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Doubly slice knots with low crossing
number

Charles Livingston and Jeffrey Meier

Abstract. A knot in S3 is doubly slice if it is the cross-section of an
unknotted two-sphere in S4. For low-crossing knots, the most complete
work to date gives a classification of doubly slice knots through 9 cross-
ings. We extend that work through 12 crossings, resolving all but four
cases among the 2,977 prime knots in that range. The techniques in-
volved in this analysis include considerations of the Alexander module
and signature functions as well as calculations of the twisted Alexander
polynomials for higher-order branched covers. We give explicit illustra-
tions of the double slicing for each of the 20 knots shown to be smoothly
doubly slice. We place the study of doubly slice knots in a larger context
by introducing the double slice genus of a knot.
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1. Introduction

In 1962, Fox included the following question in his list of problems in knot
theory [8].

Question 1.1. Which slice knots and weakly slice links can appear as the
cross-sections of the unknotted S2 in S4.

Such a knot is called doubly slice. Many of the techniques that have been
successful in the study of slice knots and knot concordance over the last
50 years have applications to the study of doubly slice knots and double
null concordance of knots. Nevertheless, doubly slice knots remain far less
understood than their slice counterparts.

The goal of this note is to address Fox’s question for prime knots with 12
or fewer crossings. A precedent for this work was set in 1971 when Sumners
showed that for knots with nine or fewer crossings, there is only one prime
doubly slice knot, namely, the knot 946 [31].

There are 158 known prime slice knots with 12 or fewer crossings, and it
is unknown whether the knot 11n34 is slice. Of these 159 knots, we show
that at least 20, but no more than 24, are smoothly doubly slice.

Theorem 1.2. The following knots are smoothly doubly slice.

946 1099 10123 10155 11n42 11n49 11n74
12a0427 12a1105 12n0268 12n0309 12n0313 12n0397 12n0414
12n0430 12n0605 12n0636 12n0706 12n0817 12n0838.

Furthermore, with the possible exception of the following four knots, no other
prime knots of 12 or fewer crossings are smoothly doubly slice:

11n34 11n73 12a1019 12a1202.

Our contributions to this computation include the following:

• the first application of twisted Alexander polynomials to obstruct
double sliceness,
• the first low-crossing examples of slice knots with nonvanishing sig-

nature function,
• explicit constructions of unknotted embeddings of S2 into S4 with

equatorial cross-section isotopic to each of the 20 knots on the list.

The knot 946 was first smoothly double sliced by Terasaka and Hosokawa
[32], with a later construction given by Sumners [31], while 11n42 was shown
to be doubly slice in [4]. The double slicing of 10123 included below was
shown to the second author by Donald, who has contributed to the study of
double slice knots by studying the problem of embedding 3-manifolds into
S4 [7], where he gives a double slicing of 11n74.



DOUBLY SLICE KNOTS WITH LOW CROSSING NUMBER 1009

We show below that the Conway knot 11n34 is topologically (locally flat)
doubly slice (see Section 3), but it is unknown whether it can be smoothly
sliced or double sliced.

1.1. A brief history of doubly slice knots.
The study of slice knots is naturally placed in the context of the concor-

dance group C and the homomorphism φ : C → G, where G is the algebraic
concordance group, defined and classified by Levine [21, 22]. There are
analogous groups Cds and Gds defined in the context of doubly slice knots;
however, Levine’s classification of G does not carry over to Gds, and there
are other complications that make Cds and Gds difficult to study.

It is known that the kernel of the canonical map Gds → G in infinitely
generated [6], but beyond that, the structure of Gds remains a mystery. (See,
however, [2, 29, 30]. Recently, Orson has made significant progress in further
understanding Gds, [26, 27].) Furthermore, it can be shown using Casson–
Gordon invariants that there are algebraically doubly slice knots that are
not topologically doubly slice [12]. Friedl developed further metabelian in-
variants that can be used to obstruct double sliceness [11].

As in the study of slice knots, there is an important distinction between
the smooth and topologically locally flat categories. However, this distinc-
tion does not feature prominently in our work here; we find no low-crossing
examples of knots that are topologically doubly slice but not smoothly dou-
bly slice, even though such knots have been shown to exist [25]. Other in-
teresting constructions in the study of doubly slice knots include the fibered
examples of Aitchison and Silver [1] and the extension of the Cochran–
Teichner–Orr filtration to topologically doubly slice knots by Kim [18].

