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Ideal Whitehead graphs in Out(Fr). I.
Some unachieved graphs

Catherine Pfaff

Abstract. Masur and Smillie, 1993, proved precisely which singularity
index lists arise from pseudo-Anosov mapping classes. In search of an
analogous theorem for outer automorphisms of free groups, Handel and
Mosher, 2011, ask: Is each connected, simplicial, (2r − 1)-vertex graph
the ideal Whitehead graph of a fully irreducible φ ∈ Out(Fr)? We
answer this question in the negative by exhibiting, for each r, examples
of connected (2r-1)-vertex graphs that are not the ideal Whitehead graph
of any fully irreducible φ ∈ Out(Fr). In the course of our proof we also
develop machinery used in Pfaff, 2012, to fully answer the question in
the rank-three case.
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1. Introduction

For a compact surface S, the mapping class groupMCG(S) is the group of
isotopy classes of homeomorphisms h : S → S. A generic (see, for example,
[Mah11]) mapping class is pseudo-Anosov, i.e., has a representative leaving
invariant a pair of transverse measured singular minimal foliations. The foli-
ation has an associated singularity index list. Masur and Smillie determined
precisely which singularity index lists, permitted by the Poincare–Hopf index
formula, arise from pseudo-Anosov homeomorphisms [MS93]. The search for
an analogous theorem in the setting of an outer automorphism group of a
free group is still open.

We let Out(Fr) denote the outer automorphism group of the free group
of rank r. Analogous to pseudo-Anosov mapping classes are fully irreducible
outer automorphisms, i.e., those such that no power leaves invariant the
conjugacy class of a proper free factor. In fact, some fully irreducible outer
automorphisms, called geometrics, are induced by pseudo-Anosovs. It is
noteworthy that the index lists of geometrics are fully understood through
the Masur–Smillie index theorem.

Related to pseudo-Anosov index lists are three fully irreducible invariants,
namely indices, index lists, and ideal Whitehead graphs. Each is invariant
under taking powers and is in fact an invariant of the conjugacy class of a
fully irreducible within Out(Fr). The ideal Whitehead graph is the finest of
the three invariants and is the one we focus on in this paper, in [Pfa13a],
and in [Pfa13b]. We focus on index lists in [Pfa13c].

Singularity indices for fully irreducible outer automorphisms were first in-
troduced by Gaboriau, Jaeger, Levitt, and Lustig in [GJLL98]. In [GJLL98]
they additionally proved an Out(Fr)-analogue to the Poincare–Hopf index
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equality. Using a “rotationless index,” where the sign is switched for con-
sistency with the surface case and the “rotationless” power is taken, the
[GJLL98] index sum inequality becomes 0 ≥ i(φ) ≥ 1−r, where φ ∈ Out(Fr)
is any fully irreducible. It is proved by Bestvina and Feighn in [BF94] that
the equality i(φ) = 1− r holds precisely in the cases of geometric and “par-
ageometric” fully irreducibles. We will focus on the third category of fully
irreducibles, “ageometrics,” and hence on the strict inequality.

Having an inequality, instead of just an equality, adds a rich layer of
complexity to the search for an analogue to the Masur–Smillie theorem.
Toward this goal, Handel and Mosher asked in [HM11]:

Question 1.1. Which index types, satisfying 0 ≥ i(φ) > 1− r, are achieved
by nongeometric fully irreducible φ ∈ Out(Fr)?

Beyond the existence of an inequality, instead of just an equality, “ideal
Whitehead graphs” (see [HM11] or Definition 2.1 below) give yet another
layer of complexity for fully irreducible outer automorphisms.

The ideal Whitehead graph for a pseudo-Anosov mapping class is just a
disjoint union of circles, with each circle corresponding to an ideal polygon
formed by the lifted lamination leaves bounding a principle region, as in
Nielsen theory [N86]. In contrast, what we show in [Pfa13a] and [Pfa13b] is
that the ideal Whitehead graph IW(φ) for a fully irreducible φ ∈ Out(Fr)
can even be the complete graph in each rank. It hence gives a finer outer
automorphism invariant than just the index list. Indeed, each connected
component Ci of IW(φ) contributes the index 1 − ki

2 to the list, where Ci
has ki vertices.

The deeper information the ideal Whitehead graph records regards the
dynamical behavior of the attracting lamination for a fully irreducible under
the action of the fully irreducible on its attracting tree. In [LL03], Levitt and
Lustig proved that, as with a pseudo-Anosov acting on Teichmüller space,
each fully irreducible φ ∈ Out(Fr) acts with North-South dynamics on the
natural compactification of outer space CVr. For a fully irreducible φ, the
lamination is “almost equal” to the zero lamination of the repelling tree T−φ
[KL11]. It is also exactly equal to the support of the attracting current (as
defined in [Mar95], see also [Uya13]) for φ [KL11].

While related, since the ideal Whitehead graph can give significantly more
information than simply an index list, the deeper, more appropriate question
we focus on is:

Question 1.2. Which isomorphism types of graphs occur as the ideal White-
head graph IW(φ) of a fully irreducible outer automorphism φ?

[Pfa13b] will give a complete answer to Question 1.2 in rank 3 for the
single-element index list (−3

2). In Theorem 9.1 of this paper we provide
examples in each rank of connected (2r-1)-vertex graphs that are not the
ideal Whitehead graph IW(φ) for any fully irreducible φ ∈ Out(Fr), i.e.,
that are unachieved in rank r:
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Theorem A (Theorem 9.1). For each r ≥ 3, let Gr be the graph consisting
of 2r − 2 edges adjoined at a single vertex.

(I) For no fully irreducible φ ∈ Out(Fr) is IW(φ) ∼= Gr.
(II) The following connected graphs are not the ideal Whitehead graph
IW(φ) for any fully irreducible φ ∈ Out(F3):

For a fully irreducible φ ∈ Out(Fr) to have the index list (3
2 − r), φ

must be ageometric with a connected, (2r-1)-vertex ideal Whitehead graph
IW(φ). We chose to focus on the single-element index list (3

2 − r) because
it is the closest to that achieved by geometrics, without being achieved by a
geometric. We denote the set of connected (2r−1)-vertex, simplicial graphs
by PI(r;( 3

2
−r)).

1.1. Elements of the proof. One often studies outer automorphisms via
topological representatives. Let Rr be the r-petaled rose, with its fundamen-
tal group identified with Fr. For a finite graph Γ with only valence-three or
greater vertices, a homotopy equivalence Rr → Γ is called a marking. Such a
graph Γ, together with its marking Rr → Γ, is called a marked graph. Each
φ ∈ Out(Fr) can be represented by a homotopy equivalence g : Γ → Γ of a
marked graph (φ = g∗ : π1(Γ)→ π1(Γ)). Thurston defined such a homotopy
equivalence to be a train track map when gk is locally injective on edge in-
teriors for each k > 0. When g induces φ ∈ Out(Fr) and sends vertices to
vertices, one says g is a train track (tt) representative for φ [BH92].

To prove Theorem 9.1(I), we give a necessary Birecurrency Condition
(Proposition 3.7) on “lamination train track structures.” For a train track
representative g : Γ → Γ on a marked rose, we define a lamination train
track (ltt) structure G(g) obtainable from Γ by replacing the vertex v with
the “local Whitehead graph” LW(g; v). The local Whitehead graph encodes
how lamination leaves enter and exit v. In our circumstance, IW(φ) will
be a subgraph of LW(g; v), hence of G(g). We additionally define “higher
lamination train track structures” Gk(g) giving even further information.

The lamination train track structures are given a smooth structure so
that leaves of the expanding lamination are realized as locally smoothly
embedded lines. It is called birecurrent if it has a locally smoothly embedded
line containing each edge infinitely many times, in each end, i.e., as any
assigned parameter r ∈ R satisfies r →∞ and as r → −∞.

Proposition 3.7 (Birecurrency Condition). Let φ ∈ Out(Fr) be a fully
irreducible outer automorphism. Then the ltt structures Gk(g) for each train
track representative g : Γ→ Γ of φ are birecurrent.
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Combinatorial proofs (not included here) of Theorem 9.1(I) exist. How-
ever, we include a proof using the Birecurrency Condition to highlight what
we have observed to be a significant obstacle to achievability, namely the
birecurrency of ltt structures. The Birecurrency Condition is also used in
our proof of Theorem 9.1(II). We use it in [Pfa13a], where we prove the
achievability of the complete graph in each rank. Finally, the condition
is used in [Pfa13b] to prove precisely which of the twenty-one connected,
simplicial, five-vertex graphs are IW(φ) for fully irreducible φ ∈ Out(F3).

In Proposition 4.3 we show that each φ such that

IW(φ) ∈ PI(r;( 3
2
−r))

has a power φR with a rotationless representative whose Stallings fold de-
composition (see Subsection 4.2) consists entirely of proper full folds of roses
(see Subsection 4.3). The representatives of Proposition 4.3 are called “ide-
ally decomposable.” We define in Section 8 automata, ideal “decomposition
(ID) diagrams” with ltt structures as nodes. Every ideally decomposed rep-
resentative is realized by a loop in an ID diagram. To prove Theorem 9.1(II)
we show ideally decomposed representatives cannot exist by showing that
the ID diagrams do not have the correct kind of loops.

We again use the ideally decomposed representatives and ID diagrams in
[Pfa13a] and [Pfa13b] to construct ideally decomposed representatives with
particular ideal Whitehead graphs.

To determine the edges of the ID diagrams, we prove in Section 5 a
list of “Admissible Map (AM) properties” held by ideal decompositions.
In Section 7 we use the AM properties to determine the two geometric
“moves” one applies to ltt structures in defining edges of the ID diagrams.
The geometric moves turn out to have useful properties expanded upon in
[Pfa13a] and [Pfa13b].

1.2. Relations of our work to R-trees and various index invariants.
There are several results on related questions. For example, [JL09] gives
examples of automorphisms with the maximal number of fixed points on
∂Fr, as dictated by a related inequality in [GJLL98]. Our work instead
focuses on an Out(Fr)-version of the Masur–Smillie theorem. Hence, in
this paper, [Pfa13a], [Pfa13b], and [Pfa13c] we restrict attention to fully
irreducibles and the [GJLL98] index inequality.

While neither ideal Whitehead graphs nor index list realization have un-
dergone deep analysis as of yet, index invariants of free group outer automor-
phisms have overall been quite extensively investigated. Before discussing
the question we do answer, for context, we explain the relationship between
the main object of this paper, namely the ideal Whitehead graph, and the
various index invariants. At this point, there are three types of index invari-
ants in the literature. (To keep discussion relevant, we restrict to discussing
fully irreducible outer automorphisms.)
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First, in [GJLL98] the index of an automorphism was defined in terms of
the attracting fixed points of the homomorphism ∂φ : ∂Fr → ∂Fr induced by
the automorphism φ. Recall from [BH92] that a fully irreducible outer au-
tomorphism φ ∈ Out(Fr) can be represented by a train track representative,
g : Γ → Γ. For a representative without periodic Nielsen paths (nontrivial
paths ρ ⊂ Γ such that gk(ρ) ' ρ rel endpoints for some k > 0), there is a
natural bijection between each class of attracting fixed points at infinity and
the set of gates at a properly chosen vertex v of the representative. Via this
bijection one can read off the index of φ directly from the ideal Whitehead
graph of the vertex, in a similar manner as explained above.

Second, the index indgeo(T ) of [GL95], for a fully irreducible φ, arises from
the sum of branching indices in the attracting R-tree T+

φ that represents the

attracting fixed point of the action of φ on ∂CVr. This results again from a
natural bijection between the gates at some vertex v and any branch point
in T contained in the Fr-orbit of branch points corresponding to v. Thus,
the index of φ is actually equal to the geometric index of T+

φ , as established

by Gaboriau–Levitt [GL95] for more general R-trees.
Finally, much more recently, Coulbois and Hilion [CH] introduced yet

another index for a certain class of R-trees. This invariant indQ(T ) relies
on the dual lamination and is apriori more difficult to compute. However,
Coulbois–Hilion showed that, in the special case where T represents one of
the two fixed points of φ acting on ∂CVr, replacing φ with its rotationless
power (as defined in [FH11]), one has the following fact [CH12]:

2ind(φ) = indgeo(T
+
φ ) = indQ(T−φ ).

As a consequence, the index of φ is an invariant of the repelling fixed point
T−φ as the Q-index of the “backward limit tree” T−φ .

Acknowledgements. The author would like to thank her thesis advisor
Lee Mosher for his truly invaluable conversations, Arnaud Hilion for his
advice, and Martin Lustig for his interest in her work. She would like to
thank Ilya Kapovich for his recommendations on extending her proofs to
“higher ltt structures” and for his general support and interest in her work.
Finally, she would like to thank the referee for a very thoughtful and helpful
referee report. She extends her gratitude to Bard College at Simon’s Rock
and the CRM for their hospitality.

2. Preliminary definitions and notation

We continue with the introduction’s notation. Further, we assume through-
out this document that all representatives g of φ ∈ Out(Fr) are train track
(tt) maps.

We let FIr denoted the subset of Out(Fr) consisting of all fully irreducible
elements.



IDEAL WHITEHEAD GRAPHS IN Out(Fr) 423

2.1. Directions and turns. In general we use the definitions from [BH92]
and [BFH00] when discussing train track maps. We give further definitions
and notation here. g : Γ→ Γ will represent some φ ∈ Out(Fr).
E+(Γ) = {E1, . . . , En} will be the edge set of Γ with some prescribed

orientation. For E ∈ E+(Γ), E will be E oppositely oriented.

E(Γ) := {E1, E1, . . . , En, En} = {e1, e1, . . . , e2n−1, e2n}.
If the indexing {E1, . . . , En} of the edges, and thus the indexing

{e1, e1, . . . , e2n−1, e2n}
is prescribed, we call Γ an edge-indexed graph. Edge-indexed graphs differing
by an index-preserving homeomorphism will be considered equivalent.
V (Γ) will denote the vertex set of Γ (V , when Γ is clear) and D(Γ) will

denote ∪
v∈V(Γ)

D(v), where D(v) is the set of directions (germs of initial edge

segments) at v.
For each e ∈ E(Γ), D0(e) will denote the initial direction of e and D0γ :=

D0(e1) for each path γ = e1 . . . ek in Γ. Dg will denote the direction map
induced by g. We call d ∈ D(Γ) periodic if Dgk(d) = d for some k > 0 and
fixed if k = 1. Per(x) will consist of the periodic directions at an x ∈ Γ and
Fix(x) of those fixed. Fix(g) will denote the fixed point set for g.
T (v) will denote the set of turns (unordered pairs of directions) at a vertex

v ∈ V (Γ) and Dtg the induced map of turns. For a path γ = e1e2 . . . ek−1ek
in Γ, we say γ contains (or takes) the turn {ei, ei+1} for each 1 ≤ i < k.
Sometimes we abusively write {ei, ej} for {D0(ei), D0(ej)}. Recall that a

turn is called illegal for g if Dgk(di) = Dgk(dj) for some k (di and dj are in
the same gate).

