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such that fλ0λ1|U1
λ0λ1λ01

= cλ0λ1λ01 for any (λ0, λ1, λ01) ∈ Λ1. Now, the

cocycle relation (2.39) becomes

(2.40) ε̃∗0fλ1λ2 − ε̃∗1fλ0λ2 + ε̃∗2fλ0λ1

on U1
λ0λ1λ01

∩ U1
λ02
∩ U1

λ12
.

Let (G, ρ) be a locally compact Hausdorff Real groupoid. We are interested
in the 1st Real Čech cohomology group of (G•, ρ•) with coefficients in the
Abelian Real sheaf (S•, σ•) = (S, σ) over (G•, ρ•) associated to the Real G-
module (X × S, ρ × −), where (S, −) is an Abelian group endowed with
the trivial G-action. Note that in this case, for any pre-simplicial Real open
cover U• ∈ N(n) of (G•, ρ•), elements of the group CRn(U•, S

•) are of the

form (cλ)λ∈Λn , where cλ ∈ Γ(Unλ , S) are such that cλ̄(ρn(−→g )) = cλ(−→g ) ∈ S
for any −→g ∈ Unλ ⊂ Gn.

Proposition 2.49. With the above notations, the Real Čech cohomology
group ȞR1(G•,S) is isomorphic to the group HomRG(G, S) of isomorphism
classes of Real generalized homomorphisms (G, ρ) −→ (S, −).

Proof. The operations in HomRG(G, S) are defined as follows. If

(Z, τ), (Z ′, τ ′) : (G, ρ) −→ (S, −)

are Real generalized homomorphisms, their sum is

(2.41) (Z, τ) + (Z ′, τ ′) := Z ×X Z ′/∼

where (z, z′) ∼ (z · t−1, z′ · t) for all t ∈ S, together with the obvious Real
structure τ × τ ′. The inverse of (Z, τ) is (Z−1, τ), where Z−1 is Z as a
topological space, and if [ : Z ↪→ Z−1 is the identity map, then the S-action
on Z−1 is defined by [(z)·t := [(z ·t−1) and the G-action is defined as follows:
(g, [(z)) ∈ Gn Z−1 if and only if (g, z) ∈ Gn Z, in which case we set

g · [(z) := [(g · z).
Finally, the Real structure on Z−1 is τ([(z)) := [(τ(z)). Then we define
the sum in HomRG(G, S) by [Z, τ ] + [Z ′, τ ′] := [(Z, τ) + (Z ′, τ ′)], and we
put [Z, τ ]−1 := [(Z−1, τ)]. It is not hard to check that subject to these
operations, HomRG(G, S) is an Abelian group.

Now, suppose we are given a Real open cover U0 = (U0
j )j∈J0 of (X, ρ)

trivializing the Real generalized homomorphism (Z, τ) : (G, ρ) −→ (S, −).
Let (sj)j∈J0 be a Real family of local sections of the S-principal Real bundle
r : (Z, τ) −→ (X, ρ). Form a pre-simplicial Real open cover U• of the Real
simplicial space (G•, ρ•) by setting Jn := Jn+1

0 , Un := (Un(j0,...,jn))(j0,...,jn)∈Jn ,

where

(2.42) Un(j0,...,jn) :={
(g1, . . . , gn) ∈ Gn

∣∣∣ r(g1) ∈ U0
j0 , . . . , r(gn) ∈ U0

jn−1
, s(gn) ∈ U0

jn

}
.
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Then, for all g ∈ U1
(j0,j1), r(g · sj1(s(g))) = r(g) = r(sj0(r(g))); hence, there

exists a unique element cj0j1(g) ∈ S such that g·sj1(s(g)) = sj0(r(g))·cj0j1(g).
We then obtain a family of continuous functions cj0j1 : U1

(j0,j1) −→ S such

that

(2.43) g · sj1(s(g)) = sj0(r(g)) · cj0j1(g), ∀g ∈ U1
(j0,j1).

Note further that U1
(j0,j1) = ε̃−1

0 (U0
j1

) ∩ ε̃−1
1 (U0

j0
). Let (g1, g2) ∈ U2

(j0,j1,j2).

Then

(g1g2) · sj2(s(g2)) = g1 · sj1(r(g2)) · cj1j2(g2) = g1 · sj1(s(g1)) · cj1j2(g2)

= sj0(r(g1)) · cj0j1(g1) · cj1j2(g2);

hence cj0j2(g1g2) = cj0j1(g1) · cj1j2(g2). In other words,

ε̃∗0cε̃0(j0,j1,j2) · (ε̃∗1cε̃1(j0,j1,j2))
−1 · ε̃∗2cε̃2(j0,j1,j2) = 1

over all U2
(j0,j1,j2). Moreover, we clearly have c̄0 ̄1(ρ(g)) = cj0j1(g) ∈ S. This

gives us a Real 1-cocycle (cj0j1)(j0,j1)∈J1
∈ ZR1(U•, S

•).
Suppose f : (Z, τ) −→ (Z ′, τ ′) is an isomorphism of Real generalized

morphisms (see chapter 2). Up to a refinement, we can choose U0 in such a
way that we have two Real families (sj)j∈J0 , (s′)j∈J0 of local sections of the
Real projections r : (Z, τ) −→ (X, ρ) and r′ : (Z ′, τ ′) −→ (X, ρ) respectively.
Since for all j ∈ J0 and x ∈ Uj , r′(fUj (sj)(x)) = r(sj(x)) = x = r′(s′j(x)),

there exists a unique element ϕj(x) ∈ S such that s′j(x) = fUj (sj(x)) ·ϕj(x),
and this gives a Real family of continuous functions ϕj : Uj −→ S. It follows
that if c = (cj0j1) and c′ = (c′j0j1) are the Real 1-cocycle associated to (Z, τ)

and (Z ′, τ ′) respectively. Then, over U1
(j0,j1), one has

g · fUj1 (sj1(s(g))) · ϕj1 = fUj0 (sj0(r(g))) · ϕj0(r(g)) · c′j0j1(g);

But, since f is G-S-equivariant, we get

fUj0 (sj0 (r(g))) · cj0j1(g) · ϕj1(s(g)) = fUj0 (sj0(r(g))) · ϕj0(r(g)) · c′j0j1(g);

thus c′j0j1(g)·c−1
j0j1

(g) = ϕj1(s(g))·ϕj0(r(g))−1, or (c′ ·c−1)(j0,j1) = ε̃∗0ϕε̃0(j0,j1) ·
ε̃∗1ϕ

−1
ε̃1(j0,j1) for all (j0, j1) ∈ J1. This shows that c′.c−1 ∈ BR1(U•,S). We

then deduce a well-defined group homomorphism
(2.44)

c1 : HomRG(G, S) −→ ȞR1(G•,S), c1([Z, τ ]) := [cj0j1 ] ∈ HR1(U•,S),

where U• is the Real open cover defined from any Real local trivialization
of (Z, τ).