1.2. Organization.
In Sections 2 and 3, we discuss obstructions to double slicing knots coming

from the algebraic and topological categories, respectively. In Section 4, we
discuss some techniques that can be used to construct double slicings of knots
in either the topological or smooth categories. In Section 5, we place the
study of doubly slice knots in context by considering knots as cross-sections
of unknotted surfaces in S4.

1.3. Acknowlegments. We thank Andrew Donald and Brendan Owens
for helpful discussions and their interest in this project. An anonymous
referee made suggestions that significantly improved the exposition.

2. Algebraic obstructions to double slicing knots

In this section, we will present three algebraic obstructions to double
slicing a knot. These are applied to obtain an initial list of prime knots with
at most twelve crossings that could potentially be doubly slice.
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2.1. Hyperbolic torsion coefficients.
A knot K in S3 is said to be algebraically doubly slice if there exists a

Seifert matrix AK for K that has the form

AK =

[
0 B1

B2 0

]
,

where B1 and B2 are square matrices of equal dimension. Matrices of this
form are called hyperbolic and have been studied by Levine [23] and others [6,
30]. If K is (smoothly or topologically) doubly slice, then K is algebraically
double slice [31].

Let AK be a hyperbolic Seifert matrix for K. Then,

AK +ATK =

[
0 B
BT 0

]
,

where B = B1 + BT
2 . The matrix B ⊕ B is a presentation matrix for

H1(Σ2(K)). It follows that H1(Σ2(K)) splits as a direct sum G⊕G, where
G is presented by the matrix B. Thus, we have our first obstruction.

Proposition 2.1. Let K be a knot in S3. If K is algebraically doubly slice,
then, for some finite group G, H1(Σ2(K)) = G⊕G.

Of the 2,977 prime knots with at most 12 crossings, 62 knots satisfy
Proposition 2.1. Furthermore, if K is algebraically doubly slice, then K is
algebraically slice. Among these 62 knots, there are 36 that are algebraically
slice. These knots form our short-list of candidates to be algebraically doubly
slice and are shown below:

941 946 1099 10123 10153 10155 11n34 11n42
11n49 11n73 11n74 11n116 12a0427 12a1019 12a1105 12a1202
12n0019 12n0210 12n0214 12n0257 12n0268 12n0309 12n0313 12n0318
12n0397 12n0414 12n0430 12n0440 12n0582 12n0605 12n0636 12n0706
12n0813 12n0817 12n0838 12n0876.

2.2. The signature function.
Let K be a knot in S3 with Seifert matrix AK . Let ω be a unit complex

number, and consider the matrix

(1− ω)AK + (1− ω)ATK .

Denote by σω(K) the signature of this matrix. Note that this matrix will
be nonsingular provided that ∆K(ω) 6= 0, where ∆K(t) is the Alexander
polynomial of K. In any event, σK(ω) is a well-defined knot invariant for
any unit complex number ω. See [13] for details. It is well-known that

|σK(ω)| ≤ 2g4(K)

whenever ∆K(σ) 6= 0. Thus, if K is algebraically slice, then σω(K) = 0
away from the roots of the Alexander polynomial. Moreover, we have the
following result from [23].
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Proposition 2.2. Let K be a knot in S3. If K is algebraically doubly slice,
then σω(K) = 0 for any unit complex number ω.

In fact, we can consider these signature invariants as a function

σ(K) : S1 → Z,
defined by σ(K)(ω) = σω(K), called the signature function. If a knot K
satisfies Proposition 2.2, we say that the signature function for K vanishes.

Example 2.3. Let K = 12n0582. Then, ∆K(t) = (t2− t+ 1)2, and the roots
of ∆K(t) are contained on the unit circle. Since K is slice, we know that
σK(ω) = 0 away from these roots. However, if we consider the roots, ζ and
ζ, where ζ is a sixth root of unity, we can compute that

σζ(K) = σζ(K) = −1.