2.2. The attracting lamination Λφ for a fully irreducible outer au-
tomorphism. The attracting lamination Λφ for a φ ∈ FIr was defined
in [BFH97]. While an outer automorphism invariant, it can be defined in
terms of any train track representative g : Γ → Γ of φ. For a tt represen-
tative g : Γ → Γ of φ, a leaf of the realization Λφ(Γ) of Λφ is a bi-infinite
unparameterized reduced edge-path γ in Γ such that, for each finite subpath
β of γ there exists an e ∈ E(Γ) and integer n ≥ 1 such that β is a subpath of
gn(e). Λφ(Γ) is the collection of all such leaves. Note that Λφ(Γ) is unique.

Leaves in a lamination are known to be “quasiperiodic” (hence birecur-
rent) in the following sense. Using the Perron–Frobenius eigenvector for the
transition matrix, lengths can be assigned to edges in Γ in such a way so
that g stretches each edge by a factor of λ, where λ is the Perron–Frobenius
eigenvalue. From this assignment of edge lengths, one obtains a length on
any path in Γ. A line γ in Γ is then quasiperiodic if for each L > 0 there
exists an L′ > L such that each line segment γ′ in γ of length at most L
appears as a subpath of each segment of length L′.

It is well-known (see [BFH97, pg. 6]) that Λ(g) contains periodic leaves
obtained by iterating a neighborhood of a g-periodic point in the interior of
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each edge of Γ (possibly taking a power of g). Since g is irreducible, such a
leaf will contain each edge e ⊂ Γ, hence each gn(e).

2.3. Periodic Nielsen paths, ageometrics, principal points, and ro-
tationless powers. Recall [BF94] that a periodic Nielsen path (pNp) is a
nontrivial path ρ between x, y ∈ Fix(g) such that, for some k, gk(ρ) ' ρ rel
endpoints. In later sections we use [BF94, Theorem 3.2] that a φ ∈ FIr is
ageometric if and only if some φk has a representative with no pNps (closed
or otherwise). AFr will denote the subset of FIr consisting precisely of its
ageometric elements.

As in [HM11], we call a periodic point v ∈ Γ principal that either has at
least three periodic directions or is an endpoint of a periodic Nielsen path.

A tt representative is called rotationless if every principal point is fixed
and every periodic direction at each principal point is fixed. In [FH11,
Proposition 3.24] it is shown that one can define a fully irreducible outer
automorphism to be rotationless if and only if one (hence all) of its tt rep-
resentatives are rotationless.

2.4. Local Whitehead graphs, local stable Whitehead graphs, and
ideal Whitehead graphs. We explain several different ideal Whitehead
graph definitions and how they relate. These definitions can be found in
[HM11], though it is not their original source, and versions here are spe-
cialized. Their equivalence reveals how, while definable using a single train
track representative, the ideal Whitehead graph is an outer automorphism
(conjugacy class) invariant. Even further explanations of the definitions and
their invariance can be found in [Pfa12].

For this subsection g : Γ→ Γ will be a pNp-free train track representative
of some φ ∈ Out(Fr).

Definition 2.1. The local Whitehead graph LW(g; v) for g at a vertex v
has:

(1) a vertex for each direction d ∈ D(v) and
(2) edges connecting vertices for d1, d2 ∈ D(v) where {d1, d2} is taken

by some gk(e), with e ∈ E(Γ).

The local Stable Whitehead graph SW(g; v) is the subgraph obtained by
restricting precisely to vertices with labels in Per(v). For a rose Γ with
vertex v, we denote the single local stable Whitehead graph SW(g; v) by
SW(g) and the single local Whitehead graph LW(g; v) by LW(g).

For a pNp-free g, the ideal Whitehead graph of φ, IW(φ), is isomorphic
to ⊔

principal vertices v∈Γ

SW(g; v).

In particular, when Γ is a rose, IW(φ) ∼= SW(g).
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Example 2.2. Let g : Γ → Γ, where Γ is a rose and g is the train track
map such that the following describes the edge-path images of its edges:

g =


a 7→ abacbabac̄abacbaba

b 7→ bac̄

c 7→ cāb̄āb̄āb̄c̄āb̄āc.

The vertices for LW(g) are {a, ā, b, b̄, c, c̄} and the vertices of SW(g) are
{a, ā, b, c, c̄}: The periodic (actually fixed) directions for g are {a, ā, b, c, c̄}.
b̄ is not periodic since Dg(b̄) = c, which is a fixed direction, meaning that
Dgk(b̄) = c for all k ≥ 1, and thus Dgk(b̄) does NOT equal b̄ for any k ≥ 1.

The turns taken by the gk(E), for E ∈ E(Γ), are {a, b̄}, {ā, c̄}, {b, ā},
{b, c̄}, {c, ā}, and {a, c}. Since {a, b̄} contains the nonperiodic direction b̄,
this turn does not give an edge in SW(g), though does give an edge in
LW(g). All other turns listed give edges in both SW(g) and LW(g).
LW(g) and SW(g) respectively look like (reasons for colors become clear

in Subsection 2.5):

b

a c
ba

c

b

c caa

To make clear that the ideal Whitehead graph is actually an outer automor-
phism invariant, as in [HM11] and [Pfa12], we relate the above definition to
those relying solely on the attracting lamination. In what follows, φ will be
a nongeometric fully irreducible.

Definition 2.3. A fixed point x is repelling for the action of g if it is an
attracting fixed point for the action of g−1, i.e., if there exists a neighborhood
U of x such that, for each neighborhood V ⊂ U of x, there exists an N > 0
such that g−k(y) ∈ V for all y ∈ U and k ≥ N .

Let g : Γ → Γ be a rotationless irreducible train track representative
of φ ∈ Out(Fr) and let g̃ : Γ̃ → Γ̃ be a principal lift of g, i.e., a lift to
the universal cover such that the boundary extension ĝ has at least three
nonrepelling fixed points. W (g̃) is defined to be the graph where:

(1) Vertices correspond to nonrepelling fixed points of the boundary
extension ĝ.

(2) Edges connect vertices P1 and P2 precisely when P1 and P2 are

the ideal (boundary) endpoints of some leaf in the lift Λ̃(φ) of the

attracting lamination to the universal cover Γ̃ of Γ.

We then define W (g) = tW (g̃), leaving out components with two or
fewer vertices. One obtains the ideal Whitehead graph IW(g) from W (g)
by taking the quotient under conjugation by the deck transformation action
on Γ̃.
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Since the attracting lamination is an outer automorphism invariant (and,
in particular, the properties of leaves having nonrepelling fixed point end-
points and sharing an endpoint are invariant), the definition we just gave
does not rely on the choice of representative g for a given φ ∈ Out(Fr). Thus,
once we establish equivalence between Definition 2.3 and Definition 2.1, it
should be clear that the ideal Whitehead graph is an outer automorphism
invariant.

[HM11, Corollary 3.2] (see below) relates Definition 2.1 with Definition 2.3.
However, for [HM11, Corollary 3.2] to actually make sense, one needs the
following definitions and identification from [HM11]. A cut vertex of a
graph is a vertex separating a component of the graph into two compo-
nents. SW (ṽ; Γ̃) denotes the lift of SW (v; Γ) to the universal cover Γ̃ of Γ
(having countably many disjoint copies of SW (v; Γ), one for each lift of v).

Let g : Γ→ Γ be an irreducible train track representative of an iterate of
φ ∈ Out(Fr) such that:

(1) Each periodic vertex v ∈ Γ is fixed.
(2) Each periodic direction at such a v is fixed.

Choose one of these fixed vertices v. Suppose ṽ ∈ Γ̃ is a lift of v to the
universal cover, g̃ : Γ̃ → Γ̃ is a lift of g fixing ṽ, and d is a direction at ṽ
fixed by Dg̃. Furthermore, let Ẽ be the edge at ṽ whose initial direction is
d. The ray determined by d (or by Ẽ) is defined as

R̃ =
∞⋃
j=0

g̃j(Ẽ).

This is a ray in Γ̃ converging to a nonrepelling fixed point for ĝ. Such a
ray is called singular if the vertex ṽ it originates at is principal (i.e., v is
principal). With these definitions:

(1) The vertices of SW (ṽ; Γ̃) correspond to singular rays R̃ based at ṽ.

(2) Directions d1 and d2 represent endpoints of an edge in SW (ṽ; Γ̃) if

and only if l̃ = R̃1 ∪ R̃2 is a singular leaf of Λ̃ realized in Γ̃, where
R̃1 and R̃2 are the rays determined by d1 and d2 respectively.

Noticing that the ideal (boundary) endpoints of singular rays are pre-
cisely the nonrepelling fixed points at infinity for the action of g̃, combining
this with what has already been said, as well as Proposition 2.4 ([HM11,
Corollary 3.2]) and what follows, we have the correspondence proving ideal
Whitehead graph invariance.

Proposition 2.4. Let g̃ be a principal lift of g. Then:

(1) W (g̃) is connected.
(2) W (g̃) = ∪

ṽ∈Fix(g̃)∈Γ
SW (ṽ).

(3) For i 6= j, SW (ṽi) and SW (ṽj) intersect in at most one vertex. If
they do intersect at a vertex P , then P is a cut point of W (g̃), in
fact P separates SW (ṽi) and SW (ṽj) in W (g̃).
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By [HM11, Lemma 3.1], in our case (where there are no pNps), there is
in fact only one ṽ ∈ Fix(g̃) and so the above corollary gives that W (g̃) =
SW (ṽ).

This concludes our justification of how an ideal Whitehead graph is an
outer automorphism invariant. One can consult [HM11] for clarification of
the relationship between ideal Whitehead graphs and R-trees or for other
ideal Whitehead graph characterizations.

Please note that the ideal Whitehead graphs, local Whitehead graphs, and
stable Whitehead graphs used here (defined in [HM11]) differ from other
Whitehead graphs in the literature. We clarify a difference. In general,
Whitehead graphs record turns taken by immersions of 1-manifolds into
graphs. In our case, the 1-manifold is a set of lines, the attracting lamination.
In much of the literature the 1-manifolds are circuits representing conjugacy
classes of free group elements. For example, for the Whitehead graphs of
[CV86], edge images are viewed as cyclic words. This is not true for ours.

2.5. Lamination train track structures. We define here “lamination
train track (ltt) structures.” Bestvina, Feighn, and Handel discussed in
their papers slightly different train track structures. However, those we
define contain as smooth paths lamination leaf realizations. This makes
them useful for deeming unachieved particular ideal Whitehead graphs and
for constructing representatives (see [Pfa13a] and [Pfa13b]). “Higher ltt
structures” will be defined in Section 3.

Again, g : Γ → Γ will be a pNp-free train track map on a marked rose
with vertex v.

Definition 2.5. The colored local Whitehead graph CW(g) at v, is LW(g),
but with the subgraph SW(g) colored purple and LW(g)− SW(g) colored
red (nonperiodic direction vertices are red).

Let ΓN = Γ−N(v) where N(v) is a contractible neighborhood of v. For
each Ei ∈ E+(Γ), add vertices di and di at the corresponding boundary
points of the partial edge Ei − (N(v) ∩ Ei). A lamination train track (ltt)
structure G(g) for g is formed from ΓN

⊔
CW(g) by identifying the vertex

di in ΓN with the vertex di in CW(g). Vertices for nonperiodic directions
are red, edges of ΓN black, and all periodic vertices purple.

An ltt structure G(g) is given a smooth structure via a partition of the
edges at each vertex into two sets: Eb (containing the black edges of G(g))
and Ec (containing the colored edges of G(g)). A smooth path will mean a
path alternating between colored and black edges.

An edge connecting a vertex pair {di, dj} will be denoted [di, dj ], with

interior (di, dj). Additionally, [ei] will denote the black edge [di, di] for ei ∈
E(Γ).

For a smooth (possibly infinite) path γ in G(g), the path (or line) in Γ
corresponding to γ is

. . . e−je−j+1 . . . e−1e0e1 . . . ej . . . ,
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with

γ = . . . [d−j , d−j ][d−j , d−j+1] . . . [d0, d0][d0, d1] . . . [dj , dj ] . . . ,

where each di = D0(ei), each [di, di] is the black edge [ei], and each [di, di+1]
is a colored edge. We denote such a path

γ = [. . . , d−j , d−j , d−j+1, . . . , d−1, d0, d0, d1, . . . , dj , dj . . . ].

Example 2.6. Let g be as in Example 2.2. The vertex b̄ in G(g) is red.
All others are purple. G(g) has a purple edge for each edge in SW(g) and
a single red edge for the turn {a, b̄} (represented by an edge in LW(g), but
not in SW(g)). CW(g) is LW(g) with the coloring of Example 2.2. And
G(g) is obtained from CW(g) by adding black edges connecting the vertex
pairs {a, ā}, {b, b̄}, and {c, c̄} (corresponding precisely to the edges a, b, and
c of Γ).

b

a c

b

a c

One can check that each g(e) is realized by a smooth path in G(g).

Remark 2.7. If Γ had more than one vertex, one could define G(g) by
creating a colored graph CW(g; v) for each vertex, removing an open neigh-
borhood of each vertex when forming ΓN , and then continuing with the
identifications as above in ΓN

⊔
(∪CW(g; v)).

3. Birecurrency of ltt structures and higher Rauzy graphs

Proposition 3.7 of this section gives a necessary condition for ltt structures
to belong to train track representatives of fully irreducible outer automor-
phisms. We in fact use it in Theorem 9.1(I) to show that certain ideal
Whitehead graphs are not achieved.

We first establish several definitions we will use. In particular, we define
higher ltt graphs and the Rauzy graphs of tiling theory inspiring them.
While higher ltt structures are not used outside this section, it is the belief
of the author that much about them can be profitably explored, a belief
justifying their inclusion. Rauzy graphs have already been used to study
Out(Fr) in papers such as [Kap05] and [Kap06], where they are referred to
as “initial graphs.”

For this section we again fix a basis X1, . . . , Xr for Fr and let Rr denote
the r-petaled rose endowed with a marking identifying its petals with the
generators X1, . . . , Xr of Fr.

Rauzy graphs in general were introduced in [Rau82] and appear in a
number of works. Sequences of Rauzy graphs for infinite words are studied,
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in particular, in [Sal10]. We use the definition of [Sal10] to define the notion
in this setting.