Conversely, given a Real Čech 1-cocycle c = (cλ0λ1) over a pre-simplicial
Real open cover U• ∈ N(1), we let Z :=

∐
λ0∈Λ0

Uλ0 × S, together with the
Real structure ν defined by ν(x, t) := (ρ(x), t̄), and equipped with the Real
G-action g ·(s(g), t) := (r(g), cλ0λ1(g) · t) for any g ∈ U1

λ0λ1λ01
, t ∈ S, and the

obvious Real S-action. It is easy to see that the canonical projections define
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a Real generalized morphism (Z, ν) : (G, ρ) −→ (S, −). One can check that
if [c] = [c′] then (Z, τ) ∼= (Z ′, τ ′) by working backwards. �

Remark 2.50. Suppose that (S, σ) is a non-abelian Real group. Then we
still can talk about Čech Real 1-cocycles on (G•, ρ•) with coefficients on the
non-Abelian Real sheaf (S•, σ•), and then form in the same way ȞR1(G•, S

•)
as a set. However, there is no reason for ȞR1(G•,S) to be an Abelian group,
it is not even a group since the sum of a Real 1-cocycle is not necessarily
a Real 1-cocycle. Nevertheless, the result above remains valid in the sense
that there is a bijection between the set HomRG(G,S) of isomorphism classes
of generalized Real morphism (G, ρ) −→ (S, σ) and the set ȞR1(G•, S).

A particular example of Proposition 2.49 is when S = S1 together with
the complex conjugation as Real structure; in this case, the associated Real
sheaf is denoted by S1 as mentioned earlier. It is well known that the Picard
group Pic(X) of a locally compact topological space X is isomorphic to the
1st sheaf cohomology group H1(X,S1

X) (see for instance [3, Chap. 2]). In
the Real case, we shall introduce the Real Picard group PicR(G) of a Real
groupoid, and we will apply Proposition 2.49 to get an analogous result.

Definition 2.51 (Real line G-bundle).

(1) By a Real line G-bundle we mean a Real G-space (L, ν), and a contin-
uous surjective Real map π : (L, ν) −→ (X, ρ) such that π : L −→ X
is a complex vector bundle of rank 1, and such that for every x ∈ X,
the induced isomorphism νx : Lx −→ Lρ(x) is C-anti-linear in the
sense that νx(v · z) = νx(v) · z̄.

(2) A homomorphism from a Real line G-bundle (L, ν) to a Real line
G-bundle (L′, ν ′) is a homormophism of complex vector bundles φ :
L −→ L′ intertwining the Real structures and which is G-equivariant;
i.e., φ(g · v) = g · φ(v) for any (g, v) ∈ Gn L.

(3) We say that a Real line G-bundle (L, ν) is locally trivial if there
exists a Real open cover U of (X, ρ), and a family of isomorphisms
of complex vector bundles ϕj : Uj × C −→ L|Uj such that:

• ϕ̄(ρ(x), z̄) = νUj (ϕj(x, z)) for all x ∈ Uj and (x, z) ∈ Uj × C.

• If r(g) ∈ Uj0 and s(g) ∈ Uj1 , then one has

g.ϕj1(s(g), z) = ϕj0(r(g), z).

Example 2.52. The trivial action G on X×C (i.e., g · (s(g), z) := (r(g), z))
is Real; moreover, the canonical projection X ×C −→ X defines a Real line
G-bundle that we call trivial.

Definition 2.53 (Real hermitian G-metric). Let (L, ν) be a locally trivial
Real line G-bundle. A Real hermitian G-metric on (L, ν) is a continuous
function h : L −→ R+ such that:

• h(ν(v)) = h(v), and h(v · z) = h(v) · |z|2, for all v ∈ L, z ∈ C.
• h(g · v) = h(v), for all (g, v) ∈ Gn L.
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• h(v) > 0 whenever v ∈ L+ := L r , where  : X ↪→ L is the
zero-section.

If such h exists, (L, ν,h) is called a hermitian Real line G-bundle (we will
often omit the metric).

Definition 2.54 (The Real Picard group). The Real Picard group of (G, ρ)
is defined as the set of isomorphism classes of locally trivial hermitian Real
line G-bundles. This “group” is denoted by PicR(G).

Theorem 2.55. (compare with [3, Theorem 2.1.8]). Let (G, ρ) be a locally
compact Hausdorff Real groupoid. Then PicR(G) is an Abelian group. Fur-
thermore,

PicR(G) ∼= ȞR1(G•,S1).

Proof. Associated to any hermitian Real line G-bundle π : (L, ν) −→ (X, ρ),
there is a Real generalized morphism (L1, ν) : (G, ρ) −→ (S1, −) obtained
by setting

(2.45) L1 := {v ∈ L | h(v) = 1} .

π : (L1, ν) −→ (X, ρ) is indeed an S1-principal Real bundle, and L1 is
invariant under the action of G. Hence (L1, ν) is indeed a Real generalized

morphism. Conversely, if (L̃, ν̃) : (G, ρ) −→ (S1, −) is a Real generalized

morphism, define L := L̃ ×S1 C, where S1 acts by multiplication on C;
ν(v, z) := (ν̃(v), z̄), g ·(v, z) := (g ·v, z) for (g, v) ∈ GnL̃, and h(v, z) := |z|2.
Then (L, ν,h) is a hermitian Real line G-bundle. Moreover, it is not hard
to check that if (L, ν,h) and (L′, ν ′, h′) are isomorphic hermitian Real line
G-bundles, then their associated Real generalized homomorphisms (L1, ν)
and ((L′)1, ν ′) are isomorphic. We then have a map

(2.46) PicR(G) −→ H1(G, S1)ρ, [(L, ν,h)] 7−→ [L1, ν]

which is clearly an isomorphism of Abelian groups. Now, applying Proposi-
tion 2.49, we get the desired result. �

2.10. ȞR2 and ungraded Real extensions. Let us consider the sub-

group êxtR
+

(Γ, S) of ungraded Real S-twists of the Real groupoid Γ; that is

(Γ̃, δ) is ungraded if δ = 0. Similarly, we define the subgroup ÊxtR
+

(G, S)

of ÊxtR(G, S) of ungraded Real S-central extensions over G. Elements of

ÊxtR
+

(G,S) will then be denoted by pairs of the form (Γ̃,Γ).