(Note that this calculation depends on a Seifert matrix AK , but any choice
will do and we do not include the details here.) It follows from Proposi-
tion 2.2 that K cannot be algebraically doubly slice.

Example 2.4. Let K = 12n0813. Then,

∆K(t) = (t− 2)(2t− 1)(t2 − t+ 1)2.

Two of the roots of ∆K(t) are primitive sixth roots of unity; the other two
roots do not lie on the unit circle, so no information can be gained by con-
sidering them. If we consider the roots of unity, we find that

σζ(K) = σζ(K) = +1.

(Again, we have used some matrix AK for this calculation.) It follows from
Proposition 2.2 that K cannot be algebraically doubly slice.

Thus, we remove 12n0582 and 12n0813 from our list of potentially alge-
braically doubly slice knots.

2.3. The Alexander module.
Continuing, let K be a knot in S3 and let X∞(K) denote the infinite cyclic

cover of S3 \ K. The group H1(X∞(K)) can be regarded as a Λ-module,
where Λ = Z[t, t−1]. This Λ-module is called the Alexander module and is
presented by the matrix VK = AK − tATK .

Sumners obstructed 941 from being doubly slice by carefully analyzing the
module structure of H1(X∞(K)). We follow a similar approach to analyze
two more knots.

We begin by switching to coefficients in the finite field with p elements,
Zp. In this case, H1(X∞(K),Zp) is a module over a PID, Λp = Zp[t, t−1].
With this, we have the following result.

Proposition 2.5. K is doubly slice, then as a Λp-module,

H1(X∞(K),Zp) ∼=
⊕
i

(
Λp/ 〈fi(t)〉 ⊕ Λp/

〈
fi(t
−1)
〉)
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for some set of polynomials fi(t) ∈ Λp.

Example 2.6. Let K = 11n116, which has ∆K(t) = (1+ t− t2)(−1+ t+ t2).
Using the Seifert form VK taken from KnotInfo [5] and working with Z2-
coefficients, we find that as a Λ2-module,

H1(X∞(K),Z2) ∼= Λ2/
〈
(1 + t+ t2)2

〉
.

This does not decompose as a nontrivial direct sum of modules, so

K = 11n116

cannot be doubly slice.

Example 2.7. Let K = 12n0876, which has

∆K(t) = (−2 + 4t− 2t2 + t3)(−1 + 2t− 4t2 + 2t3).

Again using the Seifert form VK taken from KnotInfo, but now working with
Z3-coefficients, we compute that as a Λ3-module,

H1(X∞(K),Z3) ∼= Λ3/
〈
(1 + t)2

〉
⊕ Λ3/

〈
(1 + t2)2

〉
.

This does not decompose further, so 12n0876 cannot be doubly slice.

2.4. Algebraic conclusions.
In conclusion, consideration of the torsion invariants reduced our search

for doubly slice knots to a set of 36 knots. An analysis of the signature
function removed another two, and an examination of Alexander modules
eliminate three more, including the one found by Sumners. Of the remaining
31 knots, we will use the techniques described in Section 4 to show that one
is topologically doubly slice and 20 are smoothly doubly slice. It follows
that these 21 knots are algebraically doubly slice, leaving us with only 10
knots that may or may not be algebraically doubly slice.

Question 2.8. Are any of the following knots algebraically doubly slice?

10153 11n73 12a1019 12a1202 12n0019
12n0210 12n0214 12n0257 12n0318 12n0440

3. Topological obstructions to double slicing knots

We now move from abelian to metabelian invariants. We begin by quickly
recalling the twisted polynomial. Let Mq(K) be the q-fold cyclic cover of
S3 \K, let Σq(K) be the branched cyclic cover, and let ρ : H1(Σq(K))→ Zp
be a homomorphism, where q is a prime power and p is an odd prime. Let
Γp = Q(ζp)[t, t

−1], where ζp is a primitive pth-root of unity. As described
in [20], there is an associated twisted Alexander polynomial ∆K,ρ(t) ∈ Γp.
This polynomial is well-defined up to multiplication by a unit in Γp. Given

f(t) ∈ Γp, let f(t) denote the result of complex conjugation of the coefficients
of f(t).

