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On common values of lacunary
polynomials at integer points

Dijana Kreso

Abstract. For fixed ` ≥ 2, fixed positive integers m1 > m2 with
gcd(m1,m2) = 1 and n1 > n2 > · · · > n` with gcd(n1, . . . , n`) = 1,
and fixed rationals a1, a2, . . . , a`+1, b1, b2 which are all nonzero except
for possibly a`+1, we show the finiteness of integral solutions x, y of the
equation

a1x
n1 + · · ·+ a`x

n` + a`+1 = b1y
m1 + b2y

m2 ,

when n1 ≥ 3, m1 ≥ 2`(` − 1), and (n1, n2) 6= (m1,m2). In relation to
that, we show the finiteness of integral solutions of equations of type
f(x) = g(y), where f, g ∈ Q[x] are of distinct degrees ≥ 3, and are such
that they have distinct critical points and distinct critical values.
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1. Introduction

Loosely speaking, polynomials with few terms are called lacunary. We
write a1x

n1 +· · ·+a`xn` +a`+1 with a1a2 . . . a` 6= 0 for a lacunary polynomial
with ` nonconstant terms. When ` = 1, we call such polynomials binomials,
when ` = 2 trinomials, etc. Many classical Diophantine equations can be
seen as equations in lacunary polynomials. For example, a defining equation
of an elliptic curve y2 = x3+ax+b with a, b ∈ Q, 4a3+27b2 6= 0, can be seen
as an equation in lacunary polynomials. In this note we show the following.

Received July 31, 2015. Revised September 7, 2015.
2010 Mathematics Subject Classification. 11D41, 12E05, 12F10.
Key words and phrases. Diophantine equation, lacunary polynomial, monodromy

group, Morse polynomial, polynomial decomposition.
The author is thankful for the support of the Austrian Science Fund (FWF) via projects

W1230-N13, FWF-P24302 and F5510.

ISSN 1076-9803/2015

987

http://nyjm.albany.edu/nyjm.html
http://nyjm.albany.edu/j/2015/Vol21.htm


988 DIJANA KRESO

Theorem 1.1. The equation

(1.2) a1x
n1 + · · ·+ a`x

n` + a`+1 = b1y
m1 + b2y

m2

with ` ≥ 2, mi, nj ∈ N, ai, bj ∈ Q, and

m1 > m2, gcd(m1,m2) = 1, ni > nj if i > j, gcd(n1, . . . , n`) = 1,(1.3)

a1a2 · · · a`b1b2 6= 0,(1.4)

either n1 6= m1, or n1 = m1 but n2 6= m2,(1.5)

and n1 ≥ 3, m1 ≥ 2`(`− 1), has at most finitely many solutions in integers
x, y.

We remark that Theorem 1.1 is not effective, i.e., it does not give a bound
for the size of the largest solution of Equation (1.2). Namely, the theorem
relies (indirectly, see the begining of Section 4 for details) on Siegel’s classical
theorem on integral points on curves, and is thus ineffective.

From Theorem 1.1 it follows that the equation

(1.6) a1x
n1 + a2x

n2 + a3 = b1y
m1 + b2y

m2

where (1.3), (1.4) and (1.5) (with ` = 2) hold and n1 ≥ 3,m1 ≥ 4, has only
finitely many integer solutions. This is the main result of [17]. From the
theorem it further follows that the equation

(1.7) a1x
n1 + a2x

n2 + a3x
n3 + a4 = b1y

m1 + b2y
m2

where (1.3), (1.4) and (1.5) (with ` = 3) hold, and n1 ≥ 3,m1 ≥ 12, has only
finitely many integer solutions. Equations of type (1.6) and (1.7), which are
only special cases of (1.2), have been studied in [6, 7, 10, 16, 17, 20], etc. For
example, a classical problem involving trinomials is to determine when the
product of two consecutive integers equals the product of three consecutive
integers, i.e., to solve the equation x3 − x = y2 − y in integers. Mordell [16]
solved this problem. Similarly, to determine when the product of two is a
product of four or five consecutive integers, one needs to solve equations of
type (1.2) with ` = 4 or ` = 3 (so of type (1.7)).

To the proof of Theorem 1.1 we use a finiteness criterion from [3] and
results on decomposable (representable as a functional composition of two
polynomials of degree greater than 1) lacunary polynomials. Of importance
to us is a result of Zannier [23] which states that, loosely speaking, over a
field of characteristic 0, a polynomial with few terms and large degree cannot
have an inner noncyclic composition factor of small degree. We remark that
this result was used in an another paper of Zannier [24] in which he proved
Schinzel’s conjecture: over fields of characteristic 0, for a fixed nonconstant
polynomial g, the number of terms of g ◦h tends to infinity as the number of
terms of h tends to infinity. See also [19, p. 187] for Schinzel’s partial result
in this direction.