Let T = S // G̃
π // G[U0] ∈ êxtR

+
(G[U0],S) be an ungraded Real

S-twist, for a fixed Real open cover U0 = (U0
j )j∈J0 . Consider again the

pre-simplicial Real open cover U• of (G•, ρ•) defined by (2.42). Recall that
the groupoid G[U0] is defined by

G[U0] =
{

(j0, g, j1) ∈ J0 × G× J0 | g ∈ U1
(j0,j1)

}
.
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Suppose that the S-principal Real bundle π : (G̃, ρ̃) −→ (G[U0], ρ) admits
a Real family of local continuous sections sj0j1 relative to the Real open
cover V1 of (G[U0], ρ) given by V1 = (V 1

(j0,j1))(j0,j1)∈J1
, where

V 1
(j0,j1) := {j0} × U1

(j0,j1) × {j1}.

Then, for any (g1, g2) ∈ U2
(j0,j1,j2), we have that

π(sj0j1(j0, g1, j1) · sj1j2(j1, g2, j2)) = π(sj0j1(j0, g1, j1)) · π(sj1j2(j1, g2, j2))

= (j0, g1g2, j2) = π(sj0j2(j0, g1g2, j2));

thus, there exists a unique element ω(j0,j1,j2)(g1, g2) ∈ S such that

(2.47) sj0j2(j0, g1g2, j2) = ω(j0,j1,j2)(g1, g2) · sj0j1(j0, g1, j1).sj1j2(j1, g2, j2).

This provides a family of continuous functions ω(j0,j1,j2) : U2
(j0,j1,j2) −→ S

determined by (2.47) and that clearly verifies

ω(̄0,̄1,̄2)(ρ(g1), ρ(g2)) = ω(j0,j1,j2)(g1, g2), ∀(g1, g2) ∈ U2
(j0,j1,j2) ⊂ G2.

It is straightforward that the family (ω(j0,j1,j2)) verifies the cocycle condition;

hence we obtain a Real Čech 2-cocycle

(2.48) ω(T) := (ω(j0,j1,j2))(j0,j1,j2)∈J2
∈ ZR2(U•,S)

associated to T.
In fact, this construction generalizes to arbitrary Real open covers U• of

(G•, ρ•).

Lemma 2.56 (Cf. Proposition 5.6 in [21]). Let (G, ρ) be a topological Real

groupoid. Given a Real open cover U• of (G•, ρ•), let êxtR
+

U (G[U0],S) denote

the subgroup of all twists S // G̃
π // G[U0] ∈ êxtR

+
(G[U0],S) such that

π admits a Real family of local continuous sections

sλ : {λ0} × Uλ × {λ1} −→ G̃

relative to the Real open cover

V1 := ({λ0} × U1
(λ0,λ1,λ01) × {λ1})(λ0,λ1,λ01)∈Λ1

of (G[U0], ρ). Then the canonical map

(2.49) êxtR
+

U (G[U0],S) −→ HR2(U•,S), [T] 7−→ [ω(T)],

is a group isomorphism.

Proof. First, we prove êxtR
+

U (G[U0], S) is a subgroup of êxtR
+

(G[U0],S).
Let

T = ( S // G̃
π // G[U0] ), T′ = ( S // G̃′

π′ // G[U0] )
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be representatives in êxtR
+

U (G[U0],S). Then their tensor product (see (1.8))
is

T⊗̂T′ := ( S // G̃⊗̂G̃′ π // G[U0] , 0),

where G̃⊗̂G̃′ = G̃×G[U0] G̃
′/S. Let

fλ : {λ0} × U1
λ × {λ1} −→ G̃,

f ′λ : {λ0} × U1
λ × {λ1} −→ G̃′

be Real families of continuous local sections of π and π′ respectively. Then
we get a Real family of continuous local sections

sλ : {λ0} × U1
λ × {λ1} −→ G̃⊗̂G̃′

for π by setting

sλ(λ0, g, λ1) :=
[
(fλ(λ0, g, λ1), f ′λ(λ0, g, λ1))

]
,

which implies that T⊗̂T′ ∈ êxtR
+

U (G[U0],S.
Now let T be an (ungraded) Real twist of (G[U0], ρ) such that π verifies

the condition of the lemma. Assume that T′ is any Real twist of (G[U0], ρ)

isomorphic to T. Let f : G̃ −→ G̃′ be a Real S-equivariant isomorphism that
makes the following diagram

(2.50) G̃
π //

f
��

G[U0]

G̃′
π′

==

commute. Thus, given a Real family sλ : {λ0} ×U1
λ × {λ1} −→ G̃, the maps

f ◦ sλ : {λ0} × U1
λ × {λ1} −→ G̃′ define a Real family of local continuous

sections for π′; hence the class [T] ∈ êxtR
+

U (G[U0],S1).
Suppose we are given a representative

T = S // G̃
π // G[U0]

in êxtR
+

U (G[U0],S). Recall that for (λ0, λ1, λ01) ∈ Λ1,

U1
λ0λ1λ01

= U1
λ01
∩ r−1(U0

λ0
) ∩ s−1(U0

λ1
),

and for λ = (λ0, λ1, λ2λ01, λ02, λ12, λ012) ∈ Λ2, we have from (2.38) that

U2
λ = ε̃−1

1 ◦ r
−1(U0

λ0
) ∩ ε̃−1

0 ◦ s
−1(U0

λ1
) ∩ ε̃−1

1 ◦ s
−1(U0

λ2
)

∩ ε̃−1
2 (U1

λ01
) ∩ ε̃−1(U1

λ02
) ∩ ε̃−1

0 (U1
λ12

) ∩ U2
λ012

.

Then, for all (g1, g2) ∈ U2
λ , one has:

• g1g2 = ε̃1(g1, g2) ∈ r−1(U0
λ0

) ∩ s−1(U0
λ2

) ∩ U1
λ02

= U1
λ0λ2λ02

;
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• g1 = ε̃2(g1, g2) ∈ U1
λ01

, g2 = ε̃0(g1, g2) ∈ s−1(U0
λ1

) ∩ U1
λ12

, and hence

g1 ∈ r−1(U0
λ0

) ∩ s−1(U0
λ1

) ∩ U1
λ01

= U1
λ0λ1λ01

,

g2 ∈ r−1(U0
λ1

) ∩ s−1(U0
λ2

) ∩ U1
λ12

= U1
λ1λ2λ12

.