A result of [20] states the following.
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Theorem 3.1. If K is topologically slice, then there is a subgroup

H ⊂ H1(Σq(K))

satisfying the following properties.

(1) |H|2 = |H1(Σq(K))|.
(2) The subgroup H is invariant under the action of the deck transfor-

mation of Σq(K).
(3) For all ρ : H1(Σq(K))→ Zp satisfying ρ(H) = 0, one has

∆K,ρ(t) = af(t)f(t−1)

for some unit a ∈ Γp.

If K is doubly slice, then it satisfies strengthened conditions.

Theorem 3.2. If K is topologically doubly slice, then there exists a decom-
position

H1(Σq(K)) ∼= H1 ⊕H2

satisfying the following properties.

(1) H1
∼= H2.

(2) The subgroups H1 and H2 are invariant under the action of the deck
transformation of Σq(K).

(3) For all ρ : H1(Σq(K))→ Zp for which ρ(H1) = 0 or ρ(H2) = 0, one
has that

∆K,ρ(t) = af(t)f(t−1)

for some unit a ∈ Γp.

Proof. The proof is very similar to that of Theorem 3.1 in [20], so we just
summarize it here.

In Theorem 3.1, the subgroupH can be taken as the kernel of the inclusion
Σq(K) → W q(D), where W q(D) is the q-fold branched cover of B4 over a
slice disk D of K. In the case that K is doubly slice, the q-fold branched
cover Σq(K) embeds in S4, since S4 is the the q-fold branched cover of S4

over the (unknotted) double slicing 2-sphere for K. It follows that Σq(K)
splits S4 into manifolds Y1 and Y2.

The subgroups H1 and H2 can be taken as the kernels of the two inclusions
H1(Σq(K)) → Y1 and H1(Σq(K)) → Y2. The direct sum decomposition
arises from the Meyer-Vietoris Theorem; the fact that H1

∼= H2 follows
from duality, as first noticed by Hantzche [16].

The rest of the argument follows identically to that in [20]. �

Equipped with Theorem 3.2, we are ready to prove our second result.

Theorem 3.3. The following knots are not topologically doubly slice:

10153 12n0019 12n0210 12n0214
12n0257 12n0318 12n0440.
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Proof. The proof is nearly identical in each case, so we describe only one
case in detail.

Let K = 10153. Then H1(Σ3(K)) ∼= (Z7)
2, and the action of the deck

transformation splits the homology as E2⊕E4. Here E2 is the 2-eigenspace
of the action of the deck transformation on H1(Σ3(K)) and E4 is the 4-
eigenspace. Notice that 23 = 43 = 1 mod 7.

Let ρ2 : (Z7)
2 → E2 denote projection onto E2, so ρ2|E4 ≡ 0, and let

∆K,ρ2(t) denote the associated twisted Alexander polynomial. Then, we
have

∆K,ρ2(t) = (−t2 + (ζ4 + ζ2 + ζ + 1)t+ 1)(−t2 + (ζ4 + ζ2 + ζ)t+ 1),

where ζ is a 7th-root of unity. If we let

f(t) = (−t2 + (ζ4 + ζ2 + ζ + 1)t+ 1),

then ∆K,ρ2(t) = −t2f(t)f(t−1). To see this, use the fact that

1 + ζ + ζ2 + ζ3 + ζ4 + ζ5 + ζ6 = 0.

On the other hand, if one considers the other projection

ρ4 : H1(Σ3(K))→ E4,

so that ρ4|E2 ≡ 0, one finds that the associated twisted polynomial is given
by

∆K,ρ4(t) = t4 + 3t2 + 1.

The following lemma states that t4 + 3t2 + 1 is irreducible in Γ7. It
follows from Theorem 3.2 that K cannot be topologically doubly slice, since
the twisted polynomials associated to this metabolizing representation do
not factor as norms.

Lemma 3.4. The polynomial p(t) = t4 + 3t2 + 1 is irreducible in Γ7.

Proof. If α ∈ Q(ζ7) is a root of p(t), then so is α−1. Thus, if p(t) has a
linear factor, it has two distinct linear factors, and hence it has a quadratic
factor. So, suppose that p(t) factors into two quadratic polynomials. One
can assume the factorization is of the form

p(t) = (t2 + at+ b)(t2 + a′t+ b′).