Of importance to us is further a result of Fried and Schinzel [11] on
indecomposability of trinomials b1x

m1 +b2x
m2 +b3 with b1, b2, b3 ∈ Q, b1b2 6=
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0, m1 > m2 ≥ 1, gcd(m1,m2) = 1. We give an alternative proof of this result
(over an arbitrary field of characteristic 0). When m2 ≤ 2, one easily sees
that the trinomial on the right-hand side of (1.2), with gcd(m1,m2) = 1 and
b1b2 6= 0, is Morse in the sense of [21, p. 39]. A polynomial is Morse if it
has distinct critical points and distinct critical values. We show that from
the main result of [3] it follows that two rational Morse polynomials with
distinct degrees, both of which are ≥ 3, cannot have infinitely many equal
values at integers. This generalizes the result of Mignotte and Pethő [15]
on the finiteness of integral solutions of the equation xp − x = yq − x with
p > q ≥ 2. This further yields shorter proofs of the results in [2, 6, 9, 14, 22].

There may exist infinitely many integer solutions of (1.2) when ` = 2,
n1 = m1 and n2 = m2. This clearly happens when a1 = b1, a2 = b2, a3 = 0.
There may also exist infinitely many integer solutions of (1.2) when ` = 2,
n1 = m1 and n2 6= m2, if m1, n1 ≤ 3 (see below). These possibilities are
eliminated by assumptions (1.5) and n1 ≥ 3,m1 ≥ 2`(`−1) of Theorem 1.1.
The assumption on m1 comes from the application of already mentioned
Zannier’s result [23]. The assumption on coprimality of ni’s is also needed
to apply this result. (See Theorem 3.6 for Zannier’s theorem and p. 9 for
its application.) When ` = 2 and m1 < 2`(` − 1) = 4, Equation (1.2) may
have infinitely many integer solutions (for suitable coefficients). Indeed, by
[17, Thm. 1], when ` = 2 and

m1 = n1 = 3, n2 = m2 = 2,

a21b
3
2 + a32b

2
1 = 0,

27a21a3 + 4a32 = 0,

or

m1 = n1 = 3, n2 = 2,m2 = 1,

27a41b
3
2 + a62b1 = 0,

3a32a3b1 + 3a21b
3
2 + a32b

2
2 = 0,

then

(1.8) a1x
n1 + a2x

n2 + a3 = b1(ζx+ µ)m1 + b2(ζx+ µ)m2 ,

where in the former case ζ = −a1b2/(a2b1), µ = −2b2/(3b1), and in the latter
ζ = −a22/(3a1b2), µ = 3a21b

2
2/(a

3
2b1). Equation (1.8) clearly has infinitely

many rational solutions when a3 = 0, and thus it may have infinitely many
integer solutions, depending on the coefficients a1, a2, b1, b2. Finally, the
asummption on coprimality of mi’s is needed for the application of the above
described result of Fried and Schinzel. When gcd(m1,m2) > 1, the trinomial
on the left-hand side of (1.2) is clearly decomposable. Schinzel [20] removed
assumption (1.3) on trinomials in [17, Thm. 1]. This resulted in many more
special cases of (1.2) with ` = 2, a1a2b1b2 6= 0, m1, n1 ≥ 3, when there are
infinitely many integer solutions.
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2. Critical points and indecomposability

Throughout this section K is an arbitrary field. A polynomial f ∈ K[x]
with deg f > 1 is called indecomposable (over K) if it cannot be written as
the composition f(x) = g(h(x)) with g, h ∈ K[x] and deg g > 1, deg h > 1.
Otherwise, it is said to be decomposable. Any representation of f as a
functional composition of polynomials of degree greater than 1 is said to
be a decomposition of f . Any polynomial f with deg f > 1 can be written
as a composition of indecomposable polynomials, but not necessarily in a
unique way. Ritt [18] completely described the extent of nonuniqueness
of factorization of polynomials with complex coefficients with respect to
functional composition. Find more about this topic in [25].

Definition 2.1. Given f ∈ K[X] with f ′ 6= 0 the monodromy group Mon(f)
is the Galois group of f(X) − t over the field K(t), viewed as a group of
permutations of the roots of f(X)− t.

By Gauss’s lemma it follows that f(X)−t from Definition 2.1 is irreducible
over K(t). Since f ′ 6= 0, f(X)−t is also separable. Let x be a root of f(X)−t
in the splitting field over K(t). Then Mon(f) is the Galois group of the
Galois closure of K(x)/K(f(x)), viewed as a transitive permutation group
on the conjugates of x over K(f(x)). The well known theorem of Lüroth (see
[19, p. 13]) provides a dictionary between decompositions of f ∈ K[x] and
fields between K(f(x)) and K(x), which then correspond to groups between
the two associated Galois groups: Mon(f) and the stabilizer of x in Mon(f).
In this way, the study of decompositions of a polynomial, reduces to the
study of subgroups of its monodromy group. Then f is indecomposable if
and only if Mon(f) is a primitive permutation group (since a transitive group
is primitive if point stabilizers are maximal subgroups). For more details
about the Galois-theoretic setup for addressing decomposition questions, see
[25].