Definition 3.1. Suppose g : Γ → Γ is a train track representative of an
ageometric fully irreducible outer automorphism φ ∈ Out(Fr). The order-k
Rauzy graph Rk(g) is the graph with:

Vertices: a vertex for each length-k edge-path w appearing in any
lamination leaf of Λ(Γ).

Edges: a directed edge connecting u1 . . . uk to u2 . . . uk+1 for each
length-(k + 1) edge-path w = u1 . . . uk+1 appearing in a lamination
leaf.

The Rauzy graph definition is that consistent with tiling theory if Γ is
the marked rose Rr and if we define a language whose alphabet consists of
generators of Fr (and their inverses) and whose words are those realized as
edge-paths that are subpaths of lamination leaves. However, to properly
generalize our ltt structure definition to higher ltt structures, we must alter
the Rauzy graph definitions. As in the ltt structures of Section 2.5, we want
for vertices to correspond to “directions” (by which we mean here oriented
words of length k), we want black edges connecting the vertices for the two
directions (orientations) of a word appearing in a leaf of Λ(Γ), and we want
colored edges for generalized “taken turns.”

In the spirit of the Rauzy graphs we define the level-k ltt structure Gk(g)
for a train track representative g : Γ→ Γ of a fully irreducible φ ∈ Out(Fr):

Definition 3.2. Suppose g : Γ → Γ is a train track representative of an
ageometric fully irreducible outer automorphism φ ∈ Out(Fr). The level-k
ltt structure Gk(g) is the train track graph satisfying:

Vertices: For each length-k edge-path wi in any leaf of Λ(Γ), Gk(g)
will contain a vertex for wi (and a vertex for w−1

i ).

Black Edges: Gk(g) will contain a black edge connecting each pair of
vertices of the form wi and w−1

i .

Colored Edges: Gk(g) will contain a colored edge connecting the ver-
tices u = u1 . . . uk and v = v1 . . . vk if vk = u−1

2 , vk−1 = u−1
3 , . . . , v2 =

u−1
k and either uv−1

1 or vu−1
1 is an edge-path of a leaf of Λ(Γ).

Remark 3.3. By considering both purple and red leaves as just colored, it
follows from the definitions that G(g) = G1(g).

Definition 3.4. A train track (tt) graph is a finite graph G satisfying:

(tt1) G has no valence-1 vertices.
(tt2) Each edge of G has 2 distinct vertices (single edges are never loops).
(tt3) The edge set of G is partitioned into two subsets, Eb (the “black”

edges) and Ec (the “colored” edges), such that each vertex is incident
to at least one Eb ∈ Eb and at least one Ec ∈ Ec.
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We consider tt graphs equivalent that are isomorphic as graphs via an iso-
morphism preserving the edge partition. We call a path in a tt graph smooth
that alternates between edges in Eb and edges in Ec.

Example 3.5. The ltt structure G(g) for a pNp-free representative g on Rr
is a tt graph where Eb is the set of black edges of G(g) and where Ec is the
edge set of C(G(g)). The Gk(g) are also tt graphs.

Definition 3.6. A tt graph is birecurrent if it has a locally smoothly em-
bedded line containing each edge infinitely many times in each end, i.e., as
any assigned parameter r ∈ R satisfies r →∞ and r → −∞.

Proposition 3.7 (Birecurrency Condition). Let φ ∈ Out(Fr) be an fully
irreducible outer automorphism. Then the ltt structures Gk(g) for each train
track representative g : Γ→ Γ of φ are birecurrent.

The key to this proof is showing that each lamination leaf gives a smooth,
surjective, birecurrent line.

Lemma 3.8. Let g : Γ→ Γ be a train track representative of some φ ∈ FIr.
Then each Gk(g) contains a smooth surjective path corresponding to the
realization in Γ of each leaf of Λφ.

Proof. Given a subpath a1 · · · an of a lamination leaf and an integer k sat-
isfying n > k > 0, we obtain a smooth path in Gk(g) starting with the
vertex a1 · · · ak, traversing the colored edge to (a2 · · · ak+1)−1, traversing
the black edge to a2 · · · ak+1, traversing the colored edge to (a3 · · · ak+2)−1,
. . . , traversing the colored edge from an−k · · · an−1 to (an−k+1 · · · an)−1, and
traversing the black edge from (an−k+1 · · · an)−1 to an−k+1 · · · an. Extend-
ing infinitely in both directions, one gets a smooth realization of the entire
lamination leaf.

We now prove surjectivity. Given an edge [u = u1 . . . uk, v = v1 . . . vk] in a
Gk(g), then either uv−1

1 or vu−1
1 is a subsegment of some leaf in Λ(g), hence

of some gn(e), hence of each periodic leaf γ in Λ(g). By construction, the
path induced by γ will traverse the black edge from u−1 to u, the colored
edge from u to v, and the black edge from v to v−1. Since every u is contained
in a longer γ subsegment, this implies the surjectivity of the path induced
by γ. �

Proof of Proposition 3.7. The periodic lines in Gk(g) induced by the
lamination leaves are birecurrent (and quasiperiodic) by the quasiperiod-
icity of lamination leaves for fully irreducibles. Hence, by the above lemma,
each Gk(g) is birecurrent. �

Remark 3.9.

(1) For each k, each lamination leaf for g additionally gives an infinite
path (line) in Rk(g), in fact a pair of oriented lines in Rk(g). The
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pair of oriented lines in Rk(g) corresponding to the two orientations
of any periodic leaf of the lamination will traverse every edge of
Rk(g).

(2) The lines in Rk(g) induced by the lamination leaves are also birecur-
rent (and quasiperiodic) by the quasiperiodicity of lamination leaves
for fully irreducibles.

4. Ideal decompositions

This section contains our proof of Proposition 4.3: if G ∈ PI(r;( 3
2
−r))

is IW(φ) for a φ ∈ AFr, then φ has a rotationless power with a repre-
sentative satisfying several nice properties, including that its Stallings fold
decomposition consists entirely of proper full folds of roses. We call such
a decomposition an ideal decomposition. Proving an ideal decomposition
cannot exist will suffice to deem a G unachieved.

We remind the reader of definitions of folds and a Stallings fold decom-
position before introducing ideal decompositions, as Stallings fold decompo-
sitions are central in our proof of Proposition 4.3.

4.1. Folds. Stallings introduced “folds” in [Sta83] and Bestvina and Han-
del use several versions in their train track algorithm of [BH92].

Let g : Γ → Γ be a homotopy equivalence of marked graphs. Suppose
g(e1) = g(e2) as edge paths, where e1, e2 ∈ E(Γ) emanate from a common
vertex v ∈ V (Γ). One can obtain a graph Γ1 by identifying e1 and e2 in
such a way that g : Γ→ Γ projects to g1 : Γ1 → Γ1 under the quotient map
induced by the identification of e1 and e2. g1 is also a homotopy equivalence
and one says g1 and Γ1 are obtained from g by an elementary fold of e1 and
e2.

To generalize one requires e′1 ⊂ e1 and e′2 ⊂ e2 only be maximal, initial,
nontrivial subsegments of edges emanating from a common vertex such that
g(e′1) = g(e′2) as edge paths and such that the terminal endpoints of e1 and
e2 are in g−1(V (Γ)). Possibly redefining Γ to have vertices at the endpoints
of e′1 and e′2, one can fold e′1 and e′2 as e1 and e2 were folded above. We say
g1 : Γ1 → Γ1 is obtained by:

• a partial fold of e1 and e2 if both e′1 and e′2 are proper subedges;
• a proper full fold of e1 and e2 if only one of e′1 and e′2 is a proper

subedge (the other a full edge);
• an improper full fold of e1 and e2 if e′1 and e′2 are both full edges.

4.2. Stallings fold decompositions. Stallings [Sta83] also showed a tight
homotopy equivalence of graphs is a composition of elementary folds and a
final homeomorphism. We call such a decomposition a Stallings fold decom-
position.

A description of a Stallings fold decomposition can be found in [Sko89],
where Skora described a Stallings fold decomposition for a g : Γ → Γ′ as a
sequence of folds performed continuously. Consider a lift g̃ : Γ̃ → Γ̃′, where
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here Γ̃′ is given the path metric. Foliate Γ̃ x Γ̃′ with the leaves Γ̃ x {x′}
for x′ ∈ Γ′. Define Nt(g̃) = {(x, x′) ∈ Γ̃ x Γ̃′ | d(g̃(x), x′) ≤ t}. For each
t, by restricting the foliation to Nt and collapsing all leaf components, one
obtains a tree Γt. Quotienting by the Fr-action, one sees the sequence of
folds performed on the graphs below over time.

Alternatively, at an illegal turn for g : Γ → Γ, fold maximal initial seg-
ments having the same image in Γ̃′ to obtain a map g1 : Γ1 → Γ′ of the
quotient graph Γ1. Repeat for g1. If some gk has no illegal turn, it will be a
homeomorphism and the fold sequence is complete. Using this description,
we can assume only the final element of the decomposition is a homeomor-
phism. Thus, a Stallings fold decomposition of g : Γ → Γ can be written

Γ0
g1−→ Γ1

g2−→ · · · gn−1−−−→ Γn−1
gn−→ Γn where each gk, with 1 ≤ k ≤ n− 1, is a

fold and gn is a homeomorphism.

4.3. Ideal decompositions. This subsection contains our proof of Propo-
sition 4.3. We remark first that it follows from the rotationless and ideal
Whitehead graph definitions given in [HM11] that: For φ ∈ AFr such that
IW(φ) ∈ PI(r;( 3

2
−r)), φ is rotationless if and only if the vertices of IW(φ)

are fixed by the action of φ. Finally, we need the following lemmas.

Lemma 4.1. Let g : Γ→ Γ be a tt representative of φ ∈ Out(Fr) and

Γ = Γ0
g1−→ Γ1

g2−→ · · · gn−1−−−→ Γn−1
gn−→ Γn = Γ

a decomposition of g into homotopy equivalences of marked graphs. Then
the composition

h : Γk
gk+1−−−→ Γk+1

gk+2−−−→ · · · gk−1−−−→ Γk−1
gk−→ Γk

is also a tt representative of φ. Further, if g is pNp-free, then h is pNp-free.

Proof. Let π : Rr → Γ mark Γ1. Since g1 is a homotopy equivalence, g1 ◦ π
gives a marking on Γ. So g and h differ by a change of marking and thus
represent the same outer automorphism φ.

We show h is a tt map. For contradiction’s sake suppose h(e) contains
an illegal turn {d1, d2}. Since each gj is surjective, some (gk ◦ · · · ◦ g1)(ei)
would traverse e. So (gk ◦ · · · ◦ g1)(ei) would contain {d1, d2}. And

g2(ei) = (gn ◦ · · · ◦ gk+1) ◦ h ◦ (gk ◦ · · · ◦ g1)(ei)

would contain {D(gn ◦ · · · ◦ gk+1)(d1), D(gn ◦ · · · ◦ gk+1)(d2)}, which would
either be illegal or degenerate (since {d1, d2} is an illegal turn). This would
contradict that g is a tt map. So h is a tt map.

Suppose that g is pNp-free and h had a pNp ρ and hp(ρ) ' ρ rel endpoints.
Let ρ1 = gn ◦ · · · ◦ gk+1(ρ). If ρ1 were trivial,

hp(ρ) = (gk ◦ · · · ◦ g1 ◦ gp−1)(gn ◦ · · · ◦ gk+1(ρ)) = (gk ◦ · · · ◦ g1 ◦ gp−1)(ρ1)

would be trivial, contradicting ρ being a pNp. So assume ρ1 is not trivial.



IDEAL WHITEHEAD GRAPHS IN Out(Fr) 433

gp(ρ1) = gp((gk ◦· · ·◦g1)(ρ)) = (gn ◦· · ·◦gk+1)◦hp(ρ). Now, hp(ρ) ' ρ rel
endpoints and so (gn ◦ · · · ◦ gk+1) ◦ hp(ρ) ' (gn ◦ · · · ◦ gk+1)(ρ) rel endpoints.
So gp(ρ1) = gp((gk ◦ · · · ◦ g1)(ρ)) = (gn ◦ · · · ◦ gk+1) ◦ hp(ρ) is homotopic
to (gn ◦ · · · ◦ gk+1)(ρ) = ρ1 rel endpoints. This makes ρ1 a pNp for g,
contradicting that g is pNp-free. Thus, h is pNp-free. �

Lemma 4.2. Let g : Γ → Γ be a tt map with 2r − 1 fixed directions and

Stallings fold decomposition Γ0
g1−→ Γ1

g2−→ · · · gn−1−−−→ Γn−1
gn−→ Γn. Let gi be

such that g = gi◦gi◦· · ·◦g1. Let d(1,1), . . . , d(1,2r−1) be the fixed directions for
Dg and let dj,k = D(gj ◦· · ·◦g1)(d1,k) for each 1 ≤ j ≤ n and 1 ≤ k ≤ 2r−1.
Then D(gi) is injective on {d(i,1), . . . , d(i,2r−1)}.

Proof. Let d(1,1), . . . , d(1,2r−1) be the fixed directions forDg. IfD(gi) identi-
fied any of d(i,1), . . . , d(i,2r−1), then Dg would have fewer than 2r-1 directions
in its image. �

Proposition 4.3. Let φ ∈ Out(Fr) be an ageometric, fully irreducible outer
automorphism whose ideal Whitehead graph IW(φ) is a connected, (2r−1)-
vertex graph. Then there exists a train track representative g of a power
ψ = φR of φ that is:

(1) on the rose,
(2) rotationless,
(3) pNp-free, and
(4) decomposable as a sequence of proper full folds of roses.

In fact, it decomposes as Γ = Γ0
g1−→ Γ1

g2−→ · · · gn−1−−−→ Γn−1
gn−→ Γn = Γ,

where:

(I) The index set {1, . . . , n} is viewed as the set Z/nZ with its natural
cyclic ordering.

(II) Each Γk is an edge-indexed rose with an indexing

{e(k,1), e(k,2), . . . , e(k,2r−1), e(k,2r)}

where:
(a) One can edge-index Γ with E(Γ) = {e1, e2, . . . , e2r−1, e2r} such

that, for each t with 1 ≤ t ≤ 2r, g(et) = ei1 . . . eis where

(gn ◦ · · · ◦ g1)(e0,t) = en,i1 . . . en,is .

(b) For some ik, jk with ek,ik 6= (ek,jk)±1

gk(ek−1,t) :=

{
ek,tek,jk for t = ik

ek,t for all ek−1,t 6= e±1
k−1,jk

(the edge index permutation for the homeomorphism in the de-
composition is trivial, so left out).