By examining coefficients, the factorization further simplifies to be of the
form

p(t) = (t2 + at+ b)(t2 − at+ b),

where b = ±1 and a2 = 2b − 3. If b = 1, then a2 = −1. If b = −1, then
a2 = −5. Thus, the proof is completed by showing that Q(ζ7) contains
neither

√
−1 nor

√
−5.

The Galois group of Q(ζp) is cyclic, isomorphic to Zp−1, and thus contains
a unique index two subgroup. If follows that Q(ζp) contains a unique qua-
dratic extension of Q. A standard result in number theory (see [24]) states
that this field is Q(

√
p) or Q(

√
−p), depending on whether p is congruent to
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1 or 3 modulo 4, respectively. This quickly yields the desired contradiction;
for instance, it is clear that Q(

√
−5) 6⊆ Q(

√
−7). �

Knot Cover Homology Irreducible Twisted Polynomial

10153 Σ3(K) ∼= (Z7)2 ∆K,ρ4
(t) = t4 + 3t2 + 1

12n0019 Σ3(K) ∼= (Z13)2 ∆K,ρ9
(t) = t4 + 2t2 + 1

ζ13 = 1 +t3
(
ζ11 + ζ9 + ζ8 + ζ7 + 2ζ6 + 2ζ5 + ζ3 + 2ζ2 + ζ + 1

)
+t

(
ζ11 − ζ9 + ζ8 + ζ7 − ζ3 − ζ

)
12n0214 Σ3(K) ∼= (Z7)2 ∆K,ρ2

(t) = −29t4 +
(
31 + 8ζ + 8ζ2 + 8ζ4

)
ζ7 = 1 +t3

(
−27 + 37ζ + 37ζ2 + 37ζ4

)
+t

(
48 + 47ζ + 47ζ2 + 47ζ4

)
+t2

(
17 + 68ζ + 68ζ2 + 68ζ4

)
12n0257 Σ3(K) ∼= (Z13)2 ∆K,ρ9

(t) = −13t4 + 13

ζ13 = 1 +t3
(
37 + 48ζ + 21ζ2 + 48ζ3 + 21ζ5 + 21ζ6 + 14ζ7 + 14ζ8 + 48ζ9 + 14ζ11

)
+t2

(
39 + 78ζ + 13ζ2 + 78ζ3 + 13ζ5 + 13ζ6 + 65ζ7 + 65ζ8 + 78ζ9 + 65ζ11

)
+t

(
11 + 48ζ + 34ζ2 + 48ζ3 + 34ζ5 + 34ζ6 + 27ζ7 + 27ζ8 + 48ζ9 + 27ζ11

)
12n0318 Σ3(K) ∼= (Z7)2 ∆K,ρ2

(t) = 1 + 3t2 + t4

ζ7 = 1 +t
(
3 − ζ − ζ2 − ζ4

)
+t3

(
4 + ζ + ζ2 + ζ4

)
12n0440 Σ3(K) ∆K,ρ2

(t) = t4 − 3t3 + 6t2 − 3t+ 1

∼= (Z2)4 ⊕ (Z7)2

Table 1. Twisted Alexander polynomial calculations.

It follows from Theorem 3.2 that K cannot be topologically doubly slice,
since the twisted polynomials associated to this metabolizing representation
does not factor as a norm.

The general proof of Theorem 3.3 proceeds by checking that each of the
relevant twisted Alexander polynomials does not factor as a norm. The per-
tinent information needed to verify the result for the other knots is described
in Table 1. The Maple program developed in conjunction with [17] was used
to find the twisted polynomials and Maple could also be used to check the
factoring conditions.

The knot 12n0210 was shown to not to be topologically slice in [17] using
twisted polynomials, and hence it is not topologically doubly slice. �
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Question 3.5. Are any of the knots in the following list topologically doubly
slice?

11n34 11n73 12a1019 12a1202.

As we will see in the next section, this is the same list of knots that arises
in the smooth setting.

4. Double slicing knots

In this section, we discuss some techniques that can be used to show that
a knot is doubly slice. We will address the issue of double sliceness in both
the smooth and the locally flat settings.