For f ∈ K[x] with char(K) - deg f and γ ∈ K let δ(f, γ) denote the
degree of the greatest common divisor of f(x)− γ and f ′(x) in K[x].

Lemma 2.2. If f, g, h ∈ K[x] are such that char(K) - deg f and

f(x) = g(h(x))

with deg g > 1, then there exists γ ∈ K such that δ(f, γ) ≥ deg h.

Proof. Let γ0 ∈ K be a root of g′ (which exists since by assumption
char(K) - deg g, and hence deg g′ = deg g − 1 ≥ 1) and let γ = g(γ0).
Then every root of h(x)− γ0 is a root of both f(x)− γ and of f ′(x). �

We have the following two corollaries of Lemma 2.2.

Corollary 2.3. If f ∈ K[x] is such that char(K) - deg f , deg f > 1 and
δ(f, γ) ≤ 1 for all γ ∈ K, then f is indecomposable.
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Corollary 2.4. If f ∈ K[x] is such that char(K) - deg f , deg f > 1 and
δ(f, γ) ≤ 2 for all γ ∈ K, then f is either indecomposable or f(x) = g(h(x))
where deg h = 2 and g is indecomposable.

Lemma 2.2, Corollary 2.3 and Corollary 2.4 were used in [2, 8, 9, 14, 22]
as a method for finding possible decompositions of a polynomial. In all of
these papers, the polynomial under consideration had simple critical points.
This brings us to the following definition and theorem from [21, p. 39].

Definition 2.5. Let K be a field and f ∈ K[x] of degree n. Then f is
Morse if the following holds: the zeros β1, β2, . . . , βn−1 of the derivative f ′

are simple and f(βi) 6= f(βj) for i 6= j.

Theorem 2.6. Let K be a field and let f ∈ K[x] of degree n > 1 be Morse,
with char(K) - n. Then the Galois group of f(x) − t over K(t) is the
symmetric group Sn.

In other words, the monodromy group Mon(f) of a Morse polynomial
with coefficients in a field K, such that char(K) - deg f , is symmetric.
Theorem 2.6 was first proved by Hilbert [12]. Find a proof in [21, p. 41]. The
proof there involves inertia groups at ramification points. An elementary
proof (when char(K) 6= 2) may be obtained as follows: it is well known that
if e1, e2, . . . , ek are the multiplicities of the roots of f(x)−x0, where f ∈ K[x]
with char(K) - deg f , x0 ∈ K and char(K) - ei for all i’s, then Mon(f)
contains an element having cycle lengths e1, e2, . . . , ek. Find an elementary
proof of this fact in [19, p. 56]. Let x0 be a root of f ′. Since the critical
points of f are simple, and have distinct critical values, it follows that all the
roots of f(x)− f(x0), but x0, are of multiplicity 1, and x0 is of multiplicity
2. So, unless char(K) = 2, Mon(f) contains an element having cycle lengths
1, 1, . . . , 1, 2, i.e., Mon(f) contains a transposition. From Corollary 2.3 it
follows that Mon(f) is also primitive. Since Mon(f) is primitive and contains
a transposition, it is symmetric (by classical Jordan’s theorem).

3. On decomposable lacunary polynomials

From now on, K is a field with char(K) = 0. Let f ∈ K[x] with l > 0
nonconstant terms be decomposable and write without loss of generality

f(x) = g(h(x)) with g, h ∈ K[x], deg g ≥ 2,deg h ≥ 2,(3.1)

h(x) monic and h(0) = 0.(3.2)

We may indeed do so, because if f = g◦h with g, h ∈ K[x]\K, then there
exists a linear polynomial µ ∈ K[x] so that µ ◦ h is monic and µ(h(0)) = 0,

and clearly f =
(
g ◦ µ(−1)

)
◦ (µ ◦ h).

We use Corollary 2.3 to give an alternative proof of the result of Fried and
Schinzel [11] on indecomposability of polynomials of type a1x

n1 +a2x
n2 +a3

with n1 > n2 ≥ 1, gcd(n1, n2) = 1 and a1a2 6= 0.
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Theorem 3.3. Let K be a field with char(K) = 0. Then a1x
n1 +a2x

n2 +a3,
with a1, a2, a3 ∈ K, a1a2 6= 0, n1 > n2 ≥ 1, (n1, n2) = 1, is indecomposable.