(c) For each et ∈ E(Γ) such that t 6= jn, we have Dg(dt) = dt,
where dt = D0(et).
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Proof. Since φ ∈ AFr, there exists a pNp-free tt representative g of a
power of φ. Let h = gk : Γ→ Γ be rotationless. Then h is also a pNp-free tt
representative of some φR and h (and all powers of h) satisfy (2)–(3). Since
h has no pNps (meaning

IW(φR) ∼=
⊔

singularities v∈Γ

SW(h; v)

and, if Γ is the rose, SW(h) ∼= IW(φR)), since h fixes all its periodic
directions, and since IW(φ) (hence IW(φR)) is in PI(r;( 3

2
−r)), Γ must have

a vertex with 2r − 1 fixed directions. Thus, Γ must be one of:

v

a

v

w
a

t

v

b cd
w

A1 A A2 3

b1 b
b1 b

a1 a

r-1

r-2

r-1

If Γ = A1, h satisfies (3). We show, in this case, we also have the decom-
position for (4). However, first we show Γ cannot be A2 or A3 by ruling out
all possibilities for folds in h’s Stallings decomposition.

If Γ = A2, v has to be the vertex with 2r-1 fixed directions. h has an illegal
turn unless it it is a homeomorphism, contradicting irreducibility. Note w
could not be mapped to v in a way not forcing an illegal turn at w, as this
would force either an illegal turn at v (if t were wrapped around some bi) or
we would have backtracking on t. Because all 2r-1 directions at v are fixed
by h, if h had an illegal turn, it would have to occur at w (no two fixed
directions can share a gate).

The turns at w are {a, ā}, {a, t}, and {ā, t}. By symmetry we only need
to rule out illegal turns at {a, ā} and {a, t}.

First, suppose {a, ā} were illegal and the first fold in the Stallings decom-
position. Fold {a, ā} maximally to obtain (A2)1. Completely collapsing a
would change the homotopy type of A2. (See Figure 1.)

Let h1 : (A2)1 → (A2)1 be the induced map of [BH92]. Since the fold
of {a, ā} was maximal, {a1, a1} must be legal. Since h was a train track,
{t1, a1} and {t1, a1} would also be legal. But then h1 would fix all directions
at both vertices of Γ1 (since it still would need to fix all directions at v).
This would make h1 a homeomorphism, again contradicting irreducibility.
So {a, ā} could not have been the first turn folded. We are left to rule out
{a, t}.

Suppose the first turn folded in the Stallings decomposition were {a, t}.
Fold {a, t} maximally to obtain (A2)′1. Let h′1 : (A2)′1 → (A2)′1 be the in-
duced map of [BH92]. Then one of the following holds:
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v

w

t

v

w

v

a

A

2

(A )2 1

t1

2

Fold

t
b1 b r-1

w w
a1 a1

b r-1b1

b1 b r-1

Figure 1. a1 is the portion of a not folded, a2 is the edge
created by the fold, w′ is the vertex created by the fold, and
t1 is a2 ∪ t without the (now unnecessary) vertex w.

(A) All of t was folded with a full power of a.
(B) All of t was folded with a partial power of a.
(C) Part of t was folded with either a full or partial power of a.

If (A) or (B) held, (A2)′1 would be a rose and h′1 would give a representa-
tive on the rose, returning us to the case of A1. So we just need to analyze
(C).

Consider first (C), i.e., suppose that part of t is folded with either a full
or partial power of a:

v

w

v

w

t
Fold

a

a 2 t2

a 2
a 3

or

v

a
(A )2 1

t2

t2

b1 b1
b1b r-1 b r-1

b r-1

(A )2 1

w w
w=w

Figure 2. Of the two scenarios on the right, the leftmost
is where the fold ends in the middle of a. a2 is a possible
portion of a folded with the portion of t, a3 would be the
portion of a not folded with t, and t2 would be the portion
of t not folded with a.

If h = h1 ◦ g1, where g1 is the single fold performed thus far, then h1

could not identify any directions at w′: identifying a2 and t2 would lead to
h back-tracking on t; identifying t2 and ā would lead to h back-tracking on a;
and h1 could not identify t2 and a3 because the fold was maximal. But then
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all directions of (A2)′1 would be fixed by h1, making h1 a homeomorphism
and the decomposition complete. However, this would make h consist of the
single fold g1 and a homeomorphism, contradicting h’s irreducibility. Thus,
all cases where Γ = A2 are either impossible or yield the representative on
the rose for (1).

Now assume Γ = A3. v must have 2r − 1 fixed directions. As with A2,
since h must fix all directions at v, if h had an illegal turn (which it still
has to) it would be at w. Without losing generality assume {b, d} is an
illegal turn and that the first Stallings fold maximally folds {b, d}. Folding
all of b and d would change the homotopy type. So assume (again without
generality loss) either:

• all of b is folded with part of d, or
• only proper initial segments of b and d are folded with each other.

If all of b is folded with part of d, we get a pNp-free tt map on the rose.
So suppose only proper initial segments of b and d are identified. Let
h1 : (A3)1 → (A3)1 be the [BH92] induced map.
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w w

Fold
e’

v

a 1 a r -1 a 1 a 1a r -1 a r -1

A3
(A )3 1

w

w

d b
d b

Figure 3. e was created by the fold and e′ is ē ∪ c without
the (now unnecessary) vertex w.

The new vertex w′ has 3 distinct gates: {b′, d′} is legal since the fold was
maximal and {b′, ē} and {d′, ē} must be legal or h would have back-tracked
on b or d, respectively. This leaves that the entire decomposition is a single
fold and a homeomorphism, again contradicting h’s irreducibility.

We have ruled out A3 and proved for (1) that we have a pNp-free repre-
sentative on the rose of some ψ = φR. We now prove (4).

Let h be the pNp-free tt representative of φR on the rose and

Γ0
g1−→ Γ1

g2−→ · · · gn−1−−−→ Γn−1
gn−→ Γn

the Stallings decomposition. Each gi is either an elementary fold or locally
injective (thus a homeomorphism). We can assume gn is the only homeo-
morphism. Let hi = gn ◦ · · · ◦ gi+1. Since h has precisely 2r− 1 gates, h has
precisely one illegal turn. We first determine what g1 could be. g1 cannot
be a homeomorphism or h = g1, making h reducible. So g1 must maximally
fold the illegal turn. Suppose the fold is a proper full fold. (If it is not, see
the analysis below of cases of improper or partial folds.)
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a a

b1 b

a 1 2

b1 b

a 2

h i

b
i b i

a a b i

b1 br-1r-1 r-1

Figure 4. Proper full fold.

By Lemma 4.2, h1 can only have one turn {d1, d2} where Dh1({d1, d2})
is degenerate (we call such a turn an order-1 illegal turn for h1). If it has
no order-1 illegal turn, h1 is a homeomorphism and the decomposition is
determined. So suppose h1 has an order-1 illegal turn (with more than
one, h could not have 2r-1 distinct gates). The next Stallings fold must
maximally fold this turn. With similar logic, we can continue as such until
either h is obtained, in which case the desired decomposition is found, or
until the next fold is not a proper full fold. The next fold cannot be an
improper full fold or the homotopy type would change. Suppose after the
last proper full fold we have:

v
a

b
1

b
r-1j

j

j

Without losing generality, suppose the illegal turn is {aj , aj}. Maximally
folding {aj , aj} yields A2, as above. This cannot be the final fold in the
decomposition since A1 is not homeomorphic to A2. By Lemma 4.1, the
illegal turn must be at w. The fold of Figure 3 cannot be performed, as our
fold was maximal. If the fold of Figure 4 were performed, there would be
backtracking on a.

Now suppose, without loss of generality, that the first Stallings fold that
is not a proper full fold is a partial fold of b′ and c′, as in the following figure.

�
�
�
�

�
�
�
�

d

v

w

v
a1 a r-2b c

b c

Figure 5. d is the edge created by folding initial segments
of b′ and c′, b′′ is the terminal segment of b′ not folded, and
c′′ is the terminal segment of c′ not folded.
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As in the case of Γ = A3 above, the next fold has to be at w or the next
generator would be a homeomorphism, contradicting that the image of h is
a rose, while A3 is not a rose. Since the previous fold was maximal, the
next fold cannot be of {b′′, c′′}. Also, {b′′, d̄} and {c′′, d̄} cannot be illegal
turns or h would have had edge backtracking. Thus, hi was not possible in
the first place, meaning that all folds in the Stallings decomposition must
be proper full folds between roses, proving (4).

Since all Stallings folds are proper full folds of roses, for each 1 ≤ k ≤ n−1,
one can index Ek = E(Γk)

{E(k,1), E(k,1), E(k,2), E(k,2), . . . , E(k,r), E(k,r)}
= {e(k,1), e(k,2), . . . , e(k,2r−1), e(k,2r)}

so that

(a) gk : ek−1,jk 7→ ek,ikek,jk where ek−1,jk ∈ Ek−1, ek,ik , ek,jk ∈ Ek and

(b) gk(ek−1,i) = ek,i for all ek−1,i 6= e±1
k−1,jk

.

Suppose we similarly index the directions D0(ek,i) = dk,i.
Let gn = h′ be the Stallings decomposition’s homeomorphism and suppose

its edge index permutation were nontrivial. Some power p of the permutation
would be trivial. Replace h by hp, rewriting hp’s decomposition as follows.
Let σ be the permutation defined by h′(en−1,i) = en−1,σ(i) for each i. For n ≤
k ≤ 2n−p, define gk by gk : ek−1,σ−s+1(jt) 7→ ek,σ−s+1(it)ek,σ−s+1(jt) where k =
sp+ t and 0 ≤ t ≤ p. Adjust the corresponding proper full folds accordingly.
This decomposition still gives hp, but now the homeomorphism’s edge index
permutation is trivial, making it unnecessary for the decomposition. �

tt maps with a decomposition satisfying (I)–(II) of Proposition 4.3 will
be called ideally decomposable (ID) with an ideal decomposition. Note that
(IIc) implies that g (hence φ) is rotationless, provided that g is pNp-free.

Standard Notation/Terminology 4.4 (Ideal decompositions). We will
consider the notation of the proposition standard for an ideal decomposition.
Additionally:

(1) We denote ek−1,jk by epuk−1, denote ek,jk by euk , denote ek,ik by eak,

and denote ek−1,ik−1
by epak−1.

(2) Dk will denote the set of directions corresponding to Ek.
(3) fk := gk ◦ · · · ◦ g1 ◦ gn ◦ · · · ◦ gk+1 : Γk → Γk.
(4)

gk,i :=

{
gk ◦ · · · ◦ gi : Γi−1 → Γk if k > i,

gk ◦ · · · ◦ g1 ◦ gn ◦ · · · ◦ gi if k < i.

(5) duk will denote D0(euk), sometimes called the unachieved direction for
gk, as it is not in Im(Dgk).

(6) dak will denote D0(eak), sometimes called the twice-achieved direction
for gk, as it is the image of both dpuk−1 (= D0(ek−1,jk)) and dpak−1
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(= D0(ek−1,ik)) under Dgk. d
pu
k−1 will sometimes be called the pre-

unachieved direction for gk and dpak−1 the pre-twice-achieved direction
for gk.

(7) Gk will denote the ltt structure G(fk)
(8) Gk,l will denote the subgraph of Gl containing

• all black edges and vertices (given the same colors and labels as
in Gl) and
• all colored edges representing turns in gk,l(e) for some e ∈ Ek−1.

(9) For any k, l, we have a direction map Dgk,l and an induced map of

turns Dgtk,l. The induced map of ltt structures DgTk,l : Gl−1 7→ Gk
(which we show below exists) is such that
• the vertex corresponding to a direction d is mapped to the ver-

tex corresponding to Dgk,l(d),
• the colored edge [d1, d2] is mapped linearly as an extension of the

vertex map to the edge [Dgtk,l({d1, d2})] = [Dgk,l(d1), Dgk,l(d2)],
and
• the interior of the black edge of Gl−1 corresponding to the edge
E ∈ E(Γl−1) is mapped to the interior of the smooth path in
Gk corresponding to g(E).

Example 4.5. We describe an induced map of rose-based ltt structures for
g2 : x 7→ xz:

x

y zx

y

z

x      xz
G1 G2

g
2

y

y

z

zx

x

Figure 6. The induced map for g2 : x 7→ xz sends vertex
x̄ of G1 to vertex z̄ of G2 and every other vertex of G1 to
the identically labeled vertex of G2. [y] in G1 maps to [y]
in G2, [z] in G1 maps to [z] in G2, and [x] in G1 maps to
[x] ∪ [x̄, z] ∪ [z] in G2. The purple edge [x̄, y] in G1 maps to
the purple edge [z̄, y] in G2, the purple edge [x̄, ȳ] in G1 maps
to the purple edge [z̄, ȳ] in G2, [x̄, z] in G1 maps to the purple
edge [z̄, z] in G2, and each other purple edge in G1 is sent to
the identically labeled purple edge in G2. The red edge [z̄, ȳ]
in G1 maps to the purple edge [z̄, ȳ] in G2.

. We return to Standard Notation/Terminology 4.4:

(10) C(Gk) will denote the subgraph of Gk, coming from LW(fk) and
containing all colored (red and purple) edges of Gk.



440 CATHERINE PFAFF

(11) Sometimes we use PI(Gk) to denote the purple subgraph of Gk
coming from SW(fk).

(12) DgCk,l will denote the restriction (which we show below exists) to

C(Gl−1) of DgTk,l.

(13) If we additionally require φ ∈ AFr and IW(φ) ∈ PI(r;( 3
2
−r)), then

we will say g is potentially (r; (3
2 − r)) or has (r; (3

2 − r)) potential.

(By saying g has (r; (3
2 − r)) potential, it will be implicit that, not

only is φ ∈ AFr, but φ is ideally decomposed, or at least ID). In
particular, we are assuming that φ is rotationless.

Remark 4.6. For typographical clarity, we sometimes put parantheses
around subscripts. We refer to Ek,i as Ei, and Γk as Γ, for all k when
k is clear.

5. Admissible map properties

We prove that the ideal decomposition of a potentially (r; (3
2 − r)) repre-

sentative satisfies “Admissible Map Properties” listed in Proposition 5.1.
In Section 7 we use the properties to show there are only two possible
(fold/peel) relationship types between adjacent ltt structures in an ideal
decomposition. Using this, in Section 8, we define the “ideal decomposition
diagram” for G ∈ PI(r;( 3

2
−r)).

The statement of Proposition 5.1 comes at the start of this section, while
its proof comes after a sequence of technical lemmas used in the proof.

Unless otherwise stated, g : Γ → Γ will represent a rotationless φ ∈
Out(Fr) such that IW(φ) is a connected (2r − 1)-vertex graph (in other
words, g will have (r; (3

2−r)) potential). Further, g will be ideally decomposed
as:

Γ = Γ0
g1−→ Γ1

g2−→ · · · gn−1−−−→ Γn−1
gn−→ Γn = Γ.