4.1. Band systems.
In [7], Donald showed that if a knot can be sliced by two different se-

quences of band moves, and if the bands are related in a certain way, then
combining the two ribbon disks yields an unknotted 2-sphere. In this section
we present a concise treatment of a special case of his result.

Let L be a link in S3 and let b be the image of a 2-disk embedded in S3

such that L ∩ b consists of two disjoint arcs in ∂b. We refer to such a b as a
band and denote by L ∗ b the link formed as the closure of (L∪ ∂b) \ (L∩ b).
Notice that (L∗b)∗b = L; also, if b and c are disjoint, then (L∗b)∗c = (L∗c)∗b,
so we can write both as L ∗ b ∗ c.

The reader should be familiar with the fact that the band move L→ L∗ b
yields a cobordism from L to L ∗ b in S3 × [0, 1]. A sequence of n such
cobordisms from a knot K to the unlink of n+1 components yields a ribbon
disk in B4 formed as the union of the cobordism and disjoint disks bounded
by the unlink. Two such sequences yield an embedded sphere formed as
the union of the ribbon disks in S4 = B4 ∪ B4. If the sequences arise from
single bands b and c, we denote the knotted 2-sphere (K, b, c). We have the
following reinterpretations of two special cases of Donald’s double slicing
criterion [7].

Theorem 4.1. If K is a knot and b and c are disjoint bands for which K ∗b
is an unlink, K ∗ c is an unlink, and K ∗ b ∗ c is an unknot, then (K, b, c) is
unknotted.

Proof. Write U2 = K ∗ b and U ′2 = K ∗ c. Both are unlinks. Write

U1 = K ∗ b ∗ c,
which is an unknot. The surface (K, b, c) corresponds to the sequence

U2 → U2 ∗ b = K → K ∗ c = U ′2.

Changing the order of the bands, this can be rewritten as

U2 → U2 ∗ c→ U2 ∗ c ∗ b.
Since U2 = K ∗ b, we can express this as

U2 → K ∗ b ∗ c→ K ∗ b ∗ c ∗ b.
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Using the facts that K ∗ b ∗ c = U1 and

K ∗ b ∗ c ∗ b = K ∗ b ∗ b ∗ c = K ∗ c,
we finally rewrite the sequence as U2 → U1 → U ′2.

According to Scharlemann [28], a ribbon disk for the unknot with two
minima is trivial. Thus, (K, b, c) is the union of two trivial disks; hence it
is the unknot. �

Note that Scharlemann’s theorem is used above to show that certain slic-
ing disks for the unknot are trivial. In each of the examples we consider,
one can quickly show that the relevant slice disks for the unknot are trivial
by observing that they are built using trivial band sums of the unlink; in
particular, for our examples, one need not use the depth of Scharlemann’s
theorem.

More generally, if υ and ω are two disjoint sets of n bands for a knot
K such that K ∗ υ and K ∗ ω are unlinks of n + 1 components, then we
let (K, υ, ω) denote the sphere obtained by gluing the corresponding ribbon
disks along their common boundary, K. Note that ω can be viewed as a
set of bands for the unlink Un+1 = K ∗ υ, while υ can be viewed as a set of
bands for the unlink U ′n+1 = K ∗ ω.

Proposition 4.2. Suppose that υ and ω are disjoint sets of n bands for a
knot K such that the following properties hold:

(1) K ∗ υ is an unlink of n+ 1 components and ω is isotopic to a trivial
set of bands for K ∗ υ.

(2) K ∗ω is an unlink of n+ 1 components and υ is isotopic to a trivial
set of bands for K ∗ ω.

Then the sphere (K, υ, ω) is unknotted.

Proof. The sphere (K, υ, ω) is built by capping off both ends of the following
cobordism with sets of trivial disks:

Un+1 = K ∗ υ → (K ∗ υ) ∗ υ → (K ∗ υ) ∗ υ ∗ ω = K ∗ ω = U ′n+1.

Reversing the order of band attachments yields the cobordism:

Un+1 = K ∗ υ → (K ∗ υ) ∗ ω → (K ∗ υ) ∗ ω ∗ υ = K ∗ ω = U ′n+1.