Proof. It is equivalent to show that f(x) := a1x
n1 + a2x

n2 is indecompos-
able. Since f ′(x) = n1a1x

n1−1 + n2a2x
n2−1, we have

(3.4) xf ′(x) = n1f(x)− a2(n1 − n2)xn2 .

Let f = g ◦ h with deg g ≥ 2 and deg h ≥ 2, where h is monic and
h(0) = 0, as in (3.1) and (3.2). Then g(0) = 0 as well. Let γ0 be a root of
g′ (which exists since by assumption deg g′ ≥ 1) and let γ = g(γ0). Then
h(x) − γ0 divides both f(x) − γ and f ′(x), and δ(f, γ) ≥ deg h ≥ 2 (see
Lemma 2.2). Assume that there exist distinct roots α and β of h(x) − γ0.
Then f ′(α) = f ′(β) = 0 and f(α) = f(β) = γ. Then from (3.4) it follows
that αn2 = βn2 , and from f ′(α) = f ′(β) = 0 it follows that αn1 = βn1 .
Since gcd(n1, n2) = 1 (and there exist positive integers a and b so that
an1 − bn2 = 1), it follows that α = β. Therefore, h(x) − γ0 has no two
distinct roots. Since its roots are roots of f ′(x) = n1a1x

n1−1 + a2n2x
n2−1,

it follows that h(x) − γ0 = hxk for some h ∈ K and 2 ≤ k ≤ n2 − 1.
Thus 0 = h(0) = γ0 and 0 = f(0) = γ. Since γ0 = 0 (unique ramification
point) it follows that g′(x) = g̃xm−1, where m = deg g and g̃ ∈ K. Since
g(0) = 0 it follows that g(x) = gxm. Then f(x) = gxm ◦ hxk, so a2 = 0, a
contradiction. �

Corollary 3.5. Let K be a field with char(K) = 0, gcd(n1, n2) = 1, n2 ≤
2 < n1, and a1, a2, a3 ∈ K with a1a2 6= 0. Then a1x

n1 +a2x
n2 +a3 is Morse.

Proof. It is equivalent to show that f(x) := a1x
n1+a2x

n2 is Morse. Clearly,
f ′ has simple zeros, and f has distinct critical values since

xf ′(x) = n1f(x)− a2(n1 − n2)xn2

and (n1, n2) = 1. See the proof of Theorem 3.3. �

The main ingredients of the proof of Theorem 1.1, besides the finiteness
criterion of Bilu and Tichy [3], are Theorem 3.3, the well known Hajós
lemma on the multiplicities of roots of lacunary polynomials (see Lemma 3.9
below) and the following result of Zannier [23] on decomposable lacunary
polynomials.

Theorem 3.6. Let K be a field with char(K) = 0, and let f ∈ K[x] have
` > 0 nonconstant terms. Assume that f = g ◦ h, where g, h ∈ K[x] and
where h(x) is not of type axk + b for a, b ∈ K. Then

(3.7) deg f + 2`(`− 1) ≤ 2`(`− 1) deg h.

In particular, deg g ≤ 2`(`− 1).

Remark 3.8. Theorem 3.6 is stated in [23] with deg f+l−1 ≤ 2`(`−1) deg h
instead of (3.7), but proved with (3.7) (due to weaker conclusion at the end
of the proof). The bound on deg g is the same regardless.
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If f ∈ K[x] with ` nonconstant terms and char(K) = 0 is decomposable,
write it as in (3.1) and (3.2). Then Theorem 3.6 implies that

deg f + 2`(`− 1) ≤ 2`(`− 1) deg h

unless h(x) = xk. Note that

a1x
n1 + a2x

n2 + · · ·+ a`x
n` + a`+1 = f(x) = g(x) ◦ xk,

with distinct ni’s and a1 · · · a` 6= 0, exactly when k | ni for all i = 1, 2, . . . , `.
The main ingredients of the proof of Theorem 3.6 are the result of Brow-

nawell and Masser [5] on vanishing sums in function fields, and the following
result of Hajós, that will be of importance to us as well to the proof of The-
orem 1.1.

Lemma 3.9 (Hajós’s lemma). Let K be a field with char(K) = 0. If g ∈
K[x] with deg g ≥ 1 has a zero β 6= 0 of mutiplicity m, then g has at least
m+ 1 terms.

The proof of Lemma 3.9 can be found in [19, p. 187].

4. Diophantine equations with lacunary polynomials

To state the main result of [3], we need to define the so called “standard
pairs” of polynomials. In what follows a and b are nonzero rational num-
bers, m and n are positive integers, r is a nonnegative integer, p ∈ Q[x] is
a nonzero polynomial (which may be constant) and Dm(x, a) is the m-th
Dickson polynomial with parameter a given by

(4.1) Dm(x, a) =

bm/2c∑
j=0

m

m− j

(
m− j
j

)
(−1)jajxm−2j .