Then as in the discussion before the lemma (see (2.48)), there exists a Real
family of functions ωλ : U2

λ −→ S1 such that
(2.51)
sλ0λ2λ02(λ0, g1g2, λ2) = ωλ(g1, g2) · sλ0λ1λ01(λ0, g1, λ1) · sλ1λ2λ12(λ1, g2, λ2)

and ωλ̄(ρ(g1), ρ(g2)) = ωλ(g1, g2), for all (g1, g2) ∈ U2
λ0λ1λ2λ01λ02λ12λ012

. More-
over, it is easy to verify by a routine calculation that (ωλ)λ∈Λ2 verify the
cocycle condition on

U3
λ0λ1λ2λ3λ01λ02λ03λ12λ13λ23λ0123

⊂ G2;

thus, we have constructed a Real Čech 2-cocyle (ωλ)λ∈Λ2 ∈ ZR2(U•, S)
associated to T.

Assume that (s̃λ)λ∈Λ2 is another Real family of continuous local sections
of π, and that (ω̃λ)λ∈Λ2 ∈ ZR2(U•,S) is its associated Real Čech 2-cocycle.
Then for any (λ0, λ1, λ01) ∈ Λ1 and g ∈ U1

λ0λ1λ01
, there exists a unique

cλ0λ1λ01(g) ∈ S such that

(2.52) s̃λ0λ1λ01(g) = cλ0λ1λ01(g) · sλ0λ1λ01(g),

where we abusively write, for instance, sλ0λ1λ01(g) for sλ0λ1λ01(λ0, g, λ1).
Since (s̃λ0λ1λ01) and sλ0λ1λ01 are Real families, we have that

cλ̄0λ̄1λ̄01
(ρ(g)) = cλ0λ1λ01(g) for all g ∈ U1

λ0λ1λ01
.

It turns out that the cλ0λ1λ01 ’s define an element in CR1(U•, S). Moreover,
for λ ∈ Λ2 as previously, and for (g1, g2) ∈ U2

λ , we obtain from (2.51)
and (2.52)

s
λ0λ2λ02

(g1g2) = c
λ0λ2λ02

(g1g2)−1 · c
λ0λ1λ01

(g1) · c
λ1λ2λ12

(g2) · ω̃λ(g1, g2)

·s
λ0λ1λ01

(g1) · s
λ1λ2λ12

(g2);

and

(ωλ · ω̃−1
λ )(g1, g2) = cλ0λ2λ02(g1g2)−1.cλ0λ1λ01(g1) · cλ1λ2λ12(g2)

= (dc)λ(g1, g2);

hence ((ω · ω̃−1)λ)λ∈Λ2 ∈ BR2(U•,S1). I.e., the class in HR2(U•, S) of the
Real 2-cocycle (ωλ) does not depend on the choice of the Real family of local
sections of π.

We want now to check that the map (2.49) is well-defined. To do so,

suppose that T and T′ are equivalent in êxtRU(G[U0], S), and that (sλ0λ1λ01)
and s′λ0λ1λ01

are Real family of local continuous sections of π and π′. Let

us keep the diagram (2.50). Let (ωλ)λ∈Λ2 and (ω′λ)λ∈Λ2 be the associated
Real 2-cocycles in ZR2(U•,S) of T and T′ respectively. Then we define an
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element (bλ0λ1λ01) ∈ CR1(U•, S) as follows: for any g ∈ U1
λ0λ1λ01

, bλ0λ1λ01(g)
is the unique element of S such that

(2.53) s′λ0λ1λ01
(g) = bλ0λ1λ01(g) · f ◦ sλ0λ1λ01(g).

This is well-defined since

π′(s′λ0λ1λ01
(g)) = π(sλ0λ1λ01(g)) = π′(f ◦ sλ0λ1λ01(g)).

Furthermore, the functions f ◦ sλ0λ1λ01 , (λ0, λ1, λ01) ∈ Λ1, defines a globally
Real family of local continuous sections of π. Then, for all λ ∈ Λ2 and all
(g1, g2) ∈ U2

λ , we can write

f ◦ sλ0λ2λ02(g1g2) = ωλ(g1, g2) · f ◦ sλ0λ1λ01(g1) · f ◦ sλ1λ2λ12(g2),

up to a multiplication of ωλ by a Real 2-coboundary. It then follows that

ωλ(g1, g2) · ω′λ(g1, g2)−1 = bλ0λ2λ02(g1g2)−1 · bλ0λ1λ01(g1) · bλ1λ2λ12(g2)

= (db)λ(g1, g2).

Consequently, (ωλ)λ∈Λ2 depends only on the class of T in êxtRU(G[U0], S).
The fact that (δλ0λ1λ01) also depends only on the class of T is straightforward.

We then have proved that any element [T] in êxtRU(G[U0], S) determines a
unique cohomology class

(2.54) [ω(T)] ∈ HR2(U•,S).

Conversely, given a pair (ωλ)λ∈Λ2 ∈ ZR2(U•,S), we want to construct an

ungraded Real extension of (G[U0], ρ) which is in êxtR
+

U (G[U0], S). For this
we proceed as in the proof of Proposition 5.6 in [21]. For λ ∈ Λ2, put

µ01 := (λ0, λ01, λ1),

µ02 := (λ0, λ02, λ2),

µ12 := (λ1, λ12, λ2).

Let cµ01µ02µ12 := ωλ. We have V1 = (V 1
µ01

)i∈I1 , where I1 consists of triples

µ01 = (λ0, λ01, λ1) and V 1
µ01

:= {λ0} × U1
λ0λ1λ01

× {λ1}. I1 is equipped with
the obvious involution, so that V1 is a Real open cover of G[U0]. We set

Γ̃ω :=
∐

µ01∈I1

{(t, g, µ01) | t ∈ S, g ∈ V 1
µ01
}/ ∼,

subject to the product law

[t1, g1, µ01] · [t1, g2, µ12] = [t1 · t2 · cµ01µ02µ12(g1, g2), g1g2, µ02],

where

(2.55) (t, g, µ12) ∼ (cµ01µ01µ01(r(g), r(g))−1 · t · cµ01µ02µ12(r(g), g), g, µ02).

The projection π : Γ̃ω −→ G[U0] is defined by π([t, g, µ01]) := g, and the
Real structure is

[t, g, µ01] := [t̄, ρ(g), µ01].
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It is straightforward to see that these operations give Γ̃ω the structure of

ungraded Real S-twist of G[U0]; what is more, the maps sµ01 : V 1
µ01
−→ Γ̃ω

defined by sµ01(g) := [0, g, µ01] are a Real family of continuous sections of π,
so that the Real extension

T = S // Γ̃ω
π // G[U0]

is in êxtR
+

U (G[U0], S). It is also clear that [ω(T)] = [ω]. �

Corollary 2.57. We have ÊxtR
+

(G, S) ∼= ȞR2(G•, S).