The first half of this cobordism,

Un+1 = K ∗ υ → (K ∗ υ) ∗ ω,
consists of adding trivial bands to an unlink to form an unknot. The corre-
sponding surface, capped off, is a trivial disk in the 4-ball.

Reversing the other half of the cobordism yields the sequence:

U ′n+1 = K ∗ ω → K ∗ ω ∗ υ.
Again, this cobordism is built by adding n trivial bands to an unlink. Hence,
the capped off cobordism is a trivial disk. The union of two trivial disks
forms the unknot, completing the proof. �
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4.2. Superslice knots.
A knot K is called superslice if there is a slice disk D for K such that the

double of D along K is an unknotted 2-sphere in S4.
Suppose that K is obtained by attaching a band υ to an unlink of two

components. See Figure 2 for the pertinent three examples. Let D1 and D2

denote the standard pair of disks bounded by the two-component unlink. In
this case, the union D = D1 ∪ υ ∪D2 is an obvious ribbon disk for K. This
disk is immersed in S3 with ribbon singularities, but if we push the interiors
of D1 and D2 into B4, we obtain an embedded disk, still called D, with two
minima and one saddle with respect to the standard radial Morse function.
We can assume that D is properly embedded by pushing the entire interior
into B4, but pushing the interiors of D1 and D2 in farther.

Let K be the 2-knot obtained by doubling the disk D. That is, glue two
copies of (B4, D) together along their common (S3,K) boundary (via the
identity map) to get (S4,K). By construction, we see that K is formed by
taking two unknotted 2-spheres S1 and S2 in S4 and attaching a tube Υ
that connects them. Here, Si is the double of Di and Υ is the double of υ.

Figure 1. A local picture of a 2-knot isotopy that passes
one tube through another.

Suppose that locally, we see two pieces of Υ as in Figure 1; there is an
isotopy that passes these two pieces through each other, as shown. This
isotopy corresponds to passing pieces of υ past each other. This changes
the isotopy class of the band υ, giving a new band υ′ and a new ribbon
knot K ′, which is obtained by attaching υ′ to the original unlink. Because
this change resulted from an isotopy of K, we see that both K and K ′ are
cross-sections of K. If K ′ is unknotted, then K is unknotted, as in the proof
of Theorem 4.1, and we can conclude that K is doubly slice. We summarize
this with the following criterion.

Proposition 4.3. Let K be a knot that is obtained by attaching a single
band υ to an unlink of two components. Let K ′ be the result of passing the
band υ through itself as discussed above. If K ′ is the unknot, then K is
smoothly superslice. In particular, if the band is relatively homotopic to a
trivial band in the complement of a neighborhood of the unlink, then K is
smoothly superslice.
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Figure 2 shows three examples of ribbon knots that satisfy the above
criterion and can therefore be seen to be smoothly superslice.

Corollary 4.4. The isotopy class of K depends only on the homotopy class
of the core of υ.

Figure 2. The above knots are smoothly superslice.
See Subsection 4.2.

4.3. Freedman and the locally flat setting.
Let K be a knot in S3, and let ∆K(t) denote the Alexander polynomial

of K. It is a well-known consequence of the work of Freedman and Quinn
that any knot K with ∆K(t) = 1 bounds a topologically locally flat disk in
B4 [9, 10]. In fact, a stronger, yet less well-known, fact is true. (See [25] for
more detail.)

Theorem 4.5. Let K be a knot in S3. If ∆K = 1, then K is topologically
superslice.

There are four knots, up to 12 crossing, with trivial Alexander polynomial.
The first is the Conway knot 11n34, and the other three are shown in Figure 2.
Theorem 4.5 shows that 11n34 is topologically doubly slice. Interestingly,
it turns out that each of the other three knots is smoothly superslice; by
Propostion 4.3 the double of the ribbon disk is an unknotted 2-sphere in
S4. Thus we are led to the following problem, which at the moment seems
inaccessible.

Problem 4.6. Find a smoothly slice knot K with ∆K(t) = 1 that is not
smoothly superslice.