Standard pairs of polynomials over Q are listed in the following table.

kind standard pair (or switched) parameter restrictions
first (xm, axrp(x)m) r < m, gcd(r,m) = 1, r + deg p > 0
second (x2,

(
ax2 + b)p(x)2

)
-

third (Dm(x, an), Dn(x, am)) gcd(m,n) = 1

fourth (a
−m
2 Dm(x, a),−b

−n
2 Dn(x, b)) gcd(m,n) = 2

fifth
(
(ax2 − 1)3, 3x4 − 4x3

)
-

Having defined the needed notions we now state the main result of [3].

Theorem 4.2. Let f, g ∈ Q[x] be nonconstant polynomials. Then the fol-
lowing assertions are equivalent:

• The equation f(x) = g(y) has infinitely many rational solutions with
a bounded denominator.
• We have

(4.3) f(x) = φ (f1 (λ(x)) & g(x) = φ (g1 (µ(x))) ,
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where φ ∈ Q[x], λ, µ ∈ Q[x] are linear polynomials, and (f1, g1) is
a standard pair over Q such that the equation f1(x) = g1(y) has
infinitely many rational solutions with a bounded denominator.

Note that if the equation f(x) = g(y) with nonconstant f, g ∈ Q[x] has
only finitely many rational solutions with a bounded denominator, then it
clearly has only finitely many integer solutions.

Find more abut the applications of Theorem 4.2 in [13].
The proof of Theorem 4.2 relies on Siegel’s classical theorem on integral

points on curves, and is consequently ineffective. For that reason, Theo-
rem 1.1, as well as Theorem 4.5 below, are also ineffective.

Recall the Definition 2.5 of Morse polynomials.

Lemma 4.4. Let f ∈ C[x] be Morse. If f(x) = αDn(b1x + b0, a) + β with
α, β, a, b1, b0 ∈ C and a 6= 0, where Dn(x, a) is given by (4.1), then n ≤ 2.

Proof. Assume n = deg f ≥ 3. Since Mon(f) is symmetric by Theorem 2.6,
it is in particular doubly transitive. This is the same as saying that

(f(x)− f(y))/(x− y)

is irreducible (see [19, p. 55]). This is not the case when f is of type
αDn(b1x+ b0, a) + β, see [19, p. 52]. �

Theorem 4.5. Let f, g ∈ Q[x] be Morse, and deg f ≥ 3, deg g ≥ 3 and
deg f 6= deg g. Then the equation f(x) = g(y) has at most finitely many
integer solutions x, y.

Proof. If the equation f(x) = g(y) has infinitely many integer solutions,
then

f(λ(x)) = φ(f1(x)), g(µ(x)) = φ(g1(x)),(4.6)

where (f1, g1) is a standard pair over Q, φ, λ, φ ∈ Q[x] and deg λ = degµ = 1.
Assume that h := deg φ > 1. Since f and g are Morse, it follows that they

are indecomposable. Then deg f1 = 1,deg g1 = 1, and by (4.6) it follows
that f(x) = g(`(x)) for some ` ∈ Q[x], which contradicts deg f 6= deg g. If
deg φ = 1, then we have

(4.7) f(x) = e1f1(c1x+ c0) + e0, g(x) = e1g1(d1x+ d0) + e0,

where c1, c0, d1, d0, e1, e0 ∈ Q, and c1d1e1 6= 0. Let deg f = deg f1 =: k and
deg g = deg g1 =: l. By assumption k, l ≥ 3.

Note that (f1, g1) cannot be a standard pair of the second kind, since
k, l > 2. If (f1, g1) is a standard pair of the fifth kind, then either

f1(x) = 3x4 − 4x3 and g1(x) = (ax2 − 1)3,

or vice versa, but then by (4.7) both f ′ and g′ have multiple roots, a contra-
diction with the assumption that f and g are Morse. If (f1, g1) is a standard
pair of the first kind, then either f1(x) = xk or g1(x) = xl, which is again
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in contradiction with (4.7) and the fact that f ′ and g′ have simple roots.
Finally, if (f1, g1) is a standard pair of the third or of the fourth kind, then

f(x) = e2Dn(c1x+ c0, α) + e0, g(x) = e2Dm(d1x+ d0, β) + e0,

for some e2, α, β ∈ Q \ {0}. However, by Lemma 4.4 this can not be. �

Corollary 4.8. Let a1, a2, a3, b1, b2 ∈ Q and a1a2b1b2 6= 0. Let further
n1, n2,m1,m2 ∈ N be such that n2 < 3 ≤ n1, m2 < 3 ≤ m1, gcd(n1, n2) = 1,
gcd(m1,m2) = 1 and n1 > m1. Then the equation

(4.9) a1x
n1 + a2x

n2 + a3 = b1y
m1 + b2y

m2

has only finitely many solutions in integers x, y.