We use the “Standard 4.4 Notation”.

Proposition 5.1. Suppose g : Γ→ Γ represents a rotationless φ ∈ Out(Fr)
such that IW(φ) is a connected (2r− 1)-vertex graph (in other words, g has
(r; (3

2 − r)) potential) and is ideally decomposed as

Γ = Γ0
g1−→ Γ1

g2−→ · · · gn−1−−−→ Γn−1
gn−→ Γn = Γ.

Then g satisfies each of the following.

AMI Each Gj is birecurrent.
AMII For each Gj, the illegal turn Tj for the generator gj+1 exiting Gj

contains the unachieved direction duj for the generator gj entering

Gj, i.e., either duj = dpaj or duj = dpuj .

AMIII In each Gj, the vertex labeled duj and edge [tRj ] = [duj , d
a
j ] are both

red.
AMIV If [d(j,i), d(j,l)] is in C(Gj), then DCgm,j+1([d(j,i), d(j,l)]) is a purple

edge in Gm, for each m 6= j.
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AMV For each j, [tRj ] = [duj , d
a
j ] is the unique edge containing duj .

AMVI Each gj is defined by gj : epuj−1 7→ eaj e
u
j , where

D0(euj ) = duj , D0(eaj ) = daj , euj = ej,m, epuj−1 = ej−1,m.

AMVII Dgl,j+1 induces an isomorphism from SW(fj) onto SW(fl) for all
j 6= l.

AMVIII For each 1 ≤ j ≤ r:
(a) There exists a k such that either euk = Ek,j or euk = Ek,j.

(b) There exists a k such that either eak = Ek,j or eak = Ek,j.

The proof of Proposition 5.1 will come at the end of this section.

Definition 5.2. An edge path γ = e1 . . . ek in Γ has cancellation if ei = ei+1

for some 1 ≤ i ≤ k−1. We say g has no cancellation on edges if for no l > 0
and edge e ∈ E(Γ) does gl(e) have cancellation.

Lemma 5.3. For this lemma we index the generators in the decomposition
of all powers gp of g so that

gp = gpn ◦ gpn−1 ◦ · · · ◦ g(p−1)n ◦ · · · ◦ g(p−2)n ◦ · · · ◦ gn+1 ◦ gn ◦ · · · ◦ g1

(gmn+i = gi, but we want to use the indices to keep track of a generator’s
place in the decomposition of gp). With this notation, gk,l will mean gk ◦
· · · ◦ gl. Then:

(1) For each e ∈ E(Γl−1), no gk,l(e) has cancellation.
(2) For each 0 ≤ l ≤ k and El−1,i ∈ E+(Γl−1), the edge Ek,i is in the

path gk,l(El−1,i).

(3) If euk = ek,j, then the turn {dak, d
u
k} is in the edge path gk,l(el−1,j),

for all 0 ≤ l ≤ k.

Proof. Let s be minimal so that some gs,t(et−1,j) has cancellation. Before
continuing with our proof of (1), we first proceed by induction on k − l to
show that (2) holds for k < s. For the base case observe that gl+1(el,j) =

el+1,j for all el+1,j 6= (epul )±1. Thus, if el,j 6= epul and el,j 6= epul then
gl+1(el,j) is precisely the path el+1,j and so we are only left for the base case
to consider when el,j = (epul )±1. If el,j = epul , then gl+1(el,j) = eal+1el+1,j

and so the edge path gl+1(el,j) contains el+1,j , as desired. If el,j = epul , then

gl+1(el,j) = el+1,je
a
l+1 and so the edge path gl+1(el,j) also contains el+1,j in

this case. Having considered all possibilities, the base case is proved.
For the inductive step, we assume gk−1,l+1(el,j) contains ek−1,j and show

ek,j is in the path gk,l+1(el,j). Let

gk−1,l+1(el,j) = ei1 . . . eiq−1ek−1,jeiq+1 . . . eir

for some edges ei ∈ Ek−1. As in the base case, for all ek−1,j 6= (euk)±1,
gk(ek−1,j) is precisely the path ek,j . Thus (since gk is an automorphism
and since there is no cancellation in gj1,j2(ej1,j2) for 1 ≤ j1 ≤ j2 ≤ k),
gk,l+1(el,j) = γ1 . . . γq−1(ek,j)γq+1 . . . γm where each γij = gl(eij ) and where
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no {γi, γi+1}, {ek,j , γq+1}, or {γq−1, ek,j} is an illegal turn. So each ek,j is
in gk,l+1(el,j). We are only left to consider for the inductive step the cases

ek−1,j = epuk and ek−1,j = epuk .
If ek−1,j = epuk , then gk(ek−1,j) = eakek,j , and so

gk,l+1(el,j) = γ1 . . . γq−1e
a
kek,jγq+1 . . . γm

(where no {γi, γi+1}, {ek,j , γq+1}, or {γq−1, e
a
k} is an illegal turn), which

contains ek,j , as desired. If instead ek−1,j = epuk , then gk(ek−1,j) = ek,je
a
k

and so gk,l+1(el,j) = γ1 . . . γq−1ek,je
a
kγq+1 . . . γm, which also contains ek,j .

Having considered all possibilities, the inductive step is now also proven
and the proof is complete for (2) in the case of k < s.

We finish the proof of (1). s is still minimal. So gs,t(et−1,j) has cancella-
tion for some et−1,j ∈ Ej . Suppose gs,t(et−1,j) has cancellation. For 1 ≤ j ≤
m, let αj ∈ Es−1 be such that gs−1,t(et−1,j) = α1 · · ·αm. By s’s minimality,
either gs(αi) has cancellation for some 1 ≤ i ≤ m or Dgs(αi) = Dgs(αi+1)
for some 1 ≤ i < m. Since each gs is a generator, no gs(αi) has cancellation.
So, for some i, Dgs(αi) = Dgs(αi+1). As we have proved (1) for all k < s,
we know gt−1,1(e0,j) contains et−1,j . So gs,1(e0,j) = gs,t(gt−1,1(e0,j)) contains
cancellation, implying gp(e0,j) = gpn,s+1(gs,1(e0,j)) = gs,t(. . . et−1,j . . . ) for
some p (with pn > s + 1) contains cancellation, contradicting that g is a
train track map.

We now prove (3). Let euk = ek,l. By (2) we know that the edge path
gk−1,l(el−1,j) contains ek−1,j . Let e1, . . . em ∈ Ek−1 be such that

gk−1,l(el−1,j) = e1 . . . eq−1ek−1,jeq+1 . . . em.

Then gk,l(el−1,j) = γ1 . . . γq−1e
a
ke
u
kγq+1 . . . γr where γj = gk(ej) for all j.

Thus gk,l(e
pu
k−1) contains {dak, d

u
k}, as desired. �

Lemma 5.4 (Properties of fk = gk ◦ gk−1 ◦ · · · ◦ gk+2 ◦ gk+1 : Γk → Γk).

(a) Each fk represents the same φ. In particular, if g has (r; (3
2 − r))

potential, then so does each fk.
(b) If g is rotationless, then each fk is rotationless (and all periodic

directions are fixed). In particular, if g is pNp-free, then each fk is
rotationless.

(c) Each fk has 2r − 1 gates (and thus fixed directions).
(d) For each k, duk /∈ IM(Dfk). Thus, duk is the unique nonperiodic

direction for Dfk.
(e) If

Γ = Γ0
g1−→ Γ1

g2−→ · · · gn−1−−−→ Γn−1
gn−→ Γn = Γ

is an ideal decomposition of g, then

Γk
gk+1−−−→ Γk+1

gk+2−−−→ · · · gk−1−−−→ Γk−1
gk−→ Γk

is an ideal decomposition of fk.
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Proof. Lemma 4.1 implies (a). If g is rotationless, then each fk is rota-
tionless, as it represents a rotationless φ. If g has no pNp’s, then Propo-
sition 4.3(IIc), held by ideal decompositions, implies that g is rotationless.
This gives (b).

We prove (c). The number of gates is the number of periodic directions,
which here would be the number of fixed directions. Suppose, for the sake of
contradiction, that fk had more gates than fl. Let pk be such that D(fpkk )
maps each gate of fk to a single direction and let pl be such that D(fpll )
maps each gate of fl to a single direction. Let {G1, . . . ,Gs} be the set of
gates for fk, let αi be the periodic direction of Gi for each 1 ≤ i ≤ s, let
{G′1, . . . ,G′s′} be the set of gates for fl, and let α′i be the periodic direction

of G′i for each 1 ≤ i ≤ s′. Consider fpk+pl+1
k = fk,l+1 ◦ fpll ◦ fl,k+1 ◦ fpkk . Let

{d1, . . . , dt} = D(fl,k+1 ◦ fpkk )(Dk). Then {d1, . . . , dt} is mapped by D(fpll )
into {α′1 . . . α′s′} and, consequently, D(fpll ◦ fl,k+1 ◦ fpkk )(Dk) ⊂ {α′1 . . . α′s′}.
This implies that

D(fk,l+1)(D(fpll ◦ fl,k+1 ◦ fpkk )(Dk)) = D(fpk+pl+1
k )(Dk)

⊂ D(fk,l+1)({α′1 . . . α′s′}),

which has at most s′ elements. But this contradicts fk having more gates
that fl. Thus, all fk have the same number of gates.

We prove (d). Since fk is rotationless, all periodic directions are fixed.
By (c), Dfk has 2r-1 fixed directions. Since duk /∈ IM(Dgk), it cannot be in
IM(Dfk), so is the unique nonfixed direction. We prove (e). Ideal decom-
position properties (I)–(IIb) hold for fk’s decomposition, as they hold for
g’s decomposition and the decompositions have the same Γi and gi (renum-
bered). (IIc) holds for fk’s decomposition by (d). �

We add to the notation already established: tRk = {dak, d
u
k}, eRk = [tRk ], and

Tk = {dpak , d
pu
k }.

Lemma 5.5. The following hold for each Tk = {dpak , d
pu
k }.

(a) Tk is an illegal turn for gk+1 and, thus, also for fk.
(b) For each k, Tk contains duk.

Proof. Recall that Tk = {dpak , d
pu
k }. Since

Dtgk+1({dpak , d
pu
k }) = {Dgk+1(dpak ), Dgk(d

pu
k )} = {dak+1, d

a
k+1},

we have

Dtfk({dpak , d
pu
k }) = Dt(gk,k+2 ◦ gk+1)({dpak , d

pu
k })

= Dt(gk,k+2)(Dtgk+1({dpak , d
pu
k }))

= Dtgk,k+2({dak+1, d
a
k+1})

= {Dtgk,k+2(dak+1), Dtgk,k+2(dak+1)},

which is degenerate. So Tk is an illegal turn for fk, proving (a).
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For (b) suppose g has 2r − 1 periodic directions and, for contradiction’s
sake, the illegal turn Tk does not contain duk = dk,i. Let duk+1 = dk+1,s and
dak+1 = dk+1,t. Then Dgk(dk−1,s) = dk,s and Dgk(dk−1,t) = dk,t, so

Dt(gk+1 ◦ gk)({d(k−1,s), d(k−1,t)})
= {D(gk+1 ◦ gk)(d(k−1,s)), D(gk+1 ◦ gk)(d(k−1,t))}
= {Dgk+1(dk,s = dpuk ), Dgk+1(dk,t = dpak )}
= {dak+1, d

a
k+1}.

So dk−1,s and dk−1,t share a gate. But dk−1,i already shares a gate with
another element and we already established that dk−1,i 6= dk−1,s and dk−1,i 6=
dk−1,t. So fk−1 has at most 2r−2 gates. Since each fk has the same number
of gates, this implies g has at most 2r− 2 gates, giving a contradiction. (b)
is proved. �

Corollary 5.6. For each 1 ≤ k ≤ n:

(a) tRk = {dak, d
u
k}, must contain either dpuk or dpak .

(b) The vertex labeled duk in Gk is red and [tRk ] = [dak, d
u
k ] is a red edge in

Gk.

Proof. We start with (a). Lemma 5.5 implies each Tk contains duk . At the

same time, we know tRk = {dak, d
u
k}, implying tRk contains duk , thus either

dpak or dpuk . We now prove (b). By Lemma 5.4(d), duk is not a periodic
direction for Dfk, so is not a vertex of SW(fk). Thus, duk labels a red

vertex in Gk. To show [tRk ] is in LW(fk) it suffices to show tRk is in fk(e
u
k).

Let euk = ek,l. By Lemma 5.3, the path gk−1,k+1(euk = ek,l) contains ek−1,l.
Let ej ∈ El−1 be such that gk−1,k+1(euk) = e1 . . . eq−1ek−1,leq+1 . . . em. Then
fk(e

u
k) = gk,k+1(euk) = γ1 . . . γq−1e

a
ke
u
kγq+1 . . . γm where γj = gk(eij ) for all j.

So fk(e
u
k) contains {d̄ak, duk} and LW(fk) contains [tRk ]. Since [dak, d

u
k ] contains

the red vertex duk , it is red in Gk. �

Lemma 5.7. If [d(l,i), d(l,j)] is in C(Gl), then [Dtgk,l+1({d(l,i), d(l,j)})] is a
purple edge in Gk.

Proof. It suffices to show two things:

(1) Dtgk,l+1({d(l,i), d(l,j)}) is a turn in some edge path fpl (el,m) with
p ≥ 1.

(2) Dgk,l+1(dl,i) and Dgk,l+1(dl,j) are periodic directions for fl.

We use induction. Start with (1). For the base case assume [d(k−1,i), d(k−1,j)]
is in C(Gk−1), so

(5.1) fpk−1(ek−1,t) = s1 . . . e(k−1,i)e(k−1,j) . . . sm

for some e(k−1,t), s1, . . . sm ∈ Ek−1 and p ≥ 1. By Lemma 5.3, ek−1,t is in the
path gk−1 ◦ · · · ◦ g1 ◦ gn ◦ · · · ◦ gk+1(ek,t). Thus, by (5.1), since no gi,j(ej−1,t)
can have cancellation, s1 . . . e(k−1,i)e(k−1,j) . . . sm is a subpath of

fpk−1 ◦ gk−1 ◦ · · · ◦ g1 ◦ gn ◦ · · · ◦ gk+1(ek,t).
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Apply gk to fpk−1 ◦ gk−1 ◦ · · · ◦ g1 ◦ gn ◦ · · · ◦ gk(ek−1,t) to get fp+1
k (ek,t).