2.11. The cup-product ȞR1(·,Z2)× ȞR1(·,Z2)→ ȞR2(·, S1). Let
δ, δ′ ∈ ȞR1(G•,Z2), and let L and L′ be representatives of their corre-
sponding classes in HomRG(G,Z2) (see Proposition 2.49). Then by viewing
Z2 = {∓1} as a Real subgroup of S1 (identifying −1 with (−1, 0) and +1
with (1, 0)), we define the tensor product r∗L ⊗ s∗L′ −→ G, and and using
the same reasoning as in Example 1.45, we see that this is clearly a Real
Z2-principal bundle; thus we have an ungraded Real Z2-central extension

Z2 −→ r∗L⊗ s∗L′ −→ G.

Therefore, we get an ungraded Real S1-central extension (L ^ L′,G)
given by

(2.56) L ^ L′ := (r∗L⊗ s∗L′)×Z2 S
1,

together with the evident Real structure and Real S1-action.

Definition 2.58. We define the cup product

^ : ȞR1(G•,Z2)× ȞR1(G•,Z2) −→ ȞR2(G•, S1)

by

δ ^ δ′ := ω(L ^ L′),

where L ^ L′ is determined by equation (2.56).

Lemma 2.59. The cup product ^ defined above is a well-defined bilinear
map; i.e.,

(δ1 + δ2) ^ (δ′1 + δ′2) = δ1 ^ δ′1 + δ1 ^ δ′2 + δ2 ^ δ′1 + δ2 ^ δ′2.

Proof. If δi is realized by the generalized Real homomorphism

Li : G −→ Z2,

then δ1 + δ2 is realized by L1 + L2. The result follows from the easy to
check bilinearity of the tensor product r∗L ⊗ s∗L′ with respect to the sum
in HomRG(G,Z2). �
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2.12. Cohomological picture of the group ÊxtR(G, S1). Let

T = (G̃, δ) ∈ êxtR(G[U0],S1),

where as usual U0 is a Real open cover of X. Let U• be the pre-simplicial
Real open cover of (G•, ρ•) defined as in (2.42).

Define a continuous map δj0j1 : U1
(j0,j1) −→ Z2 over all U1

(j0,j1) ∈ U1 by

δj0j1(g) := δ(j0, g, j1). Then, over all U2
(j0,j1,j2), we have that

δj0j2(g1g2) = δ((j0, g1, j1) · (j1, g2, j2)) = δj0j1(g1) · δj1j2(g2).

Moreover, since δ is a Real morphism, we have that δ̄0 ̄1(ρ(g)) = δj0j1(g);

hence T determines a Real Čech 1-cocycle

(2.57) δ(T) := (δj0j1)(j0,j1)∈J1
∈ ZR1(U•,Z2),

Then, (2.57) gives a Real Čech 1-cocycle (δλ0λ1λ01) ∈ ZR1(U•,Z2) defined
by δλ0λ1λ01(g) := δ(λ0, g, λ1) for any g ∈ U1

λ0λ1λ01
; this does make sense, for

we know from Section 2.9 that Real Čech 1-cocycles do not depend on λ01.
If T′ is another Rg S1-central extension over G, we may suppose it is

represented by a Rg S1-twisted (G̃′, δ′) of G[U0]. Then by definition of the
grading of T⊗̂T′, we have δ(T⊗̂T′) = δ(T) + δ(T′).

Theorem 2.60 (Cf. [6, Proposition 2.13]). Let (G, ρ) be a locally compact
Hausdorff Real groupoid. There is a set-theoretic split-exact sequence

(2.58) 0 −→ ȞR2(G•,S1) ↪→ ÊxtR(G, S1)
δ−→ ȞR1(G•,Z2) −→ 0

so that we have a canonical group isomorphism

(2.59) dd : ÊxtR(G,S1) ∼= ȞR1(G•,Z2) n ȞR2(G•, S
1),

where the semi-direct product ȞR1(G•,Z2) n ȞR2(G•,S1) is defined by the
operation

(δ, ω) + (δ′, ω′) := (δ + δ′, (δ ^ δ′) · ω · ω′).
The image of a Real graded extension E by dd is called the Dixmier–Douady
class of E.

Proof. The first arrow is the canonical inclusion

ÊxtR
+

(G, S1) ⊂ ÊxtR(G, S1),

and hence is injective. The exactness of the sequence (2.58) is obvious, by

definition of δ and ÊxtR
+

(G,S1).

The map δ is well-defined; indeed, if T ∼ T′ in êxtR(G[U0],S1), they
differ from a twist coming from an element of PicR(G[U0]), and hence by
construction of δ, one has δ(T) = δ(T′). Moreover, δ is surjective, for if
L ∈ HomRG(G,Z2) represents the Real 1-cocycle (εj0j1) ∈ ZR1(U•,Z2),
then L ^ L is graded as follows:

L ^ L := (S1 −→ (r∗L⊗ s∗L)×Z2 S
1 −→ G[U0], δ′),
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where
δ′((j0, γ, j1)) := εj0j1(γ).

We see that δ(L ^ L) = ε. Finally, note that the operation law comes from

the definition of the sum in ÊxtR(G,S1). �

2.13. The proper case. In this subsection, we are interested in some par-
ticular Abelian Real sheaves on (G•, ρ•), where (G, ρ) is a proper groupoid.
More precisely, we aim to generalize a result by Crainic (see [4, Proposition
1]) stating that for a proper Lie groupoid G, and “representation” E of G

([4, 1.2]), the differentiable cohomology Hn
d (G, E) = 0 for all n ≥ 1. Let us

first introduce some few notions and properties.

Definition 2.61 (Real Haar measure). Let (G, ρ) be a locally compact Real
groupoid, and let {µx}x∈X be a (left) Haar system for G (see [19, §.2]).
Define a new family {µxρ}x∈X of measures µxρ , with support Gx for all x ∈ X,
defined by

(2.60) µxρ(C) := µρ(x)(ρ(C)), for all measurable subset C ⊂ Gx.

We say that {µx}x∈X is Real if

(2.61) µx = µxρ , ∀x ∈ X.

Lemma 2.62. Any Haar system for G gives rise to a Real one.

Proof. Assume {µx} is a Haar system for G. For every x ∈ X, we set

(2.62) µ̃x :=
1

2
(µx + µxρ).