Proof. It follows from Theorem 4.5 and Corollary 3.5. �

Corollary 4.8 generalizes the result of Mignotte and Pethő [15] on the
finiteness of integral solutions of the equation xp−x = yq−x with p > q ≥ 2,
except when (p, q) = (3, 2) . In this case we have

4x3 − 4x+ 1 = (2y − 1)2,

and by the well known Baker’s result [1], this equation has only finitely many
solutions with an explicitly computable upper bound for the solutions. Con-
fer [2, 6, 8, 9, 14, 22] where it is shown that certain families of polynomials
are Morse (without mentioning that they are Morse or using Theorem 2.6).
Theorem 4.5 above covers partially results in those papers (in most cases
it is shown that for a certain familiy (Pn)n of polynomials for odd or for
even n they are Morse, and for n of other parity, we have δ(f, γ) ≤ 2, as in
Corollary 2.4). In our proof, we replaced comparison of coefficients in the
study of standard pairs of third and fourth kind by Lemma 4.4.

Proving that the polynomial is Morse is not always simple. For instance,
it is shown in [8] that the polynomial Pn,k, a truncation of the binomial
expansion of (1 + x)n at the k-th step, is Morse for k < n− 1, provided no
two roots, say ζ and ν, of Pn−1,k−1 are such that ζk = νk. For n ≤ 100 and
k < n − 1 no such two roots of Pn−1,k−1 exist. Proving this for any n and
k < n− 1 seems not to be simple.

Proof of Theorem 1.1. If Equation (1.2) has infinitely many integer so-
lutions, then

a1x
n1 + · · ·+ a`x

n` + a`+1 = φ(f1(λ(x))),(4.10)

b1x
m1 + b2x

m2 = φ(g1(µ(x))),(4.11)

where (f1, g1) is a standard pair over Q, φ, λ, µ ∈ Q[x] and deg λ = degµ = 1.
Assume that deg φ > 1. Since gcd(m1,m2) = 1, from Theorem 3.3 it follows
that deg g1 = 1, so that φ(x) = b1σ(x)m1 + b2σ(x)m2 for some σ ∈ Q[x] with
deg σ = 1. Then

(4.12) a1x
n1 + · · ·+ a`x

n` + a`+1 = (b1x
m1 + b2x

m2) ◦ σ(f1(λ(x))).
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From Theorem 3.6 it follows that either σ(f1(λ(x))) = ζxk + ν for some
ζ, ν ∈ Q and k = deg f1, or m1 < 2`(` − 1). The latter can not be by
assumption. Note that if the former holds, then k | ni for all i = 1, 2, . . . , `,
which contradicts the assumption on coprimality of ni’s, unless k = 1. If
k = 1, then n1 = m1. If n1 6= m1, we are done. Assume henceforth n1 = m1

and

(4.13) a1x
n1 + · · ·+ a`x

n` + a`+1 = b1(ζx+ ν)n1 + b2(ζx+ ν)m2

If ν = 0, then ` = 2 and m2 = n2, a contradiction with the assumption
(1.5). Assume henceforth ν 6= 0. The polynomial on the right-hand side of
(4.13) has a zero of multiplicity m2, and the one on the left-hand side has
no zero of multiplicity greater than ` (by Lemma 3.9), and thus m2 ≤ `. By
assumption n1 = m1 ≥ 2`(` − 1), so m1 − m2 ≥ `(2` − 3) ≥ ` + 2 when
` ≥ 3. If ` ≥ 3, then the polynomial on the right-hand side of (4.13) has
more than `+ 1 terms (since the coefficients of xn1 , xn1−1, . . . , xm2+1 are all
nonzero), a contradiction. Thus ` = 2 and hence

(4.14) a1x
n1 + a2x

n2 + a3 = b1(ζx+ ν)n1 + b2(ζx+ ν)m2 .

Then m2 ≤ 2 by Lemma 3.9. If m2 = 1, then on the right-hand side we
have a polynomial with nonzero coefficients to xn1 , xn1−1, . . . , x2 (thus at
least n1 − 1 nonzero terms), and since n1 − 1 = m1 − 1 ≥ 3 we have a
contradiction, since on the left-hand side we have two nonconstant terms. If
m2 = 2, then by the same argument we must have n1 < 5. By assumption
we have n1 = m1 ≥ 4, but n1 = 4 can not be since then gcd(m1,m2) 6= 1, a
contradiction.

Thus deg φ = 1 and

a1x
n1 + · · ·+ a`x

n` + a`+1 = e1f1(c1x+ c0) + e0,(4.15)

b1x
m1 + b2x

m2 = e1g1(d1x+ d0) + e0,(4.16)

where c1, c0, d1, d0, e1, e0 ∈ Q, and c1d1e1 6= 0 and deg f = deg f1 = n1 and
deg g = deg g1 = m1.