Suppose Dgk(ek−1,i) = ek,i and Dgk(ek−1,j) = ek,j . Then

gk(. . . ek−1,iek−1,j . . . ) = . . . e(k,i)e(k,j) . . . ,

with possibly different edges before and after ek,i and ek,j than before and

after ek−1,i and ek−1,j . Thus, here, fp+1
k (. . . e(k−1,i)e(k−1,j) . . . ) contains

{d(k,i), d(k,j)}, which here is Dtgk({d(k−1,i), d(k−1,j)}). So

[Dtgk({d(k−1,i), d(k−1,j)})]

is an edge in Gk.
Suppose gk : ek−1,j 7→ ek,lek,j . Then

gk(. . . ek−1,iek−1,j . . . ) = . . . ek,iek,lek,j . . . ,

(again with possibly different edges before and after ek,i and ek,j). So

gk(. . . e(k−1,i)e(k−1,j) . . . ) contains {d(k,l), d(k,j)}, which here is

Dtgk({d(k−1,i), d(k−1,j)}),

so [Dtgk({d(k−1,i), d(k−1,j)})] again is in Gk.
Finally, suppose gk is defined by ek−1,j 7→ ek,jek,l. Unless ek−1,i = e(k−1,j),

we have

gk(. . . e(k−1,i)e(k−1,j) . . . ) = . . . e(k,i)e(k,j)e(k,l) . . . ,

containing {d(k,i), d(k,j)} = Dtgk({d(k−1,i), d(k−1,j)}). So

[Dtgk({d(k−1,i), d(k−1,j)})]

is an edge in Gk here also.
If ek−1,i = ek−1,j , we are in a reflection of the previous case. The other

cases (gk : ek−1,i 7→ ek,iek,l and gk : ek−1,i 7→ ek,lek,i) follow similarly by
symmetry. The base case for (1) is complete.

We prove the base case of (2). Since

[Dtgk({d(k−1,i), d(k−1,j)})] = [Dgk(d(k−1,i)), Dgk(d(k−1,j))],

both vertex labels of [Dtgk({d(k−1,i), d(k−1,j)})] are in IM(Dgk). By Lem-

ma 5.4(d), both vertices are periodic. So [Dtgk({d(k−1,i), d(k−1,j)})] is in
PI(Gk). The base case is proved. Suppose inductively [d(l,i), d(l,j)] is an

edge in C(Gl) and [Dtgk−1,l+1({d(l,i), d(l,j)})] is an edge in PI(Gk−1). The

base case implies [Dtgk(D
tgk−1,l+1({d(l,i), d(l,j)})] is an edge in PI(Gk).

But Dtgk(D
tgk−1,l+1({d(l,i), d(l,j)})) = Dtgk,l+1({d(l,i), d(l,j)}). The lemma

is proved. �

Lemma 5.8 (Properties of tRk and eRk ). For each 1 ≤ l, k ≤ n:

(a) [Dtgl,k({dak−1, d
u
k−1})] is a purple edge in Gl.

(b) [dak, d
u
k ] is not in DCgk(Gk−1).
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Proof. By Lemma 5.7, it suffices to show for (a) that [dak−1, d
u
k−1] is a colored

edge of Gk−1. This was shown in Corollary 5.6(b). By Lemma 5.7, each edge
in C(Gk−1) is mapped to a purple edge in Gk. On the other hand, [dak, d

u
k ] is

a red edge in Gk. Thus, [dak, d
u
k ] is not in DCgk(Gk−1) and (b) is proved. �

Each Gk has a unique red edge (eRk = [tRk ] = [dak, d
u
k ]):

Lemma 5.9. C(Gk) can have at most 1 edge segment connecting the nonpe-
riodic direction red vertex duk to the set of purple periodic direction vertices.

Proof. First note that the nonperiodic direction duk labels the red vertex

in Gk. If gk(ek−1,i) = ek,iek,j , then the red vertex in Gk is dk,i (where

dk,i = D0(ek,i) and dk,j = D0(ek,j)). The vertex dk,i will be adjoined to the
vertex for dk,j and only dk,j : each occurrence of ek−1,i in the image under
gk−1,1 of any edge has been replaced by ek,iek,j and every occurrence of ek,i
has been replaced by ek,iek,j , i.e., there are no copies of ek,j without ek,i
following them and no copies of ek,i without ek,j preceding them. �

The red edge and vertex of Gk determine gk:

Lemma 5.10. Suppose that the unique red edge in Gk is [tRk ] = [d(k,j), d(k,i)]
and that the vertex representing dk,j is red. Then gk(ek−1,j) = ek,iek,j and
gk(ek−1,t) = ek,t for ek−1,t 6= (ek−1,j)

±1, where D0(es,t) = ds,t and D0(es,t) =

ds,t for all s, t.

Proof. By the ideal decomposition definition, gk is defined by ek−1,j 7→
ek,iek,j . Corollary 5.6 implies D0(ek,j) = duk , i.e., the direction associated
to the red vertex of Gk. So the second index of duk uniquely determines
the index j, so ek−1,j = epuk−1 and ek,i = eak. Additionally, the proof of

Corollary 5.6 implies [d(k,i), d(k,j)] is the red edge of Gk. So ek,i = eak. And

gk must be defined by epuk−1 7→ eake
u
k , i.e ek−1,j 7→ ek,iek,j . �

Lemma 5.11 (Induced maps of ltt structures).

(a) DCfk maps PI(Gk) isomorphically onto itself via a label-preserving
isomorphism.

(b) The set of purple edges of Gk−1 is mapped by DCgk injectively into
the set of purple edges of Gk.

(c) For each 0 ≤ l, k ≤ n, Dgl,k+1 induces an isomorphism from SW(fk)
onto SW(fl).

Proof. (a) Lemma 5.7 implies thatDCfk maps PI(Gk) into itself. However,
Dfk fixes all directions labeling vertices of SW(fk) = PI(Gk). Thus, DCfk
restricted to PI(Gk) is a label-preserving graph isomorphism onto its image.

(b) Since dak is the only direction with more than one Dgk preimage, and
these two preimages are dpak−1 and dpuk−1, the [d(k,i), d

a
k] are the only edges in

Gk with more than one DCgk preimage. The two preimages are the edges
[d(k−1,i), d

pa
k−1] and [d(k−1,i), d

pu
k−1] in Gk−1. However, by Lemma 5.5, either
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euk−1 = epuk−1 or euk−1 = epak−1. So one of the preimages of dak is actually duk−1,

i.e., one of the preimage edges is actually [d(k−1,i), d
u
k−1]. Since [tRk−1] is the

only edge of C(Gk−1) containing duk−1, one of the preimages of [d(k,i), d
a
k]

must be [tRk−1], leaving only one possible purple preimage.

(c) By (b), the set of Gk’s purple edges is mapped injectively by DCgl,k+1

into the set of Gl’s purple edges. Likewise, the set of Gl’s purple edges is
mapped injectively by DCgk,l+1 into Gk. (a) implies

DCfk = (DCgk,l+1) ◦ (DCgl,k+1)

and DCfl = (DCgl,k+1) ◦ (DCgk,l+1) are bijections. So, the map DCgl,k+1

induces on the set of Gk’s purple edges is a bijection. It is only left to show
that two purple edges share a vertex in Gk if and only if their DCgl,k+1

images share a vertex in Gl.
If [x, d1] and [x, d2] are in PI(Gk),

DCgl,k+1([x, d1]) = [Dgl,k+1(x), Dgl,k+1(d1)] and

Dtgl,k+1([x, d2]) = [Dgl,k+1(x), Dgl,k+1(d2)]

share Dgl,k+1(x). On the other hand, if [w, d3] and [w, d4] in PI(Gl) share
w, then

[Dtgk,l+1({w, d3})] = [Dgk,l+1(w), Dgk,l+1(d3)] and

[Dtgk,l+1({w, d4})] = [Dgk,l+1(w), Dgk,l+1(d4)]

share Dgk,l+1(w). Since DCfl is an isomorphism on PI(Gl), D
Cgl,k+1 and

DCgk,l+1 act as inverses. So the preimages of [w, d3] and [w, d4] under

DCgl,k+1 share a vertex in Gl. �

Lemma 5.12 gives properties stemming from irreducibility (though not
proving irreducibility):

Lemma 5.12. For each 1 ≤ j ≤ r:
(a) There exists a k such that either euk = Ek,j or euk = Ek,j.

(b) There exists a k such that either eak = Ek,j or eak = Ek,j.

Proof. (a) For contradiction’s sake suppose there is some j so that euk 6= E±1
k,j

for all k. We inductively show g(E0,j) = E0,j , implying g’s reducibility.
Induction will be on the k in gk−1,1.

For the base case, we need g1(E0,j) = E1,j if eu1 6= E±1
1,j . g1 is defined by

epu0 7→ ea1e
u
1 . Since eu1 6= E1,j and eu1 6= E(1,j), we know epu0 6= E±1

(0,j). Thus,

g1(E0,j) = E(1,j), as desired. Now inductively suppose gk−1,1(E0,j) = Ek−1,j

and euk 6= E±1
k,j . Then epuk−1 6= E±1

k−1,j . Thus, since epuk−1 7→ eake
u
k defines gk, we

know gk(Ek−1,j) = Ek,j . So

gk,1(E0,j) = gk(gk−1,1(E0,j)) = gk(Ek−1,j) = Ek,j .
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Inductively, this proves g(E0,j) = E0,j , we have our contradiction, and (a)
is proved.

(b) For contradiction’s sake, suppose that, for some 1 ≤ j ≤ r, eak 6= Ek,j
and eak 6= Ek,j for each k. The goal will be to inductively show that, for each

E0,i with E0,i 6= E0,j and E0,i 6= E(0,j), g(E0,i) does not contain E0,j and

does not contain E0,j (contradicting irreducibility).
We prove the base case. g1 is defined by epu0 7→ ea1e

u
1 . First suppose

E0,j = (epu0 )±1. Then epu0 6= E±1
0,i (since E0,i 6= E±1

0,j ). So g1(E0,i) = E1,i,

which does not contain E±1
1,j . Now suppose that E0,j 6= epu0 and E0,j 6= epu0 .

Then ea1e
u
1 does not contain E1,j or E1,j (since eak 6= (Ek,j)

±1 by assumption).

So E±1
1,j are not in the image of E0,i if E0,i = epu0 (since the image of E0,i

is then ea1e
u
1) and are not in the image of E0,i (since the image is eu1e

a
1)

and are not in the image E0,i if E0,i 6= (epu0 )±1 (since the image is E1,i and

E1,i 6= E±1
1,j ). The base case is proved.

Inductively suppose gk−1,1(E0,i) does not contain E±1
k−1,j . Similar analysis

as above shows gk(Ek−1,i) does not contain E±1
k,j for any Ek,i 6= E±1

k,j . Since

gk−1,1(Ek−1,i) does not contain E±1
k−1,j , gk−1,1(E0,i) = e1 . . . em with each

ei 6= E±1
k−1,j . Thus, no gk(ei) contains E±1

k,j . So

gk,1(E0,i) = gk(gk−1,1(E0,i)) = gk(e1) . . . gk(em)

does not contain E±1
k,j . This completes the inductive step, thus (b). �

Remark 5.13. Lemma 5.12 is necessary, but not sufficient, for g to be
irreducible. For example, the composition of a 7→ ab, b 7→ ba, c 7→ cd, and
d 7→ dc satisfies Lemma 5.12, but is reducible.

Proof of Proposition 5.1. AMI follows from Proposition 3.7 and Lem-
ma 5.4, AMII from Lemma 5.5, AMIII from Corollary 5.6, AMIV from
Lemma 5.7, AMV from Lemma 5.9 and Corollary 5.6, AMVI from Lem-
ma 5.10, AMVII from Lemma 5.11, and AMVIII from Lemma 5.12. �

6. Lamination train track (ltt) structures

In Subection 2.5 we defined ltt structures for ideally decomposed repre-
sentatives with (r; (3

2 − r)) potential. Both for defining ID diagrams and
for applying the Birecurrency Condition, we need abstract definitions of ltt
structures motivated by the AM properties of Section 5.

6.1. Abstract lamination train track structures.

Definition 6.1. (See Example 2.6) A lamination train track (ltt) structure
G is a pair-labeled colored train track graph (black edges will be included,
but not considered colored) satisfying:

(ltt1) Vertices are either purple or red.
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(ltt2) Edges are of 3 types (Eb comprises the black edges and Ec comprises
the red and purple edges):

Black Edges: A single black edge connects each pair of (edge-
pair)-labeled vertices. There are no other black edges. In par-
ticular, each vertex is contained in a unique black edge.

Red Edges: A colored edge is red if and only if at least one of
its endpoint vertices is red.

Purple Edges: A colored edge is purple if and only if both end-
point vertices are purple.

(ltt3) No pair of vertices is connected by two distinct colored edges.

The purple subgraph of G will be called the potential ideal Whitehead
graph associated to G, denoted PI(G). For a finite graph G ∼= PI(G), we
say G is an ltt structure for G.

An (r; (3
2 − r)) ltt structure is an ltt structure G for a G ∈ PI(r;( 3

2
−r))

such that:

(ltt4) G has precisely 2r-1 purple vertices, a unique red vertex, and a
unique red edge.

Ltt structures are equivalent that differ by an ornamentation-preserving
(label and color preserving), homeomorphism.

Standard Notation/Terminology 6.2 (Ltt structures). For an ltt struc-
ture G:

(1) An edge connecting a vertex pair {di, dj} will be denoted [di, dj ],
with interior (di, dj).

(While the notation [di, dj ] may be ambiguous when there is more
than one edge connecting the vertex pair {di, dj}, we will be clear in
such cases as to which edge we refer to.)

(2) [ei] will denote [di, di]
(3) Red vertices and edges will be called nonperiodic.
(4) Purple vertices and edges will be called periodic.
(5) C(G) will denote the colored subgraph of G, called the colored sub-

graph associated to (or of ) G.
(6) G will be called admissible if it is birecurrent.

For an (r; (3
2 − r)) ltt structure G for G, additionally:

(1) du will label the unique red vertex and be called the unachieved
direction.

(2) eR = [tR], will denote the unique red edge and da its purple vertex’s
label. So tR = {du, da} and eR = [du, da].

(3) da is contained in a unique black edge, which we call the twice-
achieved edge.

(4) da will label the other twice-achieved edge vertex and be called the
twice-achieved direction.
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(5) If G has a subscript, the subscript carries over to all relevant nota-
tion. For example, in Gk, d

u
k will label the red vertex and eRk the red

edge.

A 2r-element set of the form {x1, x1, . . . , xr, xr}, with elements paired
into edge pairs {xi, xi}, will be called a rank -r edge pair labeling set. It
will then be standard to say xi = xi. A graph with vertices labeled by an
edge pair labeling set will be called a pair-labeled graph. If an indexing is
prescribed, it will be called an indexed pair-labeled graph.