It is clear that {µ̃x}x∈X is a Haar system for G; measurable subsets for µ̃x

being exactly those for µx. Moreover, one has

µ̃xρ =
1

2

(
µρ(x) ◦ ρ+ µρ(x)

ρ ◦ ρ
)

=
1

2

(
µxρ + µx

)
= µ̃x, ∀x ∈ X. �

Remark 2.63. From the lemma above, we will always assume Haar systems
for G to be Real.

In what follows, the Real group K is either the additive group R equipped
with the Real structure t 7−→ t̄ := −t, or the additive group C equipped with
the complex conjugation z 7−→ z̄ as Real structure.

Definition 2.64. Let (G, ρ) be a locally compact Real groupoid. A Real
representation of (G, ρ) is a locally trivial Real K-vector bundle

π : (E, ν) −→ (X, ρ)

endowed with a (left) continuous Real G-action; that is a Real open cover
(Uj) of (X, ρ) and isomorphisms φj : Uj ×Kr −→ E|Uj such that

ν(φj(x, (a1, . . . , ar))) = φ̄(ρ(x), (ā1, . . . , ār)), ∀x ∈ Uj , (a1, . . . , ar) ∈ Kr,

and
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• ∀x ∈ X, the induced isomorphism νx : Ex −→ Eρ(x) is K-antilinear:

νx(ξ · a) = νx(ξ) · ā, ∀ξ ∈ Ex, a ∈ K;

• ∀g ∈ G, the isomorphism Es(g) −→ Er(g), induced by the G-action,
is linear.

Note that such a Real representation (E, ν) can be viewed as a Real G-

module in the following way: E is the groupoid E //
// X with rE(ξ) =

sE(ξ) := π(ξ) for every ξ ∈ E, for any x ∈ X, Ex = Ex = Exx is isomorphic
to the group K, then the product in E is defined by the sum on the fibres.
The Real sheaf on (G•, ρ•) associated to the Real G-module (E, ν) will be
denoted (E•, ν•).

Remark 2.65. More generally, we define a Real representation of of type
Rp,q as a locally trivial real vector bundle E −→ X of rank p + q, together
with a Real structure ν : E −→ E, and a Real G-action on E with respect to
the projection map, such that locally, the Real space (E, ν) identifies with
Rp,q; that is there is a Real open cover (Uj) of X and commutative diagrams

Uj × Rp,q
φj

//

ρ×bar

��

E|Uj

ν

��

U̄ × Rp,q
φ̄

// E|U̄

where bar : Rp,q −→ Rp,q is the Real structure defined in the first section.

Definition 2.66 ([25, Definition 2.20]). A locally compact Real groupoid
(G, ρ) is said to be proper if either of the following equivalent conditions is
satisfied:

(i) The Real map (s, r) : G −→ X ×X is proper.
(ii) For every K ⊂ X compact, GKK is compact.

Proper Real groupoids can be characterized by the following (we refer to
Propositions 6.10 and 6.11 in [22] for a proof).

Proposition 2.67. Let (G, ρ) be a locally compact Real groupoid with a Haar
system {µx}x∈X . Then (G, ρ) is proper if and only it admits a cutoff Real
function; that is, a function x : X −→ R+ such that:

(i) ∀x ∈ X, c(ρ(x)) = c(x).
(ii) ∀x ∈ X,

∫
Gx
c(s(g))dµx(g) = 1.

(iii) The map r : supp(c ◦ s) −→ X is proper; i.e., for every K ⊂ X
compact, supp(c) ∩ s(GK) is compact.

Theorem 2.68. Suppose (G, ρ) is a locally compact proper Real groupoid
with a Haar system. Then, for any Real representation (E, ν) of (G, ρ), we
have

ȞRn(G•, E
•) = 0, ∀n ≥ 1.
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To prove this result, we shall recall fundamentals of vector-valued inte-
gration exposed, for instance, in [26, Appendix B.1], and then adapt them
to the case when we deal with Real structures. Let X be a locally compact
Hausdorff space, and let B be a separable Banach space. Let µ be a Radon
measure on X. Then measurable functions f : X −→ B are defined as usual,
and such function is integrable if

‖f‖1 :=

∫
X
‖f(x)‖dµ(x) <∞.

The collection of all B-valued integrable functions on X is denoted by
L1(X,B), and the set of equivalence classes of functions in L1(X,B) is a
Banach space denoted by L1(X,B) ([26, Proposition B.31]). Furthermore,
Cc(X,B) is dense in L1(X,B). The B-valued integration of elements of
L1(X,B) is defined as a linear map I : Cc(X,B) −→ B given by

(2.63) I(f) :=

∫
X
f(x)dµ(x), and ‖I(f)‖ ≤ ‖f‖1.

Moreover, this integral is characterized by the following:

Proposition 2.69 (Cf. Proposition B.34 [26]). Let µ be a Radon measure
on X, and let B be a Banach space. Then, the integral is characterized by:

(a) For all f ∈ Cc(X,B) and ϕ ∈ B∗,

ϕ

(∫
X
f(x)dµ(x)

)
=

∫
X
ϕ(f(x))dµ(x).

(b) If L : B −→ B′ is any bounded linear map between two Banach
spaces, than

L

(∫
X
f(x)dµ(x)

)
=

∫
X
L(f(x))dµ(x).

Now suppose (X, ρ) is a locally compact Hausdorff Real space, µ is a Real
Radon measure; i.e., µ(ρ(C)) = ρ(C) for every measurable set C ⊂ X. Let
(B, ς) be a separable Real Banach space. Then from the above, we deduce
the

Lemma 2.70. Let Cc(X,B) be equipped with the Real structure denoted
by ρ̃ : Cc(X,B) −→ Cc(X,B), and given by ρ(f)(x) := ς(f(ρ(x))). Then,
under the above assumption, the integral

∫
: Cc(X,B) −→ B is Real, in that

it commutes with the Real structures ς and ρ̃; i.e.,

(2.64)

∫
X
ς(f(ρ(x)))dµ(x) = ς

(∫
X
f(x)dµ(x)

)
,∀f ∈ Cc(X,B).

Proof. For any ϕ ∈ B∗, define ϕ̄ ∈ B∗ by ϕ̄(b) := ϕ(ς(b)). Then, from
Proposition 2.69(a) and the definition of ϕ̄, one has

ϕ

(
ς

(∫
X
f(x)dµ(x)

))
=

∫
X
ϕ(ς(f(x)))dµ(x) =

∫
X
ϕ(ς(f(x)))dµ(x).



786 EL-KAÏOUM M. MOUTUOU

Thus,

ϕ

(
ς

(∫
X
f(x)dµ(x)

))
=

∫
X
ϕ(ς(f(x)))dµ(x).