Superslice knots were first studied by Gordon–Sumners [15], who showed
that the Whitehead double of any slice knot is superslice and that for any
superslice knot K, ∆K(t) = 1. Superslice knots were also were studied in
relation to the Property R Conjecture [3, 14, 19].
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We remark that many infinite families of superslice knots can be created
by taking any properly embedded arc in the complement of an unlink that
is homotopic, but not isotopic, to the trivial arc connecting the two compo-
nents and banding along the arc with some framing. Changing the framing
produces infinitely many knots in each family which can be distinguished
from each other by their Jones polynomials. For example, any of the three
knots shown in Figure 2 gives rise to such a family by adding twists to the
band in each case.

4.4. Proof of Theorem 1.2.
We are now equipped to prove our main result.

Theorem 1.2. The following knots are smoothly doubly slice.

946 1099 10123 10155 11n42 11n49 11n74
12a0427 12a1105 12n0268 12n0309 12n0313 12n0397 12n0414
12n0430 12n0605 12n0636 12n0706 12n0817 12n0838.

Furthermore, with the possible exception of the following four knots, no other
prime knots of 12 or fewer crossings are smoothly doubly slice:

11n34 11n73 12a1019 12a1202.

Proof. The Kinoshita–Terasaka knot 11n42 was shown to be smoothly su-
perslice in [4]. Figure 2 shows ribbon disks for 12n0313 and 12n0430. It is
easy to see that that each knot satisfies the hypotheses of Proposition 4.3;
therefore, each of these knots is smoothly superslice, hence smoothly doubly
slice.

The remaining 17 knots are shown in Figures 3, 4, and 5. With the
exception of 12n0636, these knots all satisfy Theorem 4.1. The pair of two-
band systems for 12n0636 consisting of υ = {a, b} and ω = {c, d} illustrated
in Figure 5 satisfy the condition of Proposition 4.2, and thus 12n0636 is also
doubly slice. �

Portions of Theorem 1.2 were previously known: 946 was first smoothly
double sliced by Terasaka and Hosokawa [32], with a later construction given
by Sumners [31]; 11n42 was double sliced by Carter, Kamada, and Saito [4];
and 10123 (private communication) and 11n74 (in [7]) were double sliced by
Donald.

Question 4.7. Are any of the following knots smoothly doubly slice?

11n34 11n73 12a1019 12a1202

Recall that 11n34 is topologically doubly slice. Other than this, Ques-
tion 4.7 applies equally well in the topological setting and covers all possi-
bilities. This completes our analysis.
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Figure 3. The above knots are smoothly doubly slice. See Subsection 4.1.
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Figure 4. The above knots are smoothly doubly slice. See Subsection 4.1.
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Figure 5. The above knots are smoothly doubly slice. See Subsection 4.1.
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5. The double slice genus of knots

The study of doubly slice knots can be placed in the broader context of
the relationship between knots in the 3-sphere and surfaces in the 4-sphere.
In this section, we will briefly describe this more general setting.

Let S be an orientable surface in S4. We say that S is unknotted if S
bounds a handlebody H in S4. Let S be an unknotted surface in S4, and
suppose that S transversely intersects the standard S3 in a knot K. We say
that K divides S.

Let K be a knot in S3 and let F be a Seifert surface for K with g(F ) = g.
We think of F ⊂ S3 ⊂ S4, where S3 lies as the equator of S4. Let
H = F × [−1, 1], with H ∩ S3 = F ; the surface F is the intersection
of a handlebody H ⊂ S4 with S3. Let S = ∂H. Then, S is an unknotted
surface in S4 (by definition) and K = S ∩ S3. It follows that every knot K
in S3 divides an unknotted surface in S4.

Therefore, we define

gds(K) = min{g(S) | S ⊂ S4, S unknotted, and S ∩ S3 = K}.

We call gds(K) the double slice genus of K. Note that gds(K) = 0 if and
only if K is doubly slice. Furthermore, we saw above that gds(K) ≤ 2g3(K).
Similarly, it is clear that 2g4(K) ≤ gds(K).

The restriction 2g4(K) ≤ gds(K) ≤ 2g3(K) is already enough to deter-
mine the double slice genus for a third of the knots up to nine crossings. A
more detailed analysis will be the subject of future study by the authors.
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