Definition 6.3. For an ltt structure to be considered indexed pair-labeled,
we require:

(1) It is index pair-labeled (of rank r) as a graph.
(2) The vertices of the black edges are indexed by edge pairs.

Index pair-labeled ltt structures are equivalent that are equivalent as ltt
structures via an equivalence preserving the indexing of the vertex labeling
set.

By index pair-labeling (with rank r) an (r; (3
2 − r)) ltt structure G and

edge-indexing the edges of an r-petaled rose Γ, one creates an identifica-
tion of the vertices in G with D(v), where v is the vertex of Γ. With this
identification, we say G is based at Γ. In such a case it will be standard
to use the notation {d1, d2, . . . , d2r−1, d2r} for the vertex labels (instead of
{x1, x2, . . . , x2r−1, x2r}). Additionally, [ei] will denote [D0(ei), D0(ei)] =
[di, di] for each edge ei ∈ E(Γ).

A G ∈ PI(r;( 3
2
−r)) will be called (index) pair-labeled if its vertices are

labeled by a 2r−1 element subset of the rank r (indexed) edge pair labeling
set.

6.2. Maps of lamination train track structures. Let G and G′ be rank-
r indexed pair-labeled (r; (3

2 − r)) ltt structures, with bases Γ and Γ′, and
g : Γ→ Γ′ a tight homotopy equivalence taking edges to nondegenerate edge-
paths.

Recall that Dg induces a map of turns Dtg : {a, b} 7→ {Dg(a), Dg(b)}. Dg
additionally induces a map on the corresponding edges of C(G) and C(G′) if
the appropriate edges exist in C(G′):

Definition 6.4. When the map sending

(1) the vertex labeled d in G to that labeled by Dg(d) in G′ and
(2) the edge [di, dj ] in C(G) to the edge [Dg(di), Dg(dj)] in C(G′) also

satisfies that
(3) each PI(G) is mapped isomorphically onto PI(G′),

we call it the map of colored subgraphs induced by g and denote it

DC(g) : C(G)→ C(G′).
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When it exists, the map DT (g) : G → G′ induced by g is the extension
of DC(g) : C(G) → C(G′) taking the interior of the black edge of G corre-
sponding to the edge E ∈ E(Γ) to the interior of the smooth path in G′

corresponding to g(E).

6.3. ltt structures are ltt structures. By showing that the ltt structures
of Subsection 2.5 are indeed abstract ltt structures, we can create a finite list
of ltt structures for a particular G ∈ PI(r;( 3

2
−r)) to apply the birecurrency

condition to.

Lemma 6.5. Let g : Γ → Γ be a representative of φ ∈ Out(Fr), with
(r; (3

2 − r)) potential, such that IW(g) ∼= G. Then G(g) is an (r; (3
2 − r)) ltt

structure with base graph Γ. Furthermore, PI(G(g)) ∼= G.

Proof. This is more or less just direct applications of the lemmas above.
[Pfa12] gives a detailed proof of a more general lemma. �

6.4. Generating triples. Since we deal with representatives decomposed
into Nielsen generators, we use an abstract notion of an “indexed generating
triple.”

Definition 6.6. A triple (gk, Gk−1, Gk) will be an ordered set of three ob-
jects where gk : Γk−1 → Γk is a proper full fold of roses and, for i = k− 1, k,
Gi is an ltt structure with base Γi.

Definition 6.7. A generating triple is a triple (gk, Gk−1, Gk) where:

(gtI) gk : Γk−1 → Γk is a proper full fold of edge-indexed roses defined by:
(a) gk(ek−1,jk) = ek,ikek,jk where dak = D0(ek,ik), duk = D0(ek,jk),

and ek,ik 6= (ek,jk)±1.
(b) gk(ek−1,t) = ek,t for all ek−1,t 6= (ek,jk)±1.

(gtII) Gi is an indexed pair-labeled (r; (3
2 − r)) ltt structure with base Γi

for i = k − 1, k.
(gtIII) The induced map of based ltt structures DT (gk) : Gk−1 → Gk exists

and, in particular, restricts to an isomorphism from PI(Gk−1) to
PI(Gk).

Standard Notation/Terminology 6.8 (Generating triples). For a gen-
erating triple (gk, Gk−1, Gk):

(1) We call Gk−1 the source ltt structure and Gk the destination ltt
structure.

(2) gk will be called the (ingoing) generator and will sometimes be writ-
ten gk : epuk−1 7→ eake

u
k (“p” is for “pre”). Thus, dk−1,jk will sometimes

be written dpuk−1.

(3) epak−1 denotes ek−1,ik (again “p” is for “pre”).

(4) If Gk and Gk−1 are indexed pair-labeled (r; (3
2 − r)) ltt structures

for G, then (gk, Gk−1, Gk) will be a generating triple for G.
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Remark 6.9. While dui is determined by the red vertex of Gi (and does
not rely on other information in the triple), dpuk−1 and dpak−1 actually rely on
(gtI), and cannot be determined by knowing only Gk−1.

Example 6.10. The triple (g2, G1, G2) of Example 4.5 is an example of
a generating triple where x denotes both E(1,1) and E(2,1), y denotes both
E(1,2) and E(2,2), and z denotes both E(1,3) and E(2,3).

Definition 6.11. Suppose (gi, Gi−1, Gi) and (g′i, G
′
i−1, Gi)

′ are generating

triples. Let gTi : Gi−1 → Gi be induced by gi : Γi−1 → Γi and gTi : G′i−1 →
G′i by gi : Γ′i−1 → Γ′i. We say (gi, Gi−1, Gi) and (g′i, G

′
i−1, G

′
i) are equivalent

if there exist indexed pair-labeled graph equivalences Hi−1 : Γi−1 → Γ′i−1

and Hi : Γi → Γ′i such that:

(1) For k = i, i − 1, Hi : Γi → Γ′i induces an indexed pair-labeled ltt
structure equivalence of Gi and G′i.

(2) Hi ◦ gi = g′i ◦Hi−1.

7. Peels, extensions, and switches

Suppose G ∈ PI(r;( 3
2
−r)). By Section 4, if there is a φ ∈ AFr with IW(φ) ∼=

G, then there is an ideally decomposed (r; (3
2 − r))-potential representative

g of a power of φ. By Section 5, such a representative would satisfy the
AM properties. Thus, if we can show that a representative satisfying the
properties does not exist, we have shown there is no φ ∈ AFr with IW(φ) ∼=
G (we use this fact in Section 9). In this section we show what triples
(gk, Gk−1, Gk) satisfying the AM properties must look like. We prove in
Proposition 7.8 that, if the structure Gk and a purple edge [d, dak] in Gk are
set, then there is only one gk possibility and at most two Gk−1 possibilities
(one generating triple possibility will be called a “switch” and the other an
“extension”). Extensions and switches are used here only to define ideal
decomposition diagrams but have interesting properties used (and proved)
in [Pfa13a] and [Pfa13b].

7.1. Peels. As a warm-up, we describe a geometric method for visualizing
“switches” and “extensions” as moves, “peels,” transforming an ltt structure
Gi into an ltt structure Gi−1.

Each peel of an ltt structure Gi involves three directed edges of Gi:

• The First Edge of the Peel (New Red Edge in Gi): the red edge from
dui to dai .
• The Second Edge of the Peel (Twice-Achieved Edge in Gi): the black

edge from dai to dai .
• The Third Edge of the Peel (Determining Edge for the peel): a

purple edge from dai to d. (In Gi−1, this vertex d will be the red

edge’s attaching vertex, labeled dai−1).
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d

Gi

di

di
u

a

First
(New Red)

Edge

Second
(Twice-Achieved)

Edge
Third (Determining) Edge

For each determining edge choice [dai , d] in Gi, there is one “peel switch”
(Figure 8) and one “peel extension” (Figure 7). When Gi has only a single
purple edge at dai , the switch and extension differ by a color switch of two
edges and two vertices. We start by explaining this case. After, we explain
the preliminary step necessary for any switch where more than one purple
edge in Gi contains dai .

We describe how, when Gi has only a single purple edge at dai , the two
peels determined by [dai , d] transform Gi into Gi−1. While keeping d fixed,

starting at vertex dai , peel off black edge [dai , d
a
i ] and the third edge [dai , d],

leaving copies of [dai , d
a
i ] and [dai , d] and creating a new edge [dui , d] from the

concatenation of the peel’s first, second, and third edges (Figure 7 or 8).
In a peel extension: [dui , d

a
i ] disappears into the concatenation and does

not exist in Gi−1, the copy of [dai , d
a
i ] left behind stays black in Gi−1, the

copy of [dai , d] left behind stays purple in Gi−1, the edge [dui , d] formed from
the concatenation is red in Gi−1, and nothing else changes from Gi to Gi−1

(if one ignores the first indices of the vertex labels). The triple (gi, Gi−1, Gi),
with gi as in AMVI, will be called the extension determined by [dai , d].

Fold

Peel Extension

d d

Gi

di

d i
u

a

Gi-1d i
u

Figure 7. Peel Extension: Note that the first, second, and
third edges of the peel concatenate to form the red edge [dui , d]

in Gi−1 and that copies of [dai , d
a
i ] and [dai , d] remain in Gi−1.

In a peel switch (where [dai , d] was the only purple edge in Gi containing

dai ): Again [dui , d
a
i ] has disappeared into the concatenation and the copy of
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[dai , d
a
i ] left behind stays black in Gi−1. But now the edge [dui , d] formed

from the concatenation is purple in Gi−1, the copy of [dai , d] left behind and
the vertex dai are both red in Gi−1 (so that dai is now actually dui−1), and the
vertex dui is purple in Gi−1. The triple (gi, Gi−1, Gi), with gi as in AMVI,
will be called the switch determined by [dai , d].

Peel Switch

Fold

d d

Gi

da
i

di
u

Gi-1
di

u

Figure 8. Peel Switch (when dai only belongs to one purple
edge in Gi−1): The first, second, and third edges of the peel
concatenate to form a purple edge [dui , d] in Gi−1. The deter-
mining edge [dai , d] is the red edge of Gi−1, with red vertex
dai .

Preliminary step for a switch where purple edges other than the deter-
mining edge [dai , d] contain vertex dai in Gi: For each purple edge [dai , d

′] in
Gi where d 6= d′, form a purple concatenated edge [d′, dui ] in Gi−1 by con-

catenating [d′, dai ] with a copy of [dai , d
a
i , d

u
i ], created by splitting open, as in

Figure 9, [dai , d
a
i ] from dai to dai and [dai , d

u
i ] from dai to dui .

d

Gi

da
i

d i
u d

Figure 9. Peel Switch Preliminary Step: For each purple
edge [dai , d

′] in Gi, the peeler peels a copy of [dai , d
a
i , d

u
i ] off to

concatenate with [dai , d
′] and form the purple edge [dui , d

′].

To check the peel switch was performed correctly, one can: remove Gi’s
red edge, lift vertex dai (with purple edges containing it dangling from one’s
fingers), and drop vertex dai in the spot of vertex dui , while leaving behind
a copy of [dai , d] to become the new red edge of Gi−1 (with dpai−1 as the red
vertex).
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7.2. Extensions and switches. In this subsection, we describe “moves”
one applies to ltt structures in defining edges of the ID diagrams.

Throughout this section Gk will be an indexed pair-labeled (r; (3
2 − r)) ltt

structure for a G ∈ PI(r;( 3
2
−r)) with rose base graph Γk. We use the standard

notation.
We define extensions and switches “entering” an indexed pair-labeled ad-

missible (r; (3
2 − r)) ltt structure Gk for G. However, we first prove that

determining edges exist.

Lemma 7.1. There exists a purple edge with vertex dak, so that it may be
written [dak, dk,l].

Proof. If dak were red, eRk would be [dak, d
a
k], violating that G ∈ PI(r;( 3

2
−r)).

dak must be contained in an edge [dak, dk,l] or G would not have 2r-1 vertices.

If dk,l were red, i.e., dk,l = duk , then both [duk , d
a
k] and [duk , d

a
k] would be red,

violating (ltt4). So [dak, dk,l] must be purple. �

Definition 7.2 (See Figure 10). For a purple edge [dak, dk,l] in Gk, the
extension determined by [dak, dk,l], is the generating triple (gk, Gk−1, Gk) for
G satisfying:

(extI) The restriction ofDT (gk) to PI(Gk−1) is defined by sending, for each
j, the vertex labeled dk−1,j to the vertex labeled dk,j and extending
linearly over edges.

(extII) duk−1 = dpuk−1, i.e., dpuk−1 = dk−1,jk labels the single red vertex in Gk−1.

(extIII) dak−1 = dk−1,l.

Remark 7.3. (extIII) implies that the single red edge eRk−1 = [duk−1, d
a
k−1]

of Gk−1 can be written, among other ways, as [dpuk−1, d(k−1,l)].

Explained in Section 7.1, but with this section’s notation, an extension
transforms ltt structures as:

d
u
k
=d

k
k,j

dk
=d

k

a
k,i dk,l

dk-1,l
k
a

ek
r

Gk

k-1

e

e r

da
k-1

dk-1
pu

=dk-1
u

= dk-1,j
k

Gk-1 gk
e e ek-1,jk k,jkk,ik

e e epu
k-1

a
k

u
k

epu
k-1

eu
k

Figure 10. Extension.

Lemma 7.4. The extension (gk, Gk−1, Gk) determined by an edge [dak, dk,l]
in PI(Gk) is unique.
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(I) Gk−1 can be obtained from Gk by the following steps:
(1) removing the interior of the red edge from Gk;
(2) replacing each vertex label dk,i with dk−1,i and each vertex label

dk,i with dk−1,i; and

(3) adding a red edge eRk−1 connecting the red vertex to dk−1,l.
(II) The fold is such that the corresponding homotopy equivalence maps

the oriented ek−1,jk ∈ Ek−1 over the path ek,ikek,jk in Γk and then

each oriented ek−1,t ∈ Ek−1 with ek−1,t 6= e±1
k−1,jk

over ek,t.

Proof. The proof is an unraveling of definitions. A full presentation can be
found in [Pfa12]. �

Definition 7.5 (See Figure 11). The switch determined by a purple edge
[dak, d(k,l)] in Gk is the generating triple (gk, Gk−1, Gk) for G satisfying:

(swI) DT (gk) restricts to an isomorphism from PI(Gk−1) to PI(Gk) de-
fined by

PI(Gk−1)
dpuk−1 7→d

a
k=dk,ik−−−−−−−−−−→ PI(Gk)

(dk−1,t 7→ dk,t for dk−1,t 6= dpuk−1) and extended linearly over edges.

(swII) dpak−1 = duk−1.

(swIII) dak−1 = dk−1,l.