Again from (b) of Proposition 2.69 and from the fact that µ is Real, we then
get

ϕ

(
ς

(∫
X
f(x)dµ(x)

))
= ϕ

(∫
X
ς(f(ρ(x)))dµ(x)

)
,∀ϕ ∈ B∗,

and the result holds. �

Let us investigate the case of a Real groupoid (G, ρ) together with a
Real representation (E, ν). Let µ = {µx}x∈X be a Real Haar system for
(G, ρ). For any x ∈ X, we can apply (2.63) to Ex and get the integral∫
Gx

: Cc(G
x, Ex) −→ Ex. Further, it is very easy to check that

(2.65)

νx

(∫
Gx
f(γ)dµx(γ)

)
=

∫
Gρ(x)

νx(f(ρ(γ)))dµρ(x)(γ), ∀f ∈ Cc(G
x, Ex).

Proof of Theorem 2.68. Fix a Real Haar system {µx}x∈X for (G, ρ) and a
cutoff Real function c : X −→ R+. Let U• be a Real open cover of (G•, ρ•).
Let λ := (λ0, λ1, . . . , λ01...n) ∈ Λn and Unλ ∈ \Un. Denote by Λn+1|λ the

subset of Λn+1 consisting of those λ̃ ∈ Λn+1 such that λ̃(S) = λS for all
∅ 6= S ⊆ [n]. Then, if for any x ∈ U0

λn
, we denote

(Unλ ? G
x) ∩ supp(c ◦ s)

:= {(g1, . . . , gn, γ) ∈ Unλ × (Gx ∩ supp(c ◦ s)) | s(gn) = r(γ) = x},

we have that

(2.66) (Unλ ? G
x) ∩ supp(c ◦ s) ⊂

⋃
λ̃∈Λn+1|λ

Un+1

λ̃
.

Notice that for λ̃ running over Λn+1|λ, only its images λ̃S ∈ Λ#S−1, for
S ⊆ [n + 1] containing n + 1, are led to vary. On the other hand, since
Gx∩supp(c◦s) is compact in G (by (iii) of Proposition 2.67), the union (2.66)
is finite. In particular, for every S ∈ S(n+1) := {S ⊆ [n+1] | n+1 ∈ S 6= ∅},
where elements of S(n + 1) are ranged in cardinality and in lexicographic

order, there is λ̃lSS ∈ Λ#S−1, lS = 0, . . . ,mS , such that

(2.67) (Unλ ? G
x) ∩ supp(c ◦ s) ⊂

⋃
l=(lS)S∈S(n+1)

Un+1
λl

,

where for any l = (lS)S∈S(n+1) ∈ N2n+1
written as

l =
(
l{n+1}, l{0,n+1}, l{1,n+1}, . . . , l{n,n+1}, . . . , l{1,...,n+1}, l{0,1,...,n+1}

)
,
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the element λl ∈ Λn+1|λ is given by the following

(2.68)

{
λl(S) := λS , for any S ⊆ [n];

λl(S) := λlSS , for any S ∈ S(n+ 1).

Now for each S ∈ S(n + 1), εn+1
S =: εS : [#S − 1] −→ [n + 1] denotes the

unique morphism in Hom∆′([#S − 1], [n + 1]) whose range is exactly S. It
is then clear that

(2.69) ε̃S((Unλ ? G
x) ∩ supp(c ◦ s)) ⊂

⋃
lS

U#S−1

λ
lS
S

, ∀S ∈ S(n+ 1).

Next, choose for every S ∈ S(n+ 1), a partition of unity

ϕ
λ
lS
S

: ε̃S((Unλ ? G
x) ∩ supp(c ◦ s)) −→ R+

subordinate to the open covering

(
U#S−1

λ
lS
S

)mS
lS=0

.

For all n ≥ 1, we define the map

hn : CRn+1
ss (U•, E

•) −→ CRnss(U•, E
•)

by

(2.70) (hnf)λ(g1, . . . , gn) :=

(−1)n+1

∫
Gs(gn)

∑
l=(lS)S∈S(n+1)

fλl(g1, . . . , gn, γ)

·
∏

S∈S(n+1)

∏
lS

ϕ
λ
lS
S

(ε̃S(g1, . . . , gn, γ)) · c(s(γ))dµs(gn)(γ).

Observe that

(Unλ̄ ? G
ρ(x)) ∩ supp(c ◦ s ◦ ρ) ⊂

⋃
l=(lS)S∈S(n+1)

Un+1
λ̄l

,

where the λ̄l ’ s are defined in the obvious way. Hence, we get a partition of
unity of ε̃S((Un

λ̄
? Gρ(x)) ∩ supp(c ◦ s ◦ ρ)) subordinate to the open covering(

U#S−1

λ̄
lS
S

)mS
lS=0

by setting ϕ
λ̄
lS
S

(ε̃S(ρ(g1), . . . , ρ(gn))) := ϕ
λ
lS
S

(ε̃S(g1, . . . , gn)).

Next, using (2.65), it is straightforward that

(hnf)λ̄(ρ(g1), . . . , ρ(gn)) = ν|Unλ ◦ (hnf)λ(g1, . . . , gn),

which means that ((hnf)λ)λ∈Λn ∈ CRnss(U•, E•).
Assume now that (fλ)λ∈Λn ∈ CRnss(U•, E•). Then, for every Unλ ∈ \Un

and (g1, . . . , gn) ∈ Unλ , one has



788 EL-KAÏOUM M. MOUTUOU

(hndnf)λ(g1, . . . , gn)(2.71)

= (−1)n+1

∫
Gs(gn)

∑
(lS)S∈S(n+1)

(dnf)λl(g1, . . . , gn, γ)

·
∏

S∈S(n+1)

∏
lS

ϕ
λ
lS
S

(ε̃n+1
S (g1, . . . , gn, γ)) · c(s(γ))dµs(gn)(γ)

= fλ(g1, . . . , gn)−Aλ(g1, . . . , gn),

where

Aλ(g1, . . . , gn)

:= (−1)n
n∑
k=0

(−1)k
∫
Gs(gn)

∑
(lS)S∈S(n+1)

fε̃n+1
k (λl)(ε̃

n+1
k (g1, . . . , gn, γ))

·
∏

S∈S(n+1)

∏
lS

ϕ
λ
lS
S

(ε̃n+1
S (g1, . . . , gn, γ)) · c(s(γ))dµs(gn)(γ).

We want to show that

(2.72) Aλ(g1, . . . , gn) = (dn−1hn−1f)λ(g1, . . . , gn).