Note that (f1, g1) cannot be a standard pair of the second kind, since
n1 > 2 and m1 > 2.

If (f1, g1) is a standard pair of the fifth kind, then either g1(x) = 3x4−4x3

or g1(x) = (ax2 − 1)3 for some a ∈ Q. However, by Lemma 3.3,

b1x
m1 + b2x

m2 − e0 = e1g1(d1x+ d0)

has no roots of multiplicity greater than 2, a contradiction.
If (f1, g1) is a standard pair of the first kind, then either g1(x) = xm1

or f1(x) = xn1 . Recall that b1x
m1 + b2x

m2 − e0 has no root of multiplicity
greater than 2. Since m1 ≥ 4, it can not be that g1(x) = xm1 . If f1(x) =
xn1 , then g1(x) = cxrp(x)n1 where c ∈ Q \ {0}, r < n1, gcd(r, n1) = 1,
r+ deg p > 0. If deg p > 0, then since n1 ≥ 3 we have a contradiction, since
e1c(d1x+d0)

rp(d1x+d0)
n1 = b1x

m1 +b2x
m2−e0, but b1x

m1 +b2x
m2−e0 has
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no root of multiplicity greater than 2. Thus deg p = 0 and g1(x) = c1x
m1

for some c1 ∈ Q \ {0}, which by the same argument can not be.
Finally, if (f1, g1) is a standard pair of the third or of the fourth kind,

then e1g1(d1x+ d0) + e0 = e2Dm1(d1x+ d0, β) + e0 for some e2, β ∈ Q \ {0},
so that by (4.16), and by taking derivative, we get

b1m1x
m1−1 + b2m2x

m2−1 = e2d1D
′
m1

(d1x+ d0, β).

We now show that D′m1
(x, β) has only simple roots, so that

e2d1D
′
m1

(d1x+ d0, β)

has only simple roots as well. Recall Dm1(x, β) = 2βm1/2Tm1(x/(2
√
β))

where Tk(x) = cos(k arccosx) is the kth Chebyshev polynomial of the first
kind. Further recall that the roots of Tk(x) = cos(k arccosx) are

xj := cos(π(2j − 1)/(2k)), j = 1, 2, . . . , k.

These are all simple and real, and thus all the roots of the derivative
D′m1

(x, β) = βm1/2−1T ′m1
(x/(2

√
β)) are simple as well (since the roots of

T ′m1
(x) are simple and real by Rolle’s theorem). It follows that the roots of

b1m1x
m1−1 + b2m2x

m2−1 are simple, so that m2 ≤ 2. Finally

b1x
m1 + b2x

m2 − e0 = e2Dm1(d1x+ d0, β)

with m2 ≤ 2, can not be, by Corollary 3.5 and Lemma 4.4. �

Remark 4.17. In order to apply ideas used in the proof of Theorem 1.1
with the right-hand side of (1.2) replaced by a polynomial with a higher
number of nonconstant terms, one would need an information about possible
decompositions of this polynomial. No result of type (3.3) is known for
lacunary polynomials with more than two nonconstant terms. One finds a
partial result in this direction in [13] for the case of polynomials with three
nonconstant terms. Furthermore, even if we had such information, technical
details in the proof of Theorem 1.1 would be more challenging if on the right-
hand side of (1.2) we a had polynomial with a higher number of nonconstant
terms. Namely, the fact that a trinomial does not have a root of multiplicity
greater than 2, (which follows from Lemma 3.9) is used repeatedly in the
proof of Theorem 1.1. If the number of terms were greater, it would be
harder to eliminate some standard pairs in the case deg φ = 1. For example,
if (f1, g1) is a standard pair of the fifth kind, then either g1(x) = 3x4 − 4x3

or g1(x) = (ax2−1)3 for some a ∈ Q, so it has a root of multiplicity 3. From
(4.16) it follows that this cannot be, but we couldn’t conclude that if on the
left-hand side we had a polynomial with more than two nonconstant terms.