Remark 7.6. (swII) implies that the red edge eRk−1 = [duk−1, d
a
k−1] of Gk−1

can be written [dpak−1, d
a
k−1], among other ways. (swIII) implies that eRk−1

can be written [d(k−1,ik), d(k−1,l)].

Explained in Section 7.1, but with this section’s notation, a switch trans-
forms ltt structures as follows:

du
k

=d
k

k,j

dk
= d

k

a
k,i dk,l

k
a

Gk

e

da
k-1

dk-1
pu

dk-1
u

= dk-1,jk
Gk-1

= dk-1,ik
=dk-1

pa dk-1,l

gk
e e ek-1,jk k,jkk,ik

e e epu
k-1

a
k

u
k

epu
k-1 e a

k-1

e u
k

Figure 11. Switch.

Lemma 7.7. Given an edge [dak, dk,l] in PI(Gk), the switch (gk, Gk−1, Gk)
determined by [dak, dk,l] is unique.

(I) Gk−1 can be obtained from Gk by the following steps:
(1) Start with PI(Gk).
(2) Replace each vertex label dk,i with dk−1,i.
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(3) Switch the attaching (purple) vertex of the red edge to be dk−1,l.
(4) Switch the labels d(k−1,jk) and d(k−1,ik), so that the red ver-

tex of Gk−1 will be dk−1,ik and the red edge of Gk−1 will be
[d(k−1,ik), d(k−1,l)].

(5) Include black edges connecting inverse pair labeled vertices (there
is a black edge [d(k−1,i), d(k−1,j)] in Gk−1 if and only if there is
a black edge [d(k,i), d(k,j)] in Gk).

(II) The fold is such that the corresponding homotopy equivalence maps
the oriented ek−1,jk ∈ Ek−1 over the path ek,ikek,jk in Γk and then

each oriented ek−1,t ∈ Ek−1 with ek−1,t 6= e±1
k−1,jk

over ek,t.

Proof. The proof is an unraveling of definitions. A full presentation can be
found in [Pfa12]. �

Recall (Proposition 5.1) that each triple in an ideal decomposition satisfies
AMI–AMVII. Thus, to construct a diagram realizing any ideally decom-
posed (r; (3

2−r))-potential representative with ideal Whitehead graph G, we
want edges of the diagram to correspond to triples satisfying AMI–AMVII.
Proposition 7.8 tells us each such triple is either an admissible switch or ad-
missible extension.

Proposition 7.8. Suppose (gk, Gk−1, Gk) is a triple for G such that:

(1) G ∈ PI(r;( 3
2
−r)).

(2) Gi is an indexed pair-labeled (r; (3
2 − r)) ltt structure for G with base

graph Γi, for i = k, k − 1.

Then (gk, Gk−1, Gk) satisfies AMI–AMVII if and only if it is either an
admissible switch or an admissible extension.

In particular, in the circumstance where duk−1 = dpak−1, the triple is a switch

and, in the circumstance where duk−1 = dpuk−1, the triple is an extension.

Proof. For the forward direction, assume (gk, Gk−1, Gk) satisfies AMI–
AMVII and (1)–(2) above. We show the triple is either a switch or an
extension (AMI gives birecurrency). Assumption (1) implies (gtII).

By AMVI, gk is defined by gk(e
pu
k−1) = eake

u
k and gk(ek−1,i) = ek,i for

ek−1,i 6= (epuk−1)±1, D0(euk) = duk , D0(eak) = dak, and epuk−1 = e(k−1,j), where
euk = ek,j . We have (gtI).

By AMVII, Dgk induces on isomorphism from SW(Gk−1) to SW(Gk).
Since the only direction whose second index is not fixed by Dgk is dpuk−1, the
only vertex label of SW(Gk−1) not determined by this isomorphism is the
preimage of dak (which AMIV dictates to be either dpuk−1 or dpak−1). When

the preimage is dpak−1, this gives (extI). When the preimage is dpuk−1, this
gives (swI). For the isomorphism to extend linearly over edges, we need
that images of edges in Gk−1 are edges in Gk, i.e., [Dgk(dk−1,i), Dgk(dk−1,j)]
is an edge in Gk for each edge [d(k−1,i), d(k−1,j)] in Gk−1. This follows from
AMIV. We have (gtIII).
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AMII gives either duk−1 = dpak−1 or duk−1 = dpuk−1. In the switch case, the

above arguments imply dpuk−1 labels a purple vertex. So duk−1 = dpak−1 (since
AMIII tells us duk−1 is red). This gives (swII) once one appropriately coordi-
nates notation. In the extension case, the above arguments give instead that
dpak−1 labels a purple vertex, meaning duk−1 = dpuk−1 (again since AMIII tells
us duk−1 is red). This gives us (extII). We are left with (extIII) and (swIII).

What we need is that [dak, dk,l] is a purple edge in Gk where dak−1 = dk−1,l.

By AMV, Gk−1 has a single red edge [tRk−1] = [dak−1, d
u
k−1]. By AMIV,

DCgk([t
R
k−1]) is in PI(Gk). First consider what we established is the switch

case, i.e., assume duk−1 = dpak−1. The goal is to determine

[tRk−1] = [d(k−1,ik), d(k−1,l)],

where dak = dk,ik (dk−1,ik = dpak−1) and [dak, dk,l] is in PI(Gk) (making

(gk, Gk−1, Gk) the switch determined by [dak, dk,l]). Since duk−1 = dpak−1,

we know [tRk−1] = [dak−1, d
u
k−1] = [dak−1, d

pa
k−1]. We know dak−1 6= dpak−1

(since (tt2) implies dak−1 6= duk−1, which equals dpak−1). Thus, AMVI says

DCgk([t
R
k−1]) = DCgk([d

a
k−1, d

pa
k−1]) = [d(k,l), d

a
k] where dak−1 = ek−1,l. So

[d(k,l), d
a
k] is in PI(Gk). We thus have (swIII). Now consider what we es-

tablished is the extension case, i.e., assume duk−1 = dpuk−1. We need [tRk−1] =
[d(k−1,jk), d(k−1,l)], where duk−1 = dk−1,jk and [dak, dk,l] is in PI(Gk) (making

(gk, Gk−1, Gk) the extension determined by [dak, dk,l]). Since duk−1 = dpuk−1,

we know [tRk−1] = [dak−1, d
u
k−1] = [dak−1, d

pu
k−1]. We know dak−1 6= dpuk−1

(since (tt2) implies dak−1 6= duk−1, which equals dpuk−1). Thus, by AMVI,

DCgk([t
R
k−1]) = DCgk([d

a
k−1, d

pu
k−1]) = [d(k,l), d

a
k], where dak−1 = ek−1,l. We

have (extIII) and the forward direction.
For the converse, assume (gk, Gk−1, Gk) is either an admissible switch or

extension. Since we required extensions and switches be admissible, Gk−1

and Gk are birecurrent. We have AMI.
The first and second parts of AMII are equivalent and the second part

holds by (extII) for an extension and (swII) for a switch. For AMIII note
that there is only a single red vertex (labeled duk) inGk and is only a single red
vertex (labeled duk−1) in Gk−1 because of the requirement in (gtII) that Gk
andGk−1 are (r; (3

2−r)) ltt structures (see the standard notation for why this
is notationally consistent with the AM properties). What is left of AMIII
is that the edge [tRk ] = [duk , d

a
k] in Gk and the edge [tRk−1] = [duk−1, d

a
k−1] in

Gk−1 are both red. This follows from (gtI) combined with (extII) for an
extension and (swII) for a switch.

(gtIII) implies AMIV. For AMV, note: AMIII implies eRk is a red edge
containing the red vertex duk . (ltt4) implies the uniqueness of both the red
edge and direction.

Since AMVI follows from (gtI), combined with (extII) for an extension
and (swII) for a switch, and AMVII follows from (gtIII), we have proved
the converse. �
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Definition 7.9. In light of Proposition 7.8, an admissible map will mean
a triple for a G ∈ PI(r;( 3

2
−r)) that is an admissible switch or admissible

extension or (equivalently) satisfies AMI–AMVII.

8. Ideal decomposition (ID) diagrams

Throughout this section G ∈ PI(r;( 3
2
−r)). We define the “ideal decom-

position (ID) diagram” for G, as well as prove that representatives with
(r; (3

2 − r)) potential are realized as loops in these diagrams. We use ID
diagrams to prove Theorem 9.1 and to construct examples in [Pfa13b].

Definition 8.1. A preliminary ideal decomposition diagram for G is the
directed graph where:

(1) The nodes correspond to equivalence classes of admissible indexed
pair-labeled (r; (3

2 − r)) ltt structures for G.
(2) For each equivalence class of an admissible generator triple (gi, Gi−1,

Gi) for G, there exists a directed edge E(gi, Gi−1, Gi) from the node
[Gi−1] to the node [Gi].

The disjoint union of the maximal strongly connected subgraphs of the pre-
liminary ideal decomposition diagram for G will be called the ideal decom-
position (ID) diagram for G (or ID(G)).

Remark 8.2. [Pfa12] gives a procedure for constructing ID diagrams (there
called “AM Diagrams”).

We say an ideal decomposition Γ0
g1−→ Γ1

g2−→ · · ·
gk−1−−−→ Γk−1

gk−→ Γk of a tt
map g with indexed (r; (3

2−r)) ltt structures G0 → G1 → · · · → Gk−1 → Gk
for G is realized by E(g1, G0, G1) ∗ · · · ∗ E(gk, Gk−1, Gk) in ID(G) if the
oriented path E(g1, G0, G1)∗· · ·∗E(gk, Gk−1, Gk) in ID(G) from [G0] to [Gk],
traversing the E(gi, Gi−1, Gi) in order of increasing i (from E(g1, G0, G1) to
E(gk, Gk−1, Gk)), exists.

Proposition 8.3. If g = gk ◦ · · · ◦ g1, with ltt structures

G0 → G1 → · · · → Gk−1 → Gk,

is an ideally decomposed representative of φ ∈ Out(Fr), with (r; (3
2 − r))

potential, such that IW(φ) = G, then E(g1, G0, G1) ∗ · · · ∗ E(gk, Gk−1, Gk)
exists in ID(G) and forms an oriented loop.

Proof. This follows from Proposition 7.8 and Proposition 5.1. �

Corollary 8.4. If no loop in ID(G) gives a potentially-(r; (3
2 − r)) repre-

sentative of a φ ∈ Out(Fr) with IW(φ) = G, such a φ does not exist. In
particular, any of the following ID(G) properties would prove such a repre-
sentative does not exist:

(1) For at least one edge pair {di, di}, where ei ∈ E(Γ), no red vertex in
ID(G) is labeled by d±1

i .
(2) The representative corresponding to each loop in ID(G) has a pNp.
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As a result of Corollary 8.4(1) we define:

Definition 8.5 (Irreducibility Potential Test). Check whether, in each con-
nected component of ID(G), for each edge vertex pair {di, di}, there is a
node N in the component such that either di or di labels the red vertex in
the structure N . If it holds for no component, G is unachieved.

Remark 8.6. Let {x1, x1, . . . , x2r, x2r} be a rank-r edge pair labeling set.
We call a permutation of the indices 1 ≤ i ≤ 2r combined with a permutation
of the elements of each pair {xi, xi} an Edge Pair (EP) Permutation. Edge-
indexed graphs will be considered Edge Pair Permutation (EPP) isomorphic
if there is an EP permutation making the labelings identical (this still holds
even if only a subset of {x1, x1, . . . , x2r, x2r} is used to label the vertices, as
with a graph in PI(r;( 3

2
−r))).

When checking for irreducibility, it is only necessary to look at one EPP
isomorphism class of each component (where two components are in the
same class if one can be obtained from the other by applying the same EPP
isomorphism to each triple in the component).

9. Several unachieved ideal Whitehead graphs

Theorem 9.1. For each r ≥ 3, let Gr be the graph consisting of 2r−2 edges
adjoined at a single vertex.

(I) For no fully irreducible φ ∈ Out(Fr) is IW(φ) ∼= Gr.
(II) The following connected graphs are not the ideal Whitehead graph
IW(φ) for any fully irreducible φ ∈ Out(F3):

Proof. Notice that, if any of the graphs in (I) or (II) were realized by a
fully irreducible φ ∈ Out(Fr), then φ would have index sum 3

2 − r, and
hence would be ageometric.

We first prove (I). Recall that, by Proposition 4.3, if φ ∈ Out(Fr) is
ageometric fully irreducible and IW(φ) is a connected (2r−1)-vertex graph
(such as the graph Gr), then some positive power of φ admits a pNp-free
tt representative on the r-petaled rose. By Proposition 3.7, it suffices to
show that no admissible (r; (3

2 − r)) ltt structure for Gr is birecurrent. Up
to EPP-isomorphism, there are two such ltt structures to consider, neither
birecurrent):

andv1

v1

v1

v1



IDEAL WHITEHEAD GRAPHS IN Out(Fr) 461

These are the only structures worth considering as follows: Call the valence-
(2r − 2) vertex v1. Either (1) some valence-1 vertex is labeled by v1 or (2)
the set of valence-1 vertices {x1, x1, . . . , xr−1, xr−1} consists of r − 1 edge-
pairs. Suppose (2) holds. The red edge cannot be attached in such a way
that it is labeled with an edge-pair or is a loop and attaching it to any other
vertex yields an EPP-isomorphic ltt structure to that on the left. Suppose
(1) holds. Let xi label the red vertex. The valence-1 vertex labels will be
{v1, x2, x2, . . . , xi−1, xi−1, xi, xi+1, xi+1, xi . . . , xr, xr}. The red edge cannot
be attached at xi. So either it will be attached at v1, v1, or some xj with

xj 6= x±1
i . Unless it is attached at v1, v1 is a valence-1 vertex of [v1, v1] in

the local Whitehead graph, making [v1, v1] an edge only traversable once by
a smooth line. If the red edge is attached at v1, we have the structure on
the right.

We prove (II). The left graph is covered by (I). The following is a rep-
resentative of the EPP isomorphism class of the only significant component
of ID(G) where G is the right-most structure:

x

z y y

z
xz z

xx zzx x z z
x

y z

x z
y

x

x

Since ID(G) contains only red vertices labeled z and x̄ (leaving out {y, y}),
unless some other component contains all 3 edge vertex pairs ({x, x}, {y, y},
and {z, z}), the middle graph would be unachieved. Since no other compo-
nent does contain all 3 edge vertex pairs as vertex labels (all components
are EPP-isomorphic), the middle graph is indeed unachieved.

Again, for the right-hand, the ID Diagram lacks irreducibility potential.
A component of the ID diagram is given below (all components are EPP-
isomorphic). The only edge pairs labeling red vertices of this component are
{x, x} and {z, z}:
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y z
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z
z
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y y
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