One has

(dn−1hn−1f)λ(g1, . . . , gn)(2.73)

= (−1)n
n−1∑
k=0

∫
Gs(gn)

∑
rk:=(rk,T )T∈S(n)

fε̃nk (λ)rk (ε̃nk(g1, . . . , gn), γ)

·
∏

T∈S(n)

∏
rk,T

ϕ
ε̃nk (λ)

rk,T
T

(ε̃nT (ε̃nk(g1, . . . , gn), γ)) · c(s(γ))dµs(gn)(γ)

+

∫
Gs(gn−1)

∑
rn:=(rn,T )T∈S(n)

fε̃nn(λ)rn (g1, . . . , gn−1, γ)

·
∏

T∈S(n)

∏
rn,T

ϕ
ε̃nn(λ)

rn,T
T

(ε̃nT (g1, . . . , gn−1, γ)) · c(s(γ))dµs(gn−1)(γ)

= Bλ(g1, . . . , gn) + Cλ(g1, . . . , gn).

Notice that by the left-invariance of {µx}x∈X , the second integral Cλ in
the right hand side of (2.73) can be written as

Cλ(g1, . . . , gn)

=

∫
Gs(gn)

∫
(rn,T )T∈S(n)

fε̃nn(λ)rn (g1, . . . , gn−1, gnγ)

·
∏

T∈S(n)

∏
rn,T

ϕ
ε̃nn(λ)

rn,T
T

(ε̃nT (g1, . . . , gn−1, gnγ)) · c(s(γ))dµs(gn−1)(γ)
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=

∫
Gs(gn)

∑
(rn,T )T∈S(n)

fε̃nn(λ)rn (ε̃n+1
n (g1, . . . , gn, γ))

·
∏

T∈S(n)

∏
rn,T

ϕ
ε̃nn(λ)

rn,T
T

(ε̃nT (ε̃n+1
n (g1, . . . , gn−1, gn, γ))) · c(s(γ))dµs(gn−1)(γ).

On the other hand, for all k = 0, . . . , n− 1, one has

(ε̃nk(g1, . . . , gn), γ) = ε̃n+1
k (g1, . . . , gn, γ);

hence

Bλ(g1, . . . , gn)

= (−1)n
n−1∑
k=0

(−1)k
∫
Gs(gn)

∑
(rk,T )T∈S(n)

fε̃nk (λ)rk (ε̃n+1
k (g1, . . . , gn, γ))

·
∏

T∈S(n)

∏
rk,T

ϕ
ε̃nk (λ)

rk,T
T

(ε̃nT (ε̃n+1
k (g1, . . . , gn, γ))) · c(s(γ))dµs(gn−1)(γ).

Thus, (2.73) becomes

(dn−1hn−1f)λ(g1, . . . , gn)(2.74)

= (−1)n
n∑
k=0

(−1)k
∫
Gs(gn)

∑
(rk,T )T∈S(n)

fε̃nk (λ)rk (ε̃n+1
k (g1, . . . , gn, γ))

·
∏

T∈S(n)

∏
rk,T

ϕ
ε̃nk (λ)

rk,T
T

(ε̃nT (ε̃n+1
k (g1, . . . , gn, γ))) · c(s(γ))dµs(gn−1)(γ).

Now, for any k = 0, . . . , n, rk = (rk,T )T∈S(n), let γ ∈ Gs(gn) such that

ε̃n+1
k (g1, . . . , gn, γ) ∈ Unε̃nk (λ)rk .

Then, there exists l = (lS)S∈S(n+1) such that (g1, . . . , gn, γ) ∈ Un+1
λl

, so that

ε̃n+1
k (g1, . . . , gn, γ) ∈ Unε̃nk (λ)rk

⋃
Un
ε̃n+1
k (λl)

.

One can then suppose that for any k ∈ [n] and any family rk = (rk,T )T∈S(n),

there exists a family l = (lS)S∈S(n+1) such that ε̃nk(λ)rk = ε̃n+1
k (λl). More-

over, in virtue to the identities (2.2), it is straightforward that for each
k ∈ [n] and any T ∈ S(n), there exists a unique S ∈ S(n + 1) such that
εn+1
S = εn+1

k ◦εnT , so that ε̃n+1
S = ε̃nT ◦ ε̃

n+1
k . Therefore, we obtain from (2.74)

that
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(dn−1hn−1f)λ(g1, . . . , gn)

= (−1)n
n∑
k=0

(−1)k
∫
Gs(gn)

∑
(lS)S∈S(n+1)

fε̃n+1(λl)(ε̃
n+1
k (g1, . . . , gn, γ))

·
∏

S∈S(n+1)

∏
lS

ϕ
λ
lS
S

(ε̃n+1
S (g1, . . . , gn, γ)).c(s(γ))dµs(gn)(γ)

= Aλ(g1, . . . , gn).

Combining with (2.71), we thus have shown that

(2.75) hn ◦ dn + dn−1 ◦ hn−1 = IdCRnss(U•,E•), ∀n ≥ 1;

i.e., h? defines a contraction of CR?ss(U•, E
•) for any Real open cover U• of

(G•, ρ•) and this ends our proof. �

Remark 2.71. It is straightforward, using the same arguments, that The-
orem 2.68 remains true for a Real representation of type Rp,q (see Re-
mark 2.65).

Corollary 2.72. Let G be a proper groupoid. Let E −→ X be a represen-
tation of G in the sense of Crainic [4]; that is, a real G-equivariant vector
bundle of rank p. Then Ȟn(G•, E

•) = 0,∀n ≥ 1.

Proof. Let G be endowed with the trivial Real structure. Form the Real
representation (F, ν) of type Rp,p of (G, Id) by F := E ⊕ E endowed with
the diagonal G-action and the Real structure ν(e1, e2) := (e1,−e2). Then
by Theorem 2.68, we have ȞRn(G•, F

•) = 0 for all n ≥ 1. But since
the Real structure is trivial, we have ȞRn(G•, F

•) = Ȟn(G•,
rF •), thanks

to the discussion following Proposition 2.44. Moreover, we obviously have
rF • = E•. �
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Soc. 361 (2009), no. 3, 1269–1278. MR2457398 (2010f:19007), Zbl 1173.46052,
doi: 10.1090/S0002-9947-08-04706-5.

[24] Tu, Jean-Louis; Xu, Ping. The ring structure for equivariant twisted K-theory. J.
Reine Angew. Math. 635 (2009), 97–148. MR2572256 (2010m:19002), Zbl 1180.19004,
arXiv:math/0604160, doi: 10.1515/CRELLE.2009.077.

[25] Tu, Jean-Louis; Xu, Ping; Laurent–Gengoux, Camille. Twisted K-

Theory of differentiable stacks. Ann. Sci. École Norm. Sup. (4) 37 (2004),
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