Remark 4.18. For a number field K, a finite set S of places of K con-
taining all Archimedean places, and the ring of S-integers OS of K, in [3,
Thm. 10.5] it is classified when the equation f(x) = g(y) with f, g ∈ K[x]
has infinitely many solutions with a boundedOS-denominator (i.e., infinitely
many solutions (x, y) ∈ K×K for which there exists a nonzero δ ∈ OS such
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that δx, δy ∈ OS). When K is totally real and S is the set of Archimedean
places, then the same criterion as Theorem 4.2 (with “rational solutions
with bounded denominator” replaced by “solutions with a bounded OS-
denominator”) holds. Note that all the results on decomposability of polyno-
mials in (1.2) from Section 3 hold for polynomials over arbitrary field of char-
acteristic 0. One easily sees that our proof of Theorem 1.1 extends to the case
when the polynomials in (1.2) are over arbitrary totally real number field
K, so that Equation (1.2) with assumptions of Theorem 1.1 has only finitely
many solutions with a bounded OS-denominator. The only part of the proof
that does not extend at once is in the last paragraph, where the possibility
deg φ = 1 and (f1, g1) is a standard pair of the third or of the fourth kind is
eliminated via Rolle’s theorem. The use of Rolle’s theorem can be replaced
by comparison of coefficients in b1x

m1 + b2x
m2 = e2Dm1(d1x+d0, β)+e0, as

was done in [17, Lemma 5]. For simplicity, we have restricted our attention
to the most prominent case, K = Q and OS = Z.

As explained on p. 8, Theorem 1.1 is ineffective. In [17], where the case
` = 2 of Theorem 1.1 is studied, an effective finiteness statement is given for
the case when one of the trinomials in (1.2) is quadratic. In that case one
may use a well-known effective result of Baker [1] on hyperelliptic equations.
In [17], the authors used Brindza’s [4] more general result, which states that
for the equation f(x) = y2, with f ∈ Q[x] with at least three zeros of odd
multiplicity, there exists a constant c1, depending only on f , such that for
all solutions (x, y) ∈ Z2 of the equation, one has max(|x|, |y|) ≤ c1. When
` = 2 and (n1, n2) = (2, 1) or (m1,m2) = (2, 1), an effective finiteness result
for Equation (1.2) (without assuming coprimality on mi’s or ni’s as in (1.3))
is given by [17, Thm. 2]. For ` ≥ 2 and (m1,m2) = (2, 1), Equation (1.2)
can be written as

(4.19) 4b1a1x
n1 + · · ·+ 4b1a`x

n` + 4b1a`+1 + b22 = (2b1y + b2)
2.

If the polynomial on the left-hand side of (4.19) has at least three zeros
of odd multiplicity, this equation has finitely many effectively computable
integer solutions x, y. It is shown in [17] that, when ` = 2, this holds when
4b1a3 + b22 6= 0 and, n1 6= 2n2 or

(n1, n2) /∈ {(3, 1), (3, 2), (4, 1), (4, 3), (6, 2), (6, 4)},

and when 4b1a3 + b22 = 0 and either n1 − n2 ≥ 3, or n1 − n2 = 2 and n2 is
odd. One can investigate other special cases of (1.2) with (m1,m2) = (2, 1)
and “small” ` ≥ 3 in a similar fashion. As that is not in the focus of the
present paper, we don’t present such investigations.

Another way to obtain effective results for Equation (1.2) is to use known
effective results about superelliptic equations, which corresponds to the case
when either m2 = 0 or ` = 1. If m2 = 0, then

(4.20) a1x
n1 + · · ·+ a`x

n` + a`+1 − b2 = b1y
m1
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and if ` = 1, then

(4.21) b1y
m1 + b2y

m2 − a2 = a1x
n1 .

By Baker’s result [1], Equations (4.20) and (4.21) with m1, n1 ≥ 3, have
finitely many effectively computable solutions x, y in integers, whenever the
polynomials on the left-hand side have at least two simple zeros. For Equa-
tion (4.21) we may give more precise information. To that end we follow the
approach from [17, Thm. 2].

By Lemma 3.9 the polynomial on the left-hand side of (4.21) has no zeros
of multiplicity greater than 2. If it has no two simple zeros, then it is of type
b1y

m1 + b2y
m2 − a2 = f(y)2µ(y), where f ∈ Q[y] with deg f ≥ 1 has simple

roots, and µ ∈ Q[y] is of degree at most 1. Assume first a2 6= 0. Note that
for any root ζ of f we have

(4.22) ζm1 =
−a2m2

(m1 −m2)b1
, ζm2 =

a2m1

(m1 −m2)b2
.

If d = gcd(m1,m2) then from (4.22) it follows that for every root ζ of f
the value ζd is the same. So, the number of roots of f , i.e., deg f , is bounded
by d. Since deg f ≥ (m1 − 1)/2, it follows that m1 ≤ 2 gcd(m1,m2) + 1,
wherefrom either m1 = 2m2 or (m1,m2) ∈ {(3, 1), (3, 2)}. Thus, apart from
these cases, Equation (4.21) with m1,m2, n1 ∈ N, m1, n1 ≥ 3 and nonzero
b1, b2, a1, a2 ∈ Q, has only finitely many effectively computable solutions. If
a2 = 0, on the left-hand side of (4.21) we have ym2(b1y

m1−m2 + b2), which
has at least two simple zeros exactly when m1 −m2 ≥ 2